
Improving NetBSD/mips

1
matt@netbsd.org

mailto:matt@netbsd.org
mailto:matt@netbsd.org

Historical Overview

• My first MIPS experience was back in 1988 when I
helped port ULTRIX to the DECstation 3100 (pmax)
for Digital Equipment Corporation.

• NetBSD gained its initial MIPS support 6 years later
when it imported the BSD 4.4-lite pmax code.

• Generic MIPS code was split off from pmax in 1998
when newmips was added. Most other mips ports
were added between 1999 and 2003.

2

The MIPS Architecture

• MIPS-1 (R3000/R2000), MIPS-2

‣ 32-bit, no locking (LL/SC) instructions, simple TLB

• MIPS-3 (R4000+, 64-bit), MIPS64

‣ 64-bit, locking (LL/SC) instructions, dual entry TLB

• MIPS32

‣ 32-bit, locking instructions, dual entry TLB

3

The MIPS Architecture
Continued

• 32-bit address space is
split into 4 regions (1
user, 3 kernel)

• Addresses are signed
(positive addresses are
user and negative address
are for the kernel)

• KSEG0/KSEG1 map the
first 512MB of physical
memory

KSEG2 (1GB, TLB Mapped)

User (2GB, TLB Mapped)

KSEG1 (512MB, Uncached Direct
Mapped)

KSEG0 (512MB, Cached Direct
Mapped)

FFFFFFFF

C0000000

A0000000

80000000

00000000

4

The MIPS Architecture
Continued

• 64-bit address space is split into equal sized 4 regions
(user, supervisor, kernel direct mapped (XKPHYS),
kernel TLB mapped (XKSEG))

• Addresses are signed (positive addresses are user and
supervisor while negative addresses are for the kernel)

• KSEG0/KSEG1 map first 512MB of physical memory

• XKPHYS direct maps all of physical memory (using one
of 8 CCAs)

5

MIPS ABIs

• O32 came first and is still the only ABI used for 32-bit
only CPUs. Only the first 4 arguments are passed by
register.

• O64 was the first 64-bit ABI and is simply O32 extended
to use 64-bit registers. O64 is not supported by
NetBSD.

• N64 also uses 64-bit registers but simplifies stack usage
and passes the first 8 arguments by register.

• N32 is N64 but addresses are 32-bit.

6

RMI/NetLogic/Broadcom
XLR/XLS/XLP

• MIPS64 multicore superscalar SoCs for “big” embedded
systems.

• 2-8 cores, 4 threads per core; up to 32 threads (vCPU)
per chip

• 40-bit physical address space, full 62-bit TLB mapped
address spaces.

• Multiple PCI-X or PCIe buses

• Security, Compression, and Networking Accelerators

7

NetBSD/mips 5.0 Status

• Uses O32 ABI.

• Kernel is 32-bit only.

• Can only use memory which is addressable via KSEG0.
I/O registers may be located beyond the first 512MB of
physical memory.

• Uniprocessor only.

8

What Needed To Be Done?

• 64-bit address space.

• Be able to use lots (16+GB) of memory.

• Generic MP support

• Support new optional kernel features (preemption, fast
soft interrupts)

9

NetBSD/mips64 is NetBSD/mips

• Unlike the sparc64 or powerp64 approaches, I decided
that mips64 support will be integrated with the 32-bit
mips support; thus there is no src/sys/arch/mips64.

• Except for a few minor cases of coping with ABI
differences, the same code is used for 64-bit mips and
32-bit mips as well as for O32, N32, and N64. Uses CPP
macros to abstracted 32-bit and 64-bit instructions:
PTR_L, LONG_L, REG_L, etc.

• Added builtin CPP macros for __mips_{o,n}{32,64} to
make ABI testing simpler.

10

N32: The NetBSD/mips64 ABI

• Most programs don’t need a 64-bit address space.

• The XLR/XLS don’t have a FPU. Emulating the new FP
instructions semantics needed by N32 or N64 is a lot
of work; use software emulation instead.

• N32 kernel grovelers don’t like running with a N64
kernel.

• N32 userland can run under either N32 or N64
compiled kernels.

11

COMPAT_NETBSD32
Running 32-bit programs on a 64-bit kernel.

• System needs to be able to able boot while using a
completely 32-bit userland.

• Added compat code to deal with mount(2) and the
routing socket.

• New interfaces need to be 64-bit clean. Replace old
unclean interfaces with new 64-bit clean interface.

• Update routing socket protocol to use a 64-bit clean
interface.

12

64-Bit Address Space Support

• Requires three levels of page tables:

• 4KB page size supports a 40-bit (1TB) address space

• 8KB page size supports a 44-bit (16TB) address space

• Optimize for 32-bit address space which only requires a
two level lookup. Even when using 4KB pages, 2 level of
page tables maps 2GB which is the size of the 32-bit user
address space.

• XKPHYS is used to access memory without needed a TLB
entry. Used for I/O address and dynamic kernel memory.

13

64-Bit Address Space Support
Continued

Since many devices only support DMA operations to
addresses in the first 4GB of physical address space, the
system needs to track those pages at or above 4GB
separately from those below that threshold. If 32-bit DMA
is requested for a page that does not reside with the first
4GB, a bounce buffer (allocated from the first 4GB) is used
to perform the DMA

14

64-bit Kernels

• mips64 kernels can be built using N32 or N64 ABIs but
run with a 64-bit kernel address space regardless of ABI.

• Kernels load into KSEG0 and use 32-bit symbols (-
msym32) so that only 2 instructions are needed to load
symbol’s value (instead of 5).

• N64 kernels are converted to N32 ELF format (possible
since symbols are 32-bits) to allow bootloaders to load
them without knowing ELF64.

• N32 kernels use KSEG2 (1GB) for TLB mapped addresses.
N64 kernels use XKSEG (4EB) for TLB mapped addresses.

15

Abstractions

sys/arch/mips contains the cpu-dependent code which is the
machine-dependent abstraction. However there are many
variants of MIPS cpus and each needs to look the same to
the generic MIPS code.

• mips_locore_jumpvec_t - chip/isa dependent routines
(tlb, etc.)

• mips_locore_atomicvec_t (LL/SC or RAS based routines)

• struct locoresw (idle, smp routines)

• struct splsw (interrupt and spl routines)

16

Dynamic Fixups

Abstractions are nice but calling via indirect calls has a cost. It
would be great to have the speed of direct calls. So the mips
kernel will cause calls to “stub” routines to be automatically
changed to direct calls to the routine the stub would have
called indirectly.

The stubs are place in a special section at the end of .text
segment. The kernel text is scanned looking for calls to
addresses within that section. When one is found, the fixup
code will “emulate” the instructions in the stub to determine
what routine the stub would have called and then fixes the
original instruction to call that routine directly.

17

Dynamic Fixups
continued

• A normal kernel typically has over 5,000 calls modified which
is accomplished in about 3ms.

• This has worked so well that the PowerPC ports now use
this technique.

• I plan on adding that capability to the ARM ports as well.

• Module symbol resolution to stub routines need to be fixed
up to use real routines.

• Easiest to implement on architectures that have fixed sized
instructions.

18

SMP Changes

• pmap module is mostly lockless by using atomic
sequences.

• LL/SC atomic routines only used on machines capable
of running with multiple CPUs.

• Add a hook for sending IPIs (hardware dependent)

• Add a hook for spinup secondary processors

• cpu_want_resched make MP aware

19

Changing the Page Size

• A MIPS kernel can use any page size it wants (specified
by a configuration option in the kernel configuration
file). The Lonsoong kernels use a 16KB page size due
to virtual cache aliasing.

• 8KB or 32KB (“odd” page shift) require less complexity
since there is always only one PTE per dual TLB entry.
Page sizes with an even page size uses two independent
PTEs per dual TLB entry and that requires code to deal
with invalidating one of the two mappings in that TLB
entries.

20

Flavor Used by

MIPS1 R2000, R3000

MIPS3 R4000, R4400, R5000, etc.

MIPS32 MIPS 4K

MIPS64 BCM1250, MIPS 5K

MIPS32R2 MIPS 24K,74K

MIPS64_RMIXL XLR/XLS

MIPS64R2 XLP

MIPS64R2_RMIXL XLP

Exception Code Flavors

21

Embedded MIPS

• MIPS32-based SoCs with 32MB to 256MB are used for home
routers and access points. XLR/XLS/XLP based systems with
512MB to 16GB are used for networking or storage servers.

• The MIPS32-based SoCs typically use the MIPS 24K or 74K
CPU cores which require dealing with instruction hazards
differently. These cores also have the DSP Application-
Specific Extension which is treated in a similar manner as a
FPU.

• No storage except for a small amount of NOR or NAND
flash.

22

Using Memory Outside of KSEG0

• On N64 kernels, this memory is accessed via the 62-bit
XKPHYS direct mapped segment.

• O32 kernels do not support accessing memory outside of
KSEG0 since the systems which use those kernels don’t
have memory outside of KSEG0.

• N32 supports a “KSEGX” region which uses fixed TLB
entries to map extra RAM to extend the amount of
direct-mapped space available for kernel allocations. Since
N32 can use more memory than it can actually map,
avoiding TLB mapped memory improves performance.

23

Users of KSEG0.

• First page contain exception vectors

• Kernel resides near the start of KSEG0.

• Pages in KSEG0 (and KSEGX) are held in reserve and
are used for kernel memory allocations via the pool
allocator. This requires the system to track these pages
separately from those pages not in KSEG0 and KSEGX.

24

Virtual Cache Aliasing

• Newer MIPS implementations have
cache implementations that have a
“way” size greater the page size.

• Virtually indexes may cause a cache
line to appear in multiple cache sets
which can lead to memory
corruption.

• The number of sets (way-size /
page-size) is also referred as the
number of page colors.

W
aySet 0

Set 1

C
ache lines

32KB 4-way
512B/line

25

Preventing Virtual Cache Aliasing

If it can be guaranteed that bits that select the set/color are
always the same in both the virtual address and the physical
address then aliasing can not happen.

Simplest way to achieve this is to make sure the page size is
greater or equal to the way size (This is why the Lonsoong
kernels use a 16KB page size). But if there is a large way-size
and small amount of memory this can be prohibitively expensive.

Otherwise when selecting a page for a virtual address, always
select a congruent physical page. When mapping a physical page,
always select a congruent virtual address.

26

Managing Page Colors

To achieve the selection of congruent pages, each color must
have its own free list. Fortunately UVM in NetBSD supports
this. But that’s not enough, in addition, each freelist also
needs to separately managed and that UVM does not do. If
the system is short of pages of a particular color, it needs to
reclaim pages of that specific color, not just any color.

Adding to this mess, the MIPS dependent code also needs to
track 3 types of pages: those in KSEG0/KSEGX, all other
pages in the first 4GB, and finally the rest of the pages (at or
above 4GB).

27

UVM Page Groups

So managing pages by color is not enough, they need to managed by
type of free page as well as by color. Each collection of pages is
treated as a page group. Each page group has its own set of active
pages, inactive pages, free target, free count, etc. What UVM used to
track globally for all pages is now done on a per page group basis.

For a MIPS64 system with 4GB, a 32KB way size, and a 4KB page
size, this will result in 24 (3 types by 8 colors) page groups.

Since pages are reclaimed by page group, writing these to swap is
more difficult since you can no longer map these page as virtually
contiguous since that would violate the congruent page mapping
rule. So for now the I/O is done page by page.

28

UVM Color Matching

Whenever a page is allocated for a virtual address, UVM
will pick a physical page that has the same color. If UVM
needs to map a physical page, it will select a virtual address
that has the same color. This required changing UVM to
pass color hints almost all the time.

This feature will also help other architectures (like ARM
which also has VIPT caches which prefer hard page coloring
has well).

29

Direct Mapped UAREAS

• Contains the Process Control Block (PCB) and kernel
stack for a LWP.

• If located in TLB mapped memory, must be locked into the
TLB at context switch.

• Uses valuable TLB mapped address space.

• First make UAREAS non-swappable (not much space to
reclaimed and removing support simplifies the kernel).

• Add hooks allowing a port to allocate its own UAREA.
First used by mips, but also used by powerpc, alpha, and
amd64.

30

Common pmap for TLB-based MMUs

The MIPS pmap was converted to a common pmap
implementation to be used by other architectures which
use a software updated TLB based MMU. First non-MIPS
port to use this pmap was the powerpc booke port.

MIPS still needs to convert to using the new common
pmap...

31

PCU - Per CPU Unit

• Almost every port has its own
implementation of lazy FP
switching using varying logic
on how to do it.

• PCU merges this logic in a
common machine independent
framework integrated with the
scheduler.

• Normally used for FPU, but
can be also be used other
units such as MIPS DSP or
PowerPC AltiVec or SPE.

void pcu_state_save(lwp_t *lwp)
save the current CPU's state
into the given LWP's MD
storage.

void pcu_state_load(lwp_t *lwp, bool
used)

load PCU state from the given
LWP's MD storage to the
current CPU. the 'used'
argument is true if it isn't
the first time the LWP uses
the PCU.

void pcu_state_release(lwp_t *lwp)
tell MD code detect the next
use of the PCU on the LWP,
and call pcu_load().

32

Q&A?

33

matt@netbsd.org

mailto:matt@netbsd.org
mailto:matt@netbsd.org

