Moo in practice - System::Image::Update

Jens Rehsack

Niederrhein Perl Mongers

2015

Jens Rehsack (Niederrhein.PM)

I viotivation
Motivation

Moo and System::Image::Update
@ real world examples over far-fetched conceptuals

@ MooX::ConfigFromFile and MooX::Options provide way more features and
flexibility than MooseX competitors

@ 2" generation of modern OO in Perl5

System::Image::Update
@ Provides an out-of-the-box solution for managing updates on embedded
devices
@ Easy to re-use in several layers of the firmware
self-sustaining (automatic) update management including forced updates
(mind heartbleed)

embedable into middleware
ability for shortcuts

@ self-healing capabilities

Jens Rehsack (Niederrmein iy | T A SRS

T, A.dience

Audience

Audience
@ Developer who wants to create or improve Perl5 software

@ Developer who wants to learn how to develop modern OO with Perl5

@ Developer who interested in developing mathematical exercises

Prerequisites of the Audience
Following knowledge is expected:

@ General knowledge about object oriented programming or concepts like
classes
objects
polymorphism, inheritance and/or roles
methods, class functions
attributes, properties

@ slightly above basic Perl experience

@ ever heard of Smalltalk and its OO-concept is a strong bonus

Jens Rehsack (Niederrmein iy | T A SRS

| G==arkix

Classes in Moo

@ classes can be instantiated
@ one can inherit from classes
@ one can aggregate classes

@ distinguish naming conflicts is up to developer

{

package System::Image::Update;

use Moo;
use MooX::0Options with_config_from_file => 1;
use I0::Async ();

use File::ConfigDir::System::Image::Update qw(system_image_update_dir);
around BUILDARGS => sub {...};

sub run {..}

sub collect_savable_config {}

sub reset_config {}

sub save_config {}

b

System::Image::Update->new_with_options->run;

Jens Rehsack (Niederrhein.PM) 2015

6/33

| G==arkix

Roles in Moo
roles describe a dedicated behavior (e.g. logger)

)

¢ € ¢ ¢ ¢

roles can be composed into classes

one can't inherit from roles - only consume
roles cannot exist stand-alone

roles are consumed once

naming conflicts cause compile time error

~

}

package System::Image::Update::Role::HTTP;

use Moo::Role; # now it’s a role - no ’is a’
sub do_http_request { ... }
around collect_savable_config => sub {...};

package System::Image::Update::Role::Scan;

use Moo::Role;

relationship anymore

with "System::Image::Update::Role::HTTP"; # consumes a role

sub scan { my $self = shift; $self->do_http_request(...) };

Jens Rehsack (Niederrhein.PM)

2015

7/33

Attributes in Moo

Attributes in Moo

package System::Image::Update::Role::Scan;
use Moo::Role;

has scan_interval => (is => "ro", default => 6%*60%60);
has|\ updatfe_manifest_uri => (=>MNlazy");
1; k

use "has" keyword to defi

attributes "scan_interval” update_manifest_uri”
those attributes are immutable

scan_interval is initialized with a constan

¢ € 6 ¢ ¢

update_manifest_uri is initialized by a builder

Jens Rehsack (Niederrhein.PM) 2015 8/33

| A@ircGHEes

Attribute options - Selection |
is required behavior description
ro defines the attribute is read only
rw defined the attribute is read-/writable
lazy defines the attribute is read only with a lazy
initialization
required when set to a true value, attribute must be passed on instantiation

isa defines a subroutine (coderef) which is called to validate values to
set

coerce defines a subroutine (coderef) which forces attribute values

trigger takes a subroutine (coderef) which called anytime the attribute is
set
special: the value of 1 means to generate a (coderef) which
calles the method _trigger_${attr name} (This is called
attribute shortcut)

default subroutine (coderef) which is called to initialize an attribute

Jens Rehsack (Niederrmein iy | T A SRS

| A@ircGHEes

Attribute options - Selection Il

builder takes a method name (string) which is called to initialize an
attribute (supports attribute shortcut)

init_arg Takes the name of the key to look for at instantiation time of the
object. A common use of this is to make an underscored attribute
have a non-underscored initialization name. undef means that
passing the value in on instantiation is ignored.

clearer takes a method name (string) which will clear the attribute
(supports attribute shortcut)

predicate takes a method name (string) which will return true if an
attribute has a value (supports attribute shortcut)

Jens Rehsack (Niederrmein iy | T A EREYED

N B 1 [2

Methods in Moo

package System::Image::Update::Role::Async;

use
use

has
sub

sub

I0::Async; use IO::Async::Loop;

I0::Async::Timer::Absolute; use IO::Async::Timer::Countdown;
Moo::Role;

loop => (is => "lazy", predicate => 1);

_build_loop { return IO::Async::Loop->new() }

wakeup_at { my ($self, $when, $cb_method) = @_;

my $timer;

$self->loop->add($timer = I0::Async::Timer::Absolute->new(
time => $when,
on_expire => sub { $self->$cb_method },

1)

$timer;

nothing like MooseX: :Declare - pure Perl5 keywords are enough for plain
methods

Jens Rehsack (Niederrhein.PM) 2015

11/ 33

| VEiedifine

Method Modifiers

Method modifiers are a convenient feature from the CLOS (Common Lisp Object
System) world:
before before method(s) => sub { ...}
before is called before the method it is modifying. Its return value
is totally ignored.
after after method(s) => sub { ...}
after is called after the method it is modifying. Its return value is
totally ignored.
around around method(s) => sub { ...}
around is called instead of the method it is modifying. The method
you're overriding is passed as coderef in the first argument.

- No support for super, override, inner or augment

Jens Rehsack (Niederrmein iy | T A EREYED

| VEiedifine

Method Modifiers - Advantages

@ supersedes $self->SUPER: : foo0(@_) syntax
cleaner interface than SUPER
allows multiple modifiers in single namespace

also possible from within roles and not restricted to inheritance

¢ ¢ ¢ ¢

ensures that inherited methods invocation happens right (mostly - remember
around)

Jens Rehsack (Niederrhein.PM) 2015 13 /33

| VEiedifine

Methods Modifiers - around avoid calling $orig

package Update::Status;

use strict; use warnings; use Moo;
extends "System::Image::Update";
around _build_config_prefix => sub { "sysimg_update" };

@ captures control
@ receives responsibility

@ runtime of modified method completely eliminated

Jens Rehsack (Niederrhein.PM) 2015 14 / 33

| VEiedifine

Methods Modifiers - around modifying $orig return value

package System::Image::Update:

use strict; use warnings; use

around
my
my
my

$se1f—>update_server eq $defau1t_update_server or $collect_savab1e_config—>

collect_savable_config
$next

$self
$c011ect_savable_config

$c011ect_savab1e_config

:Role::Scan;

Moo ::Role;

>

sub {
shift;
shift;
$self->$next (Q@_);

@ modifies only required part

@ leaves most responsibility in modified method

@ runtime of modified method added to this method’s runtime

Jens Rehsack (Niederrhein.PM)

2015 15/33

T, Company
Rademacher Elektronik GmbH, Rhede

@ Successor of Guruplug based
Homepilot 1

@ Full update abilities (including boot
loader, kernel and system
components)

@ Multimedia features (Mediaplayer
with HDMI video and Coaxial audio)

@ Closer Adoption to Rademacher
Way: Control from Hardware
development until Customer Service

Jens Rehsack (Niederrhein.PM) 2015 17 / 33

| /Awitim

HomePilot 2

@ service console moved from PHP to
Perl5, PSGI and Dancer

@ system management and
automation full Perl5 powered

@ company infrastructure improved by
Perl (eg. production of HP2)

@ PoC use Perl6 + NativeCall to
eliminate wrapper processes

@ created Yocto CPAN Layer for cross
compiling lot’s of CPAN modules

y

Jens Rehsack (Niederrmein iy | T A Y ED

T oc!f-Sustaining Daemon

State-Machine with togglable states and protected states

Initialisations

Reset

scan
No

- Newer Image Information?

heck
Scan

scan_image_info !

No

Contain Update? P

But already
ot yet
No fnaiyse_update details
But alread R
3ut already

ves No

w; Download successful? —
Yes

S,]

Verify download?

— et ol = Lot} =

Jens Rehsack (Niederrhein.PM)

2015

19 /33

T oc!f-Sustaining Daemon

State Control

package System::Image::Update;

use strict; use warnings; use Moo;
with "System::Image::Update::Role::Scan", "System::Image::Update::Role::Check"f,

has status => (is => "rw", lazy => 1, builder => 1, predicate => 1,
isa => sub { __PACKAGE__->can($_[0]) or die "Invalid status: $_[0]" }
E

sub _build_status { -f $_[0]->update_manifest ? "check"
$_[0]->has_recent_update and -e $_[0]->download_image ? "prove" : "scan";
}

@ automatic recovering after down-state (power outage, Vodka party, . ..)
@ room for improvements like continue aborted download

@ no direct path to "download” or "apply” to avoid mistakes

Jens Rehsack (Niederrhein.PM) 2015 20 /33

T oc!f-Sustaining Daemon

State Control Il

package System::Image::Update;

use strict; use warnings; use Moo;
with "System::Image::Update::Role::Scan", "System::Image::Update::Role::Check"f,

has status => (...);

around BUILDARGS => sub {
my $next = shift; my $class = shift; my $params = $class->$next (Q_);

$params ->{status} and $params->{status} eq "apply"
and $params->{status} = "prove';
$params ->{status} and $params->{status} eq "prove"
and $params->{recent_update}
and $params->{recent_update}->{apply} = DateTime->now->epoch;

$params;

¥

@ toggleable are "download” and " prove”
@ "apply” is protected by " prove” to ensure no corrupted image is applied

@ protection needs to be improved before releasing to wildlife

Jens Rehsack (Niederrhein.PM) 2015 21 /33

I, ReadOnly”

Middleware Information Center

package Update::Status;

use strict; use warnings; use Moo;
extends "System::Image::Update";

around _|trigger_recent_update => sub {};

around BUILDARGS => sub {
my $next =/shift; my $class = shift; my $params = $class->$next (Q_);
existls $pgrams->{status} and delete $params->{status};
$params;

from " System::Image::Update” to get the real world picture
re no construction argument wastes the self-diagnostics

@ prevent automatism starts when recent update is found

What information?

Jens Rehsack (Niederrhein.PM) 2015 22 /33

I, ReadOnly”

Middleware Information Center

package Update::Status;

use strict; use warnings; use Moo;
extends "System::Image::Update";
around _build_config_prefix => sub {

"sysimg_update" };

around _triggkr_recent_update => sub /{};

around BUILDARGS

my $next = shift; my $params = $class->$next(Q_);
exists $params->{st and delete $params->{statusl};
$params;

s

@ defa(ilt builder guesses ’’config prefix’’ from $0
9 override with $0 from the daemon

Jens Rehsack (Niederrhein.PM) 2015 23 /33

I, ReadOnly”

Middleware Delivery Center

package hp2sm;

use strict; use warnings; use Dancer2 ’:syntax’; .; use Update::Status;

get ’/status’ => sub {
my $us = Update::Status->new;
my $status = "idle";
$us->has_recent_update agd $status =
$us->stdtus and $status =

"available";
!downloading";
nload_image

and $ub == gtat($us->download_image)->size

my $pl ess_stats ();

process_name ($_)

/flash-device/ } (0 .. $pl->entries()

35
@ Load’an ge::Update” instance
@ stast with| and prove from earliest to latest
@ better status overrides earlier measures - ’ >prove’’ implies

has_recentlupdate

>2apply’’ is currently done by an external process
use Unix: :Statgrab to grep for processes

¢ ©

Jens Rehsack (Niederrhein.PM) 2015

24 /33

I, ¢ \riteBack”

Middleware Strikes Back

package hp2sm;
use strict; use warnings; use Dancer2 ’:syntax’; ...; use Update::Status;

put ’/status/downloading’ => sub {
my $us = Update::Status->new();
$us->has_recent_update or return $json->encode({ result => "n/a" });
$us->status ("download"); $us->save_config;
system("svc -t /etc/daemontools/service/sysimg_update/");
return $json->encode({ result => "ok" });

i

Middleware Information Boosted Persistency

package Update::Status;
use strict; use warnings; use Moo;
extends "System::Image::Update";

around collect_savable_config => sub {
my $next = shift; my $self = shift; my $save_cfg = $self->$next(Q_);
$self ->has_status and $save_cfg->{status} = $self->status;
$self->has_download_file
and $save_cfg->{download_file} = $self->download_file;
$save_cfg; };

v

Jens Rehsack (Niederrhein.PM) 2015

25 /33

| [oEmkhssEm
system-image-update_git.bb top

DESCRIPTION = "System::Image::Update helps managing updates of 0S images ..."

= "git://github.com/rehsack/System-Image-Update.git;rev=646fa928... \
file://run file://sysimg_update.json"

+= "archive-peek-libarchive-perl crypt-ripemd160-perl"

+= "datetime-format-strptime-perl"

RDEPENDW _ += "log-any-adapter-dispatch-perl"

RDEPEND "file-configdir-system-image-update-perl"
RDEPENDS\${PN} ¢ "moo-perl moox-configfromfile-perl moox-log-any-perl"
RDEPENDS 'moox-options-perl net-async-http-perl"

RDEPENDS _ = igest -md5-perl digest-md6-perl"

RDEPENDS_$Y{ PN} st-sha-perl digest-sha3-perl"
RDEPENDS_$ ools system-image"

S = "${WORKRI

BBCLASSEXTE

inherit cpan
do_configure_
oe_runmake

}

@ typical packbge stuff \ like runtime dependencies

9 git checkout$ need adoption of source path

9 build as any gpan package is built, but allow native packages and create
missing MANIFEST

Jens Rehsack (Niederrhein.PM) 2015 26 /33

| [EgEkksEe

system-image-update_git.bb bottom

SERVICE_ROOT = "${sysconfdir}/daemontools/service"
SYSUPDT_SERVICE_DIR = "${SERVICE_ROOT}/sysimg_update"

do_install_append () {
install -d -m 755 ${D}${sysconfdir}
install -m 0644 ${WORKDIR}/sysimg_update.json ${D}${sysconfdir}

install -d ${B}${SYSUPDT_SERVICE_DIR}
install -m 07 ${WORKDIR¥/run ${D}${SYSUPDT_SERVICE_DIR}/run
}

FILES_${PN} nfdir}"

@ install configuration file

o tell bitbake to put files from ${sysconfdir} into package

Jens Rehsack (Niederrhein.PM) 2015 27 /33

| DEvivtusan Mok Eo

sysimg_update.json
{
"log_adapter" : [
"Dispatch",
"outputs", [
["File", "min_level", "debug", "filename",
"/var/log/sysimg_update.log", "newline", 1, "mode", ">>"],
["File", "min_level", "error", "filename",
"/var/log/sysimg_update.error", "newline", 1, "mode", ">>"],
["Screen", "min_level", "notice", "newline", 1, "stderr", 1]
1
1,
"update_mgnifest_dirname" : "/rwmedia/update/",
Mttp_user : "bO1f..."
}
y

@ redirect place Yo store update manifest (files)

@ Provide authentication to update server for development boxes (avoid
builder is called)

Jens Rehsack (Niederrhein.PM) 2015 28 /33

Conclusion
9 lazy attributes allow designing a multi-stage initialization phase
@ benefit of common runtime (faster load) when using

@ improve design by

using roles for behavioral design (avoid duck typing)
using explicit patterns for clear separation of concerns
express intensions clearer for method overloading by using method modifiers

v

Jens Rehsack (Niederrhein.PM) 2015 30/ 33

Resources

Software on MetaCPAN

https://metacpan.org/pod/Moo
https://metacpan.org/search?q=MooX
https://metacpan.org/pod/MooX: :Options
https://metacpan.org/pod/MooX: :ConfigFromFile
https://metacpan.org/pod/I0: : Async

Software on GitHub

https://github.com/moose/Moo
https://github.com/rehsack/System-Image-Update
https://github.com/perl5-utils/File-ConfigDir-System-Image-Update

Software for Cross-Building Perl-Modules

https://www.yoctoproject.org/
https://github.com/rehsack/meta-cpan

Jens Rehsack (Niederrhein.PM) 2015 31/33

https://metacpan.org/pod/Moo
https://metacpan.org/search?q=MooX
https://metacpan.org/pod/MooX::Options
https://metacpan.org/pod/MooX::ConfigFromFile
https://metacpan.org/pod/IO::Async
https://github.com/moose/Moo
https://github.com/rehsack/System-Image-Update
https://github.com/perl5-utils/File-ConfigDir-System-Image-Update
https://www.yoctoproject.org/
https://github.com/rehsack/meta-cpan

N Resources
Resources

IRC

irc://irc.perl.org/#moose
irc://irc.perl.org/#web-simple
irc://irc.perl.org/#dancer
irc://irc.freenode.org/#yocto

Hints

http://sck.pm/WVO # proper usage of the roles in perl
https://metacpan.org/pod/Moo#CLEANING-UP-IMPORTS

Jens Rehsack (Niederrhein.PM)

irc://irc.perl.org/#moose
irc://irc.perl.org/#web-simple
irc://irc.perl.org/#dancer
irc://irc.freenode.org/#yocto
http://sck.pm/WVO
https://metacpan.org/pod/Moo#CLEANING-UP-IMPORTS

R Thankyou
Thank You For Listening

Jens Rehsack <rehsack@cpan.org>

Questions? J

Jens Rehsack (Niederrhein.PM)

mailto:rehsack@cpan.org

	Introduction
	Introduction
	Motivation
	Audience

	Moo basics
	Modules
	Classes and Roles

	Attributes
	Attributes in Moo
	Attribute Options

	Methods
	Method Examples
	Method Modifiers

	System::Image::Update
	Domain
	Company
	Application

	Update Service
	Self-Sustaining Daemon

	Middleware Interception
	''ReadOnly''
	''WriteBack''

	Glue
	Into Target Filesystem

	Configuration file
	Distributions and Moo Initialization Glue

	Finish
	Conclusion
	Resources
	Resources
	Thank you

