
Device Con�guration in 4.4bsd

Chris Torek

�

Lawrence Berkeley Laboratory

December 17, 1992

Abstract

Autocon�guration is the process of �nding actual hardware devices on a particular machine.

This allows a single kernel to work on di�erent systems, and provides exibility in hardware

con�gurations. This process is inherently machine-dependent and therefore conicts with the

goal of providing machine-independent abstractions. For instance, scsi devices use a machine-

independent protocol but run underneath machine-dependent adapters. 4.4bsd uses \object-

oriented" techniques to resolve this conict. This document describes this approach and gives

details on how to build system \meta-descriptions" for the config program. The new scheme

makes use of dynamic allocation to remove hard limits on the number of devices supported, and

provides a starting point for dynamic loading of drivers.

NOTICE

This is a preliminary document, and is not to be recirculated. This is a work in

progress. Send comments to Chris Torek <torek@ee.lbl.gov>.

1 Introduction

Autocon�guration was �rst added to Berkeley unix

1

for the vax

2

11/780 in 4.1bsd. Since then,

the system has been ported to a number of new architectures. The old autocon�guration and

device support scheme was not well suited to the newer machines, as detailed in [2]. In essence, the

old system allowed machine-speci�c architectural details to \leak out" of the machine-dependent

subsystems.

The 4.4bsd kernel enforces separation of such details through a kind of \multiple inheritence"

system. Devices are named via machine-independent data structures; these may inherit from both

general system abstractions (e.g., \disk volume") and bus-dependent structures (e.g., for DMA

resources). All device drivers share a common machine-independent autocon�guration interface as

well. Details on the higher level machine-independent abstractions are given elsewhere �or will

be, eventually. . .�. This document describes only the \base class", including the autocon�guration

interface.

In its most basic form, autocon�guration consists of the recursive process of �nding and at-

taching all devices on a bus, including other busses. Here a \bus" is anything that supports other

�

Supported in part by the Defense Advanced Research Projects Agency under contract BG 91-66.

1

unix is a registered trademark of Unix Systems Laboratories, Inc.

2

vax, unibus, and massbus are trademarks of Digital Equipment Corporation.

1

devices. This includes adapters and what are usually referred to as \controllers" or \masters".

In many cases, each bus driver can probe the bus all by itself. This is called direct con�guration,

and is preferred because it �nds physically-connected hardware regardless of the presence of proper

drivers and con�gurations. Sometimes, however, the driver needs \hints" as to what to try. This

sort of indirect con�guration is more general and is also provided.

In any case, when a device is found the kernel must somehow \hook up" the appropriate driver

code. In 4.4bsd, a user-level program called config reads and veri�es a \machine description" or

\con�guration" �le. It then produces a table giving needed hints and hook-up details. Autocon-

�guration itself is carried out by the bus drivers; the same config program selects these drivers

based on the same machine descriptions. A description can be targeted for a speci�c machine|this

produces smaller, more e�cient kernels|or made generic, so that the resulting kernel can run on a

variety of di�erent machines. (Of course, all of these machines must run the same basic instruction

set, and hardware de�ciencies may limit this exibility.)

Previous systems also used a config program [1]. Unlike that one, however, the new config

contains no machine dependent code.

3

Instead, the new config reads �les of what amount to

constraints controlling con�gurations. In essence, config provides a \little language" in which

one writes machine de�nition programs that recognize machine descriptions. These programs are

much smaller than the equivalent machine-dependent C code found in the old config, and corre-

spondingly easier to write. Much of this document concerns itself with writing or altering machine

de�nition programs. Anyone porting 4.4bsd to new hardware will need this information. Other

documents �unwritten as yet� describe the use of config for existing machine de�nitions. In

general, such use will be familiar to users of the old config.

The terms \machine de�nition" and \machine description" are unfortunately similar, and this

document must refer to both in situations that make them even more di�cult to distinguish. The

word \con�guration" is no better. Instead, we shall adopt as a paradigm a mythical machine

called a \SuperSnail-1". The machine being de�ned, then, will be the snail; this really means

\any machine de�nition". We shall picture a particular SuperSnail-1 with a SnailBus adapter and

some attached scsi devices. The con�guration �le for this particular SuperSnail-1 will be the SS1;

this plays the role of \any machine description". We will occasionally resort to real machines as

examples as well.

2 Common Concepts

Each device must have a name. Externally, this name is simply an alphanumeric string that ends

in a unit number : \sd0", \sd1", and so forth. These unit numbers identify particular instances of

a base device name (here \sd"); the base name in turn maps directly to a device driver. Within

the kernel, this name string is supplanted by other names. Device data structures are allocated

dynamically during con�guration, giving a unique address for each instance. This is an ideal handle,

and hence is the primary internal name. Until this allocation occurs, however, the unit number and

driver are used. Thus, every device needs a unit number, even if there can only be one instance (as

is commonly true of the \main" backplane bus).

Device unit numbers are completely independent of hardware features such as drive numbers.

They are often numerically identical, but this is simply a consequence of sequential numbering.

There is no conceptual tie between a device unit number and any address it may have on a bus.

Except as noted below, every device must have a parent, and its position|or one of several

3

Actually, there is a single special case for i386 kernels, but only to preserve a historical oddity.

2

possible positions|is denoted by the pairing \child at parent". These pairings form the links in

a directed graph. At runtime, this graph is turned into a tree

4

by nominating one device as the

root device|this this should not be confused with the �le system root|and doing a depth-�rst

traversal through the graph starting at this root.

For any device to be named as the root at runtime, it must be con�gured \at root". In

e�ect, the name \root" acts as a special \placeholder" parent, i.e., as an entry point into the

graph. By induction, any nonempty con�guration must have at least one device that can be found

\at root"; otherwise the entire con�guration would be unreachable. The config program rejects

con�gurations containing unreachable devices. Of course, reachability in the graph does not imply

that the device will be found, only that there is a path from some root. It is legal|and sometimes

even reasonable|to construct a graph with two completely independent subtrees. The runtime

tree will contain only \found" devices.

These \child at parent" pairings are rarely su�cient to locate any particular device precisely.

For instance, on one vax massbus, one might have several di�erent \hp" disks. In the scheme

above, there is no way to tell these apart: they are all \hpn at mbam". The config program

therefore allows any parent/child pair to be augmented with one or more locators. Each locator

value is simply an integer, or a name that ultimately resolves to an integer. Locators typically

represent some sort of device address on a bus or controller. This can be a memory address, an

I/O port, a drive number, or any other value; config does not care.

Locators can sometimes be wildcarded, given appropriate hardware and driver support.

5

Alter-

natively, the same child device may be listed more than once with di�erent parents and/or locators

if that particular child might appear in one of several places. This allows arbitrarily complex graphs

to be constructed.

During autocon�guration, the graph itself is represented in compact form as a table of \con-

�guration data". Running, e.g., config SS1 generates this table from the machine description �le

SS1. The table format is given in Appendix E; for now it su�ces to note that it is an array of

cfdata structures, which in turn point to \con�guration drivers". Although the table itself is quite

simple|this reduces the size of the kernel autocon�guration code|it is rather di�cult to maintain

manually. It uses many numeric cross-references, and in any case it o�ers no protection against

incorrect con�gurations. This is one of several reasons for using machine description �les.

To make direct con�guration easier and more e�cient, 4.4bsd supports a kind of \cloning" of

con�guration data. These are denoted by replacing the unit number with an asterisk. Instead of

listing dozens of \sd" disks, for instance, the SS1 �le can claim the presence of a single sd* (possibly

in addition to one or more \regular" sd unit). Making devices clone-capable requires some care:

there are a number of ways to make cloning impossible. These are listed below as they occur.

Generally, a clone device should also use wildcards for all its locators.

3 The config Program

Of course, real machines are not constructed arbitrarily: a leg bone must not connect to a shoulder

bone, but only to hip bones above and foot bones below. The restrictions on any machine's device

tree are clearly machine-dependent. These constraints are embedded in each machine de�nitions

4

More complex structures could be provided, but no current port needs them. This may have to change for systems

with \channel"-style disks.

5

Typically, wildcarding will be allowed only on busses and controllers that support direct con�guration (sec-

tion 5.2). Wildcarding then allows devices to be moved within and between machines, e.g., to give exibility during

hardware failures. The details are, however, entirely up to the device drivers involved.

3

program. The config program reads these constraints, veri�es the machine description, and then

builds the graph table and a \compilation kit" for the kernel. To do this, config needs some

additional information.

3.1 Attributes

The veri�cation process is largely controlled by attributes. Each base device is associated with zero

or more of these attributes. Attributes can carry lists of child devices as well; in this case, they de-

scribe a kind of \software interface" and are therefore called interface attributes . \Plain" (childless)

attributes exist so that some aspect of a device, such as its \Ethernet"-ness, can be denoted. These

\plain" attributes then serve to pull in �les of common code|in this case, netinet/if_ether.c.

Like a plain attribute, an interface attribute can select a kernel �le, but this is not its main

purpose. By referring to an interface attribute, a device declares its ability to support other devices

that use that interface. In addition, an interface attribute can|and usually does|also name one

or more locators.

6

A child device may attach to any particular parent through such an interface

attribute. The child must then name the associated locators, describing its \address" on the parent.

This leads naturally to declarations such as: hp3 at mba1 drive 0, a vax massbus disk (hp3)

found at a massbus adapter (mba1), located at drive 0; bwtwo0 at sbus0 slot 3 offset 0, a

sparcstation

7

bitmapped display located in Sbus slot 3 at address 0; and fdc0 at isa0 port

IO_FD1 irq 6 drq 2, a oppy disk controller on an ibm pc,

8

with complex locators. Declarations

like this make up the bulk of most machine description �les. Note that they may be read either as

\I found c

i

at p

j

", or \look for c

i

at p

j

". Both interpretations are reasonable, and both have their

places; see section 5 for more about this.

3.2 Con�guration Files

The config program reads three di�erent \kinds" of �les. The primary con�guration �le (SS1) has

a fairly simple format described in section 3.2.3. This �le must begin with a machine line naming the

machine type (although this may come from an include �le). The machine declaration actually

directs config to a number of other �les, which ultimately determine what con�gurations are

allowed. Our SS1 �le therefore begins with machine snail.

9

Config will then read the following

�les, in order:

the �rst line of SS1 (machine snail);

../../conf/files (machine-independent de�nitions);

./files.snail (machine-dependent de�nitions);

the rest of SS1 (the machine description for SS1).

(All these paths are relative to the current directory. Typically, this would be /sys/snail/conf.)

3.2.1 Devices

The two \�les" �les de�ne all legal devices and pseudo-devices. They also de�ne all attributes and

interfaces, establishing the rules that determine allowable con�gurations, and list the source �les

6

Note that the attribute names the locators. The locators themselves are merely numbers, or strings that resolve

to numbers. The names for these locators are attached only to the attribute. We will revisit this concept later.

7

sparc is a trademark of Sun Microsystems.

8

ibm is a registered trademark of International Business Machines, Inc.

9

In practice, most con�gurations will begin with an include that will name the machine and declare any \standard"

devices, such as a clock chip or a built-in console tty.

4

that make up the kernel. A formal syntax for these �les appears in Appendix A; we will work by

example in this section. Note that all of these refer to device base names (since no instances exist

yet).

Each �le consists of a list of statements, typically one per line. Comments may be inserted

anywhere using the \#" character, and any line that begins with white space continues the previous

line. Valid statements are as follows.

define name interface

opt

Attribute de�nitions. The named attribute springs into existence, and device de�nitions

(below) can then refer to it. If the attribute de�nes an interface, devices that refer to that

attribute are assumed to share that interface. These then serve to constrain device graphs.

maxusers min default max

This sets minimum, default, and maximum values for maxusers in machine description �les;

see 3.2.3.

device name at iist vectors

opt

interface

opt

attributes

opt

The named device springs into existence. The interface list iist, which must not be empty

but can contain or consist of the special name root, determine which interfaces will support

that device. The interface, if any, and any attributes listed are handled as described below.

If any vectors are listed, config will generate appropriate references to interrupt vector stubs

(see section 6); these vectors will, however, disallow cloning.

pseudo-device name attributes

opt

The named pseudo-device springs into existence. Interface attributes are legal here, but

largely pointless, since no device can connect to a pseudo-device (pseudo-devices have no

reason to \live in" the device tree).

file pathname options ags rule

opt

The named pathname is added to the list of �les used to build the kernel; see section 3.2.2.

major major-list

The named devices are associated with major device numbers, allowing them to be used for

�le system roots, swapping, and crash dumps. Since major device numbers are machine-

dependent, they should not appear in the machine-independent files �le.

Interface de�nitions consist of a (possibly empty) list of locators surrounded by braces ({}).

Devices|usually bus adapters and controllers|that support other devices then refer back to the

corresponding interface attribute, declaring, in e�ect, that they export that interface. Some exam-

ples should make these clear.

The following de�nes a simpli�ed vax unibus (assuming a suitable sbi interface exists):

define uba { csr } # create unibus interface

device uba at sbi: uba # uba's export it

device lp at uba # lp's live on it

device vp at uba # etc.

This means, in essence, that the devices \lp" and \vp" can be found via this \uba" attribute, but

in order to do so, a single locator called a \csr" must be speci�ed. This locator is mandatory;

a machine description �le that, e.g., declares \lp2 at uba0" without also giving it a csr will be

rejected.

5

To allow a locator to be wildcarded, a \devices" �le must include default values. Typical default

values are 0 (for addresses) and -1 (for index or drive numbers).

define sbus { slot = -1, offset = -1 }

device sbus: sbus device le at sbus: ifnet, ether

A machine description �le can then say something like

le0 at sbus0 slot ? offset ?

(the question-marks represent \unknown" or \don't care"). Config will use the default values for

this device's locators. Note that in this case, the \le" device also refers to two plain attributes,

because it is both a network interface (\ifnet") and an Ethernet device (\ether").

To allow a machine description to omit a locator entirely|wildcards require the locator name

to be listed|enclose the locator in square brackets:

define isa { port, irq, [drq = -1], [iomem = 0] }

This can be used when some locators do not make sense for some devices, but the software interface

requires them anyway. This sacri�ces some error checking. Other approaches that avoid this are

possible as well:

define isa_plain { port, irq }

define isa_drq { port, irq, drq }

define isa_iomem { port, irq, iomem, iosiz }

device isa: isa_plain, isa_drq, isa_iomem

device wdc at isa_plain

device fdc at isa_drq

device we at isa_iomem: ifnet, ether

In this case the number of locators associated with the child device will vary: here a \wdc" would

have two, an \fdc" would have three, and a \we" would have four.

The approaches can be mixed, if for some reason it is important to have the same number of

locators on all children of some parent:

define isa_plain { port, irq, ["no drq" = -1], ["no iomem" = 0] }

define isa_drq { port, irq, drq, ["no iomem" = 0] }

define isa_iomem { port, irq, ["no drq" = -1], iomem }

device isa: isa_plain, isa_drq, isa_iomem

device wdc at isa_plain

device fdc at isa_drq

device we at isa_iomem: ifnet, ether

Here config would reject \drq" and \iomem" values for a \wdc", demand an \iomem" for a \we",

and always require a \port" and \irq". This follows from the simple derivation rule given above,

but perhaps we should repeat it here:

A child device may attach to a particular parent if and only if the parent provides an

interface attribute that lists the child.

6

In other words, given a parent/child combination (including locators) of the form \c

i

at p

j

l

1

l

2

. . .

l

n

", config searches the attribute list for p. An attribute a that has a child c is taken. This in turn

gives the set of locators required. The actual locators l

k

are rearranged so that their names match

up with a's required set, and any wildcards and allowable omissions are handled. Any missing

or extraneous locators cause a complaint. The locator names are then dropped, leaving only a

complete set of values describing c

i

's location on p

j

.

10

The names "no drq" and "no iomem" are

not \magic"; the blanks simply make them di�cult to type, so that they are unlikely to appear

accidentally in a machine description �le. Their purpose is to act as placeholders for the default

�1 and 0 values.

Many bus adapters o�er a simple, uniform interface that will be used only once, as a reference

for the device of the same name. To avoid having to write separate define and device lines for

these, config allows an interface attribute to be de�ned within the device declaration itself. A line

of the form:

device d at a { locators

opt

}

is e�ectively the same as the two lines:

define d { locators

opt

}

device d at a: d

Devices and attributes should generally share names only through this abbreviation mechanism,

for reasons explained in section 4.

Some devices can be found on one of several parents. For instance, a vax uba unibus adapter

can appear on either a BI bus (as on the 8200) or a \nexus" interface (as on the 8600's SBIA, or

the backplane of a 780 or 750). Hence, a more realistic uba de�nition would look like this:

device uba at bi, nexus { csr }

This de�nes the \uba" interface attribute, which requires a \csr", and then de�nes the device \uba"

as attaching to anything that provides a \bi" or \nexus" interface. Note that there is no piece of

hardware called a \nexus"; the names listed here are interface attributes, not devices.

In any particular \�les" �le, all of the devices listed in any interface must be de�ned, though the

order of references and device de�nitions is unimportant. Devices that stand entirely by themselves

and support no children need only a single line of the form device d at a.

Our files.snail now looks like this:

devices.snail

maxusers 2 8 64

The internal memory/cpu bus has no true name, so we just call it

the ``main bus''. Devices on it are directly addressed.

device mainbus at root { addr = 0 }

device clock at mainbus # time of day & realtime interrupts

device cpu at mainbus # the SuperSnail chip

SnailBus adapter (sba).

Each SnailBus device is at a `slot' index, which may be wildcarded.

10

This is still not the whole story; see section 4 for the real scoop.

7

device sba at mainbus { slot = -1 }

device bd at sba: tty # bitmapped display

device en at sba: ifnet, ether # Ethernet interface

device sc at sba: scsi # SCSI bus adapter

Here the tty, ifnet, ether, and scsi attributes have been de�ned in ../../conf/files. Note

that no scsi devices other than the adapter itself appear here; section 4 explains how this works.

(Also, the SuperSnail cpu is just another device. This will be important for future multiprocessor

support.)

3.2.2 Kernel Source Files

The various \�les" �les also list the source �les used to build the kernel. A �le name in any one

such �le may override that in any other. For instance, files.snail may replace kern/subr_foo.c

with snail/snail/subr_foo.c; if the con�guration for machine SS1 contains a directive such as

include files.SLOW, files.SLOW may in turn replace that with SLOW/subr_foo.c. More serious

conicts, such as listing both kern/subr_foo.c and vm/subr_foo.c in the same \�les" �le, are

detected and rejected.

Each kernel �le is either standard (always compiled) or optional. In order to be optional, the

�le line must list one or more names. If any of these names has been selected in the con�guration,

the �le will be included; otherwise it will be omitted. Selection occurs in three ways:

� In the system description �le, an options o selects anything that is optional on o.

� Con�guring a device whose base name is d (e.g., \sd" for \sd0") selects anything that is

optional on d.

� Con�guring a device whose base is marked with attribute a selects anything that is optional

on a, even if a is an interface attribute.

Thus, any system con�guration that includes a device with the disk attribute|say, an sd scsi

disk|will pull in any optional disk code, as well as the optional sd device driver.

Config emits a kernel Makefile with a separate compilation rule for each source �le. For most

�les, this rule is simply ${NORMAL_C}. (The prototype Makefile must de�ne ${NORMAL_C}; see

Appendix D.) The letter C here is really just the last character of the �le name; a �le named, e.g.,

reset.s would use the rule ${NORMAL_S} by default. To use a special rule, end the file line with

compile-with command.

11

In this case the �le name su�x is not appended.

Kernel �les may also be labelled with the following ags:

device-driver

This has much the same e�ect as compile-with "${DRIVER_C}", assuming the �le name

ends with the letter \c". On some machines, device drivers use special compiler options; this

is a shorthand way to express that.

A compile-with will override a device-driver declaration.

config-dependent

This modi�es the default compilation rule, appending _C to it. C source �les marked this

way will thus be compiled with ${NORMAL_C_C} or ${DRIVER_C_C}.

Again, a compile-with will override this declaration.

11

The command must typically be quoted.

8

needs-count

Some drivers insist on knowing at compile time exactly how many of some particular device

or set of devices are con�gured. An optional �le may therefore be marked as \needing a

count", and config will count up the number of devices or pseudo-devices of each name

on which the �le is optional. Thus, a �le de�ned by, e.g., file snail/sba/foo.c foo

bar needs-count will cause config to generate a header �le named foo.h containing two

#defines for NFOO and NBAR, even if no \foo" or \bar" devices are con�gured. Any device

whose \head count" is taken this way is not clonable, since config cannot know in advance

how many clonings would occur.

needs-flag

If for some reason a header is required, but the driver does not insist on an exact count, an

optional �le can be marked as \needing a ag". In this case config will generate the header

just as for needs-count, but the counts will simply be nonzero if the device is con�gured

and 0 if not. Since the count is not exact, needs-flag does not prevent autocon�guration

cloning. Also, unlike needs-count names, needs-flag can apply to non-device �le selection

names (attributes and options).

A short example will probably make this clearer.

file kern/vfs_cache.c

file miscfs/fifofs/fifo_vnops.c fifo

file net/if_ethersubr.c ether needs-flag

file ufs/ufs/ufs_ihash.c ffs lfs mfs

Here vfs_cache.c will always be compiled; fifo_vnops.c will be compiled if SS1 includes options

FIFO; if_ethersubr.c will be compiled if SS1 includes any devices with the ether attribute, and

in any case the �le ether.h will be created to #define NETHER to 0 or 1; and ufs_ihash.c will

be compiled if any of the three options FFS, LFS, or MFS are given.

3.2.3 Machine Description Files

As mentioned above, the �rst line of any machine description �le|aside from blanks, comments,

and include directives|must be a machine type-name, such as snail. This directs config to the

appropriate set of \�les" �les. The remainder of the con�guration �le speci�es global (system-wide)

options, Makefile options, kernel con�guration parameters, and devices. A full formal syntax for

machine descriptions appears in Appendix A; we give an overview here.

Most global options are set with options lines. In addition to these, however, there are a few

special global options. They are:

makeoptions name = value

The name and value are copied to the Makefile. As elsewhere, if the value contains special

characters, it must be quoted.

maxusers n

Sets the \maximum expected simultaneous users" parameter. This is used to size a number

of kernel data structures.

Kernel con�guration parameters are comprised of the �le system root device; a list of swap

devices; and a crash dump area, usually the same as the �rst swap device. These parameters are

9

tied to a particular kernel image, and a machine description �le may list more than one kernel

image, each with di�erent parameters. The global options and con�gured devices will be the same

for all these images. Kernel con�gurations are speci�ed with a config line:

config sysname system-parameters

The sysname is the name of the kernel image, e.g., vmunix. The system-parameters determine root,

swap, and crash dump devices. These simply take the form

root on

opt

device-parameter

swap on

opt

device-parameter [and device-parameter . . .]

dumps on

opt

device-parameter

Each device-parameter should name a con�gured device, optionally with a disk partition letter

su�x. If the su�x is omitted, an appropriate default (\a" for root, \b" otherwise) is used. The

swap and dumps parameters may be omitted entirely; in this case config will use partition \b" of

the �le system root device.

As a special case, a \generic" system can be compiled by omitting the root and dumps clauses

and giving swap generic as the only system parameter. In this case, root, swap, and dump devices

will be queried for during boot.

Devices in a machine description �le are simply declared using the \child at parent" syntax.

Declared devices need not be physically present when config is run, nor even when the kernel

autocon�gures; however, devices that are physically present but not declared will not be accessible.

Device declarations may optionally include the keyword flags followed by an integer; these ags

are stored in the �nal table along with the rest of the con�guration data. Their interpretation, if

any, is up to the driver.

Pseudo-devices are declared with the pseudo-device keyword, followed by the name of the

pseudo-device and an optional number. As with regular devices, the name must �rst be de�ned in

a \devices" �le. The number, if present, is passed on to the pseudo-device driver; otherwise the

default value 1 is used. This normally controls the number of instances of that pseudo-device, but

the actual use of that number, if any, is up to the driver. Like real devices, pseudo-devices can be

counted via a needs-count keyword in a \�les" �le.

4 The Real Story on Tree Construction

Like locators, parents can be wildcarded. Unlike locators, there are no restraints on parent wild-

carding. In the con�guration declaration \c

i

at p

j

", the parent device's unit number j may be

replaced with a question mark \?". In this case the child device c

i

can be found at any parent p

j

for any con�gured p

j

, including clones. Clonable devices are valid individual parents as well; \c

i

at p�" means just what it suggests.

In fact, however, the declaration \c

i

at p

j

" typically does not refer to a parent device, but rather

to a parent attribute. In most cases these are identical, since most bus adapters use an attribute of

the same name via the \shorthand" interface de�nition. Looking for the attribute directly, rather

than looking for the parent device and then �nding the corresponding attribute, is slightly more

e�cient; but the real goal is another kind of device independence.

Recall that these attributes are called \interface attributes". This appellation was not chosen

randomly. If a software interface i is properly coded, a child device that uses interface i can be run

by any parent that supports interface i. For instance, 4.4bsd includes a machine-independent scsi

subsystem that works through such an interface. The machine-independent devices �le de�nes

10

the scsi interface attribute to include all the machine-independent scsi devices. By referring to

this scsi attribute, the various machine-dependent scsi host bus adapters listed in any machine-

dependent devices.snail are automatically declared as supporting the machine-independent scsi

devices. When new scsi drivers are written, the same host bus adapter driver automatically

supports them, and the same config �le automatically describes this.

At the same time, some machines have available several di�erent|sometimes substantially

di�erent|adapters for identical busses. The ibm pc, with its multitude of scsi adapters, provides

a classic example. On these systems it is convenient to be able to write

tg0 at scsi? target 0

to denote a scsi target on any device that carries the scsi attribute. On the other hand, it may

be desirable to tie tg0 to a particular scsi adapter, so that, e.g., the root or swap partition does

not accidentally move if the machine restarts after a hardware failure takes the primary adapter

o�-line. The config program allows for this by searching for a \real device" if the attribute lookup

fails. (This is the real reason that devices and attributes should avoid sharing names, except in the

usual simpli�ed case.)

Thus, the real rule for tree-building is as follows. Given a child declaration c

i

of the form:

c

i

at name

j

l

1

l

2

. . . l

n

ags

opt

where i and j are each valid unit numbers or the clone marker *" or (for j) the wildcard marker

\?", and each l

k

; 1 � k � n is a name/value pair, config �rst searches for an attribute a with the

given name. Only if the name does not correspond to an attribute will config search for a base

device with that name, then look for a suitable attribute a on that device. In this case, suitability

is determined by intersecting the device line that de�ned the parent name with that for the child

c: c must have been de�ned at some attribute a, and name must have referenced the same a. If c

does not attach to a, or if there is no suitable a, config rejects the declaration. If several di�erent

attributes are suitable, config chooses one in an unpredictable manner.

12

(Actually, this is rarely a concern since most devices are allowed at only one attribute. For

instance, assume that the isa_plain, isa_iomem, etc., sequence shown at the end of section 3.2.1

is in e�ect. Then, given a declaration of the form:

we0 at isa0 irq 2 iomem 0xc000 port 0x320

config will not �nd an \isa" attribute. Instead, it will look up the \isa" device, which refers to

three attributes: isa_plain, isa_drq, and isa_iomem. But a we is only allowed at isa_iomem,

so this is the only attribute that can be chosen for a.)

Once the attribute a is veri�ed, config collects its locators and applies them against the given

locators l

k

. These are rearranged if necessary, so that the order of the resulting values corresponds

to the \devices" �le de�nition for a. Wildcards are replaced and omitted locators �lled in, and if

all goes well, this results in a vector of m locator values v

1

; . . . ; v

m

.

13

Config then creates a new

alias for an instance of device c

i

with these values, along with the given ags. Multiple aliases

for c

i

, with di�ering parents and/or locators, are allowed. When all device declarations have been

processed, config performs a \cross check" to make sure that, for each alias of c

i

, the attribute or

device name

j

corresponds to at least one declared alias. If name is an attribute, config allows c

i

to attach to anything with both the named attribute and unit j; if it is a device, config allows c

i

to attach only to aliases of device name

j

.

12

\We provide rope." |Keith Bostic

13

The vector length m may di�er from n due to omitted names in l.

11

Before emitting the con�guration table, config attempts to \collapse" aliases. Whenever sev-

eral aliases for c

i

list the same locators and ags, config can remove all but one by taking the

union of the set of all parents. Wildcarding and collapses can produce long parent vectors. Without

further processing these could take signi�cant space, so all parent vectors and locators are in turn

packed into arrays. This saves space in the eventual kernel binary.

After collapsing aliases, config also checks to make sure that only one clonable alias remains

for any device d. This is required by the table format: clonable devices store the \next clone unit"

number in the con�guration data for the clone. Config arranges for this number to start just above

the highest explicit unit for d found in the con�guration. Thus, if both sd0 and sd* are listed, the

con�guration data for sd* is initialized as unit 1. If no sd0 is listed, sd* will be unit 0; if sd0 and

sd2 are listed, sd* will be unit 3, leaving a \hole". Other arrangements are possible and the kernel

may someday be changed to allow multiple clones, but for now only one clone may remain after

alias collapsing.

There must be at least one device declaration of the form

d

i

at root ags

opt

The base device d must have been marked as an allowable root in a \devices" �le. Here i should

either be 0 or *", since having the tree rooted at something other than unit 0 is likely to cause

confusion. (It can work|nothing in the system itself demands unit 0|but config will warn if the

�nal unit number is nonzero.)

5 The Runtime Environment

Each device driver must present to the system a standard autocon�guration interface. In return, the

driver obtains dynamic allocation for its per-device-instance variables. A minimal autocon�guration

interface includes the device base name and a set of \match" and \attach" functions, which are

described in section 5.3. Typically there is one such driver in any given source �le, although vax

unibus devices often include two per �le. If one �le includes several drivers, each driver must have

its own autocon�guration interface.

A con�guration �le such as our SS1 acts as a list of requests: \look for c

i

at p

j

". As the system

�nds devices at runtime, the machine-dependent portion of the autocon�guration system must

make the corresponding declaration \I found c

i

at p

j

". The machine-independent con�guration

code ties these together to form the runtime device tree. There are two ways to go about this,

described below in section 5.2, but before we get there we need a bit more background.

5.1 Device Classes and Data Structures

4.4bsd groups devices in another way as well. At runtime, found devices are kept on one or more

linked lists according to the device \kind" or class. These classes are entirely machine-independent,

and cover only system-wide abstractions.

14

For instance, disk volumes and network interfaces are

treated quite di�erently within the system, and thus form two of these classes. A catchall class

called \dull" covers any device that does not fall into a neat category. Each speci�c device attach

routine should call an appropriate generic \attach" or \establish" routine to get itself on any speci�c

list. The primary list, alldevs, lists every device. This list is set up automatically, so \dull" devices

need do nothing special.

14

System monitoring programs such as systat and vmstat then get their information in machine-independent

format via these lists.

12

0 -1

Configuration data

cf_driver

cf_unit

cf_fstate

cf_loc

cf_flags

cf_ivstubs

mainbus0

Configuration driver

cd_devs

cd_name

cd_match

cd_attach

cd_class

cd_devsize

cd_aux

cd_ndevs

mainbus

(code)

DV_DULL

sizeof...

(generated by config)

(in driver)

dk

size...

(code)

(code)

(code)

mainbuscd dkcd

1 2

0

0 (2)0

0 0

0

ba

a b

dk0

0 1

dk1

DV_DISK

(found) (found) (*)

dv_class

dv_cfdata

dv_next

dv_unit

dv_xname

dv_parent

DV_DULL

Device

DV_DISK DV_DISK

(dynamically allocated)

alldevs

device mainbus0 at root

disk dk* at mainbus0 drive -1

disk dk0 at mainbus0 drive 0

Figure 1: Data Structures

As noted in section 2, config generates a table of con�guration data or cfdata structures.

These refer to their con�guration drivers through pointers to cfdriver structures. The cfdriver

carries the name, match, and attach functions, plus the device's class and several more �elds

described below. For every actual hardware device found, the kernel allocates space that contains

a struct device and �lls in the device part. For each cfdriver, the kernel also maintains a

vector of pointers to these device structures indexed by the device unit number. Figure 1 shows

the result of con�guring two \dk" disks at the \mainbus". (Several �elds have been omitted from

this �gure for the sake of clarity.) The dotted lines separate the various structures according to

which subsystem is responsible for them.

Each cfdriver name is formed by adding the letters \cd" to the device's base name. In Figure 1,

for instance, the two cfdrivers are named mainbuscd and dkcd, for the mainbus and dk drivers

respectively. The config program uses these names to initialize each cfdata's cf_driver �eld.

Except for the cd_devs and cd_ndevs �elds, all of the components of the cfdriver are e�ectively

read-only: the rest of the system may examine them, but not alter them.

13

Each cfdata carries all data needed to locate one particular device (or in the case of a clone

entry, as many as possible). This includes the device unit number and a pointer to any device-

speci�c locators. It also includes a pointer to the interrupt vector stubs, if any; these are described

in section 6. Here mainbus0 has been con�gured with no locators, while dk0 and dk* were each

con�gured with a single locator. These locators have been packed|in this case, with no e�ect|and

appear in a at array; each cf_loc then points to the �rst of however many locators there are for

each device (even if this number is zero). Note that there can be several cfdata structures with

identical cf_driver and cf_unit �elds. This occurs whenever the alias collapsing process described

in section 4 is unable to remove \extras" due to locator or ags conicts. The config_attach

function (described below) invalidates these other aliases once the �rst one is attached.

As each device is found, the kernel allocates cd_devsize bytes of space. This must be at least

as large as a struct device, but is often larger. The initial part of this space is invariably used

as a device structure. The kernel �lls in the various �elds, assigning a unit number if necessary,

and places a pointer to the new device structure in a managed array. Figure 1 shows two of these

managed arrays as unnamed boxes just to the right of the device boxes for mainbus0 and dk0

respectively. The kernel also sets cd_devs to point to this array, updating cd_ndevs as necessary

to give the array's maximum size. This allows each driver to look up each device by unit number:

disk dk1 can be found via dkcd.cd_devs[1]. While this example does not show it, it is normal

for some of the device pointers to be NULL. The cd_ndevs �eld must therefore be considered a

limit: values in [0; 1; . . . ;cd ndevs) are valid subscripts to the cd_devs array; but for any valid i,

cd_devs[i] may be NULL.

The base device structure is not su�cient for most devices, and is intended to be \extended".

This is why each con�guration driver must specify the device data size. A disk device, for instance,

must consist at least of a dkdevice structure. A dkdevice begins with, or in C++ parlance, is

derived from, a generic device, but also contains data structures describing the disk label, transfer

rate, and so on. Even this is not enough for many real disk drivers. The scsi disk driver uses

an sd_softc per disk, containing the dkdevice, a struct unit to describe a scsi unit, and data

pertaining to scsi user-mode format operations.

Auxiliary data may also be required during autocon�guration. The shape and content of such

data are irrelevant to the machine-independent part of the autocon�guration code, and may vary

per device or bus. Each bus adapter will provide some particular con�guration interface; anything

that can run o� that adapter will have to con�gure under that interface. Generic (void *) pointers

to auxiliary data structures are provided in each cfdriver; a separate generic pointer is passed

through the con�guration functions. These auxiliary data are part of the software interface that

must \mesh" to allow a child device to be found on any given parent. This condition is necessary

but not su�cient for operation; any other aspects of the parent/child software interface must also

mesh. It is up to the authors of the drivers (and devices.snail �les) to get this right.

5.2 Autocon�guration

Early in the bootstrap process, the machine-independent portion of the kernel calls cpu_startup.

This function must eventually kick o� the autocon�guration process, usually through a subsidiary

called configure. This in turn must choose a root device and start the recursive process that forms

the tree.

As noted in section 1, autocon�guration can be run \forwards" (directly) or \sideways" (indi-

rectly). Direct con�guration is better, because it detects hardware that is physically present even

if it is not con�gured into the system, but it can only be used on \self-describing" busses. The

14

SnailBus, for instance, has a �xed set of \slots" into which I/O cards can be inserted. Each card

has an identifying type. By examining the �xed slot addresses, the SnailBus driver can �nd every

device physically present on any particular SnailBus adapter. The SnailBus driver can then inform

the system, which will locate an appropriate cfdata structure as described below. If there is no

such cfdata, the system can complain that the device just found needs to be con�gured.

For indirect con�guration, the system gives the bus code an opportunity to test each con�gured

device to see whether it is physically present. This can be done with common code, per driver, or

in some hybrid fashion. On the vax unibus, for instance, each unibus driver must have its own

method for deciding whether an I/O card is present, but the unibus driver itself also has some say.

All of the details are up to the individual drivers.

5.3 Con�guration Functions

With all this in mind, we can now talk about the autocon�guration process in terms of kernel func-

tions. At this point, not all device instance data are allocated, so the kernel must name individual

instances in some other way. Elsewhere, this is done by base device and unit number, but here not

even this method su�ces|for instance, with direct con�guration, a driver for the base device need

not even exist.

15

Thus, these functions generally identify a \found device" by the tuple hp; c; ai.

Here p is the parent instance|since child-�nding is driven by the parent driver, and happens only

after the parent has been established, this is straightforward|and c is a cfdata structure from the

con�guration table. The third element, a, is an \auxiliary" pointer of type void *. This auxiliary

pointer simply \passed through", allowing parents and children to communicate private con�gura-

tion data other than through global variables. (See Appendix C for an example of auxiliary data

usage.)

As each device is found, it is \attached" via the cd_attach pointer in the con�guration driver.

Attach functions are given three parameters: a pointer p to the parent device data, a pointer s

(for \self") to the newly allocated device data, and the auxiliary pointer a. Although s has type

struct device *, it really points to cd_devsize bytes, as noted above. In this way each device

instance data can retain all the values needed for that instance.

Device match functions, called via the cd_match pointer, also take three parameters. Two are

the same as for cd_attach, but the middle parameter is not a new instance but rather a pointer t

to a cfdata structure. Match functions can return 0, meaning \p, t, and a do not go together, so

try another", or some nonzero value to try to \take" that con�guration.

5.3.1 Direct Con�guration

To perform direct con�guration, a device driver's attach function should probe the device to �nd

any actual hardware. For each \found" device, the driver should then call config_found, passing

its self pointer s, a pointer a to any auxiliary data desired, and a pointer to a \print function" f

p

.

The config_found function will in turn call all potential match functions as determined by the

con�guration table. These match functions may compete for the device; the largest return value

\wins". The winning cfdata is used to produce a new struct device, which will then be attached

via the appropriate cd_attach. Thus, a driver for some particular device can \take over" from a

generic driver simply by returning a bigger match value. In any case, the newly attached device

should recursively �nd and attach any subdevices as appropriate.

15

Of course, until one is written and con�gured in, the system will keep complaining.

15

If no driver takes a match, config_found uses the print function f

p

to complain. Clearly

this complaint cannot come from the child device driver|after all, no driver acknowledged such

a role|so f

p

is associated instead with the parent device p. The print function is called with the

auxiliary data pointer and the full name (including unit number) of the parent device. If the device

is matched, the system prints the name of the child and parent devices, and then calls the same

print function f

p

to produce additional information if desired. In the former case, f

p

might be

expected to produce something like device type 0x401 at sba0 slot 6 not configured.

16

In

the latter, f

p

should just print something like \ slot 6", the kernel having already output xyz0

at sba0. Print functions can distinguish this second case by a NULL parent name.

Each print function must return an integer value. Two special strings, \ not configured"

and \ unsupported", will be appended automatically to no-driver reports if the return value is

UNCONF or UNSUPP respectively; otherwise the function should return the value QUIET. When a

print function is called simply to produce auxiliary con�guration text (\ slot 6" above), this

return value is ignored, so many print functions can simply return UNCONF.

The config_found function returns 1 if the device gets attached, 0 if not. Most callers can

ignore this value, since the system will already have printed a diagnostic.

5.3.2 Indirect Con�guration

When indirect con�guration is required, a bus attach function can call config_search, rather than

config_found, to apply some function to each con�gured potential child device on that bus. Unlike

config_found, config_search has no need for a print function, since it simply applies the given

function wherever the system con�guration o�ers a possible match.

Speci�cally, config_search takes a pointer to a function f

a

, a parent device p, and an auxiliary

pointer a. It applies f

a

to all con�gured children of p. If the pointer to function f

a

is given as NULL,

config_search applies each con�gured device's cd_match instead.

17

The config_search function

returns a pointer to the \best match" cfdata; callers may ignore this value if appropriate.

A bus adapter driver can therefore have its own code applied (by supplying a non-NULL pointer),

and make use of or ignore the driver's cd_match as it sees �t; or, alternatively, it can have all

applicable cd_match functions called. Either way, for each device found, some code somewhere

must call config_attach, passing a parent pointer p, a con�guration data pointer t, an auxiliary

pointer a, and a print function pointer f

p

. The config_attach function allocates the new device

instance data, invalidates other aliases if necessary, and calls the driver's cd_attach function.

It also calls the print function f

p

just as for direct con�guration|and indeed, config_found is

simply a \wrapper" for searching, and then attaching or complaining depending on the result of

that search.

5.3.3 Finding the Root Device

Since the root, as the top of the tree, has no parent, it is impossible to use either config_search

or config_found to �nd it. Instead, there are two similar functions named config_rootsearch

and config_rootfound. These take the root device's name (as a regular C string, without a unit

number su�x) in place of a parent pointer. This name is \magically divined" by the machine-

dependent startup code. The config_rootfound function also omits the print function; it simply

16

Names are generally superior to device type numbers, but the name-to-number decoding may well be known only

to one driver. If names can be derived in the adapter driver, these can be put in the auxiliary data instead of, or in

addition to, the type numbers. See Appendix C for another alternative.

17

Thus, f

a

receives the same arguments and returns the same value as a cd_match function.

16

prints \root device name not con�gured" and returns 0 if it cannot �nd the given root name in the

system con�guration. (At this point, the machine-dependent part of the kernel must presumably

halt, since there will be no way to get anything done.)

6 Interrupts and Vectors

The code needed to handle interrupts is strongly machine dependent. For the most part, the new

con�guration system attempts to avoid the issue. Nonetheless, a base device de�nition can specify a

series of interrupt vector function names. These turn into pointers to \vector stubs". Each cfdata

structure has a cf_ivstubs �eld of type void (**)(). If not NULL, each cf_ivstubs points to the

�rst of n pointers-to-functions, where n is the number of vectors listed on the base device de�nition.

This list is followed by a NULL function pointer. The names of these functions are formed by

appending the device instance unit number to the vector name, pre�xed with an uppercase \X".

18

Thus, vector dhrint dhxint for device dh2 would turn into the sequence Xdhrint2 Xdhxint2.

Config merely refers to these functions; their de�nitions are left to other code. In order to

assist this other code, however, config emits one line per function name, suitable for use in an awk

script. Each function declaration is preceded with a comment of the form /* IVEC vector unit */.

For dh2, for instance, these would become:

/* IVEC dhrint 2 */ extern void Xdhrint2();

/* IVEC dhxint 2 */ extern void Xdhxint2();

Writing an awk script to read these and produce assembly code for the vector stubs is typically

straightforward.

Note that any device that includes vectors cannot be cloned, since the vectors encode the unit

number. The best solution is usually to generate interrupt vector code \on the y" when the

device is attached. The correct unit, or a pointer to the dynamically-allocated device instance

data, can then be inserted directly in the vector. For this reason, hardcoded vectors of this sort

are discouraged.

A Config syntaxes

These are divided into one for the \�les" �les (../../conf/files and, e.g., files.snail) and one

for machine description �les (e.g., SS1). There are some shared non-terminals as well.

A.1 Lexical elements

All the syntaxes have identical lexical elements. Aside from the various keywords, everything is

either a pathname, a word, a number, or a special character. Words are strings that match the

regular expression [A-Za-z_][-A-Za-z_0-9]*, or arbitrary text can be made to act as a single

word by enclosing it in double quotes. Pathnames di�er from words by containing one or more

slashes and/or periods (in fact, all �le names should contain at least one period, e.g., \.c" or \.s").

Numbers begin with a digit. Octal and hexadecimal constants are written as in the C language;

all others must be decimal. A \#" character introduces a comment, which extends to the end of

the line. Lines that begin with whitespace act as continuations of preceding lines; all other line

boundaries are signi�cant.

18

Instead of \X", config uses an uppercase \V" for the i386. Don't ask.

17

Other than when it separates tokens, white space (excluding newlines) is not signi�cant. Note

that most word forms, particularly device instance names, are single words (this di�ers from pre-

vious versions of config, where names like dh0 comprised the two tokens dh and 0). Digit su�x

requirements are enforced in the semantics, rather than in the grammar.

A.2 Shared nonterminals

�le ! file pathname foptions �ags rule

opt

foptions ! foptions word

j hemptyi

�ags ! �ags �ag

j hemptyi

�ag ! config-dependent

j needs-count

j needs-flag

rule ! compile-with word

A.3 Grammar for files �les

dev�le-specs ! dev�le-specs dev�le-spec

j hemptyi

dev�le-spec ! define attribute interface

opt

j device device at at-list vectors

opt

interface

opt

attributes

j �le

j maxusers minusers defaultusers maxusers

j major { major-list }

j pseudo-device device attributes

interface ! { locator-list }

locator-list ! locator-list, locator

j locator

locator ! name

j name = default-value

j [name = default-value]

default-value ! name

j signed-number

at-list ! at-list, attribute

j attribute

vectors ! vector vector-names

vector-names ! vector-names name

j name

attributes ! : attribute-list

j hemptyi

attribute-list ! attribute-list, attribute

j attribute

attribute ! word

minusers ! number

defaultusers ! number

maxusers ! number

18

major-list ! major-list, major

j major

major ! device-name = number

A name is lexically just a word, but should typically be restricted to valid C identi�ers.

19

A device

is simply a device base name, i.e., an alphanumeric string that does not end in a digit. A number

is an unsigned integer; a signed-number allows negative values as well.

A.4 Machine descriptions

con�guration ! includes machine-type system-�le

includes ! includes include

j hemptyi

include ! include word

machine-type ! machine name

system-�le ! system-�le system-spec

j hemptyi

system-spec ! include

j global-spec

j con�g-spec

j device-spec

global-spec ! �le

j options option-list

j makeoptions makeoption-list

j maxusers number

option-list ! option-list, option

j option

option ! name = value

j name

makeoption-list ! makeoption-list, makeoption

j makeoption

makeoption ! name = value

value ! name

j signed-number

con�g-spec ! config name system-parameter-list

system-parameter-list ! system-parameter-list system-parameter

j system-parameter

system-parameter ! root on

opt

block-device

j swap on

opt

swap-spec

j dumps on

opt

block-device

swap-spec ! swapdev-list

j generic

swapdev-list ! block-device and swapdev-list

j block-device

19

In general, it is wise to avoid embedding special characters into names through the use of double quotes. It not

only makes them inconvenient to use, but if such a name is exported to C code, it will cause compilation errors. As

noted earlier, \placeholder" locators are a special exception to this rule.

19

block-device ! su�xed-device

j device

j major-minor

major-minor ! major number minor number

device-spec ! device-instance at attachment locators ags

opt

j pseudo-device device number

opt

device-instance ! device

j star-device

attachment ! parent-�nder

j root

locators ! locators locator

j hemptyi

locator ! name value

j name ?

ags ! flags number

This time, a device is an instance name, i.e., an alphanumeric string that does end in a digit. A

star-device is a base device name followed by a *". A su�xed-device is an instance name followed

by a letter between \a" and \h" inclusive, A parent-�nder is a device or attribute name followed

by either a number, or *" or the wildcard marker \?". The remaining terminal symbols are the

same as before.

B Changes

The following is a short summary of changes for those who have used the old config program.

1. The \cpu" keyword is gone. In general, one simply replaces cpu word with options word.

2. The \ident" keyword is gone. This keyword had two e�ects: it acted as an option, and it

included an extra \�les" �le if that �le existed. Each of these is now separately available.

3. The \timezone" keyword is gone, along with its associated syntax. Current systems ignore

this timezone parameter completely, but some backward-compatibility code may need the old

values. These can be obtained by de�ning the two options TIMEZONE and DST. For instance,

timezone 8 dst can be replaced with:

options TIMEZONE=480 # 8*60

options DST=1 # U.S. style DST

4. Con�guration �les no longer describe devices as \master", \disk", \tape", and so forth, and

all require a parent device or attribute. Thus, something like:

master hpib0 at scode7

master hpib1 at scode?

disk rd0 at hpib? slave 0

disk rd1 at hpib? slave ?

is now described with:

20

hpib0 at mainbus0 scode 7

hpib1 at mainbus0 scode ?

rd0 at hpib? slave 0

rd1 at hpib? slave ?

In addition, clones (rd*) are often available, making large con�gurations simpler.

5. \Ether" is no longer a pseudo-device.

C Code Example

A simpli�ed and idealized version of a bus adapter driver may prove illuminating. We present here

the con�guration portion of a driver for the SnailBus adapter.

The SnailBus presents a number of \bus slots"; each slot has a type code. A special type code

means the slot is unoccupied. All other codes indicate that there is some kind of hardware in that

slot. The SnailBus adapter itself occupies slot 0 in its own address space, and has its own type code

to describe itself. The adapter registers might be described in an \sbareg.h" �le in the following

manner.

/*

* SnailBus registers. Each SnailBus slot has 256 bytes of address space,

* of which the first 4 bytes are a device type. There are 16 slots,

* but slot 0 is used for the SnailBus adapter registers themselves.

*/

struct sb_slot {

u_int ss_type;

char ss_pad[256 - 4];

};

#define SBA_NSLOTS 16

struct sbareg {

u_int sb_typesba; /* type code: always SB_SBA */

u_int sb_csr; /* adapter control & status */

u_int sb_ver; /* version */

char sb_pad[256 - 3*sizeof(u_int)];

struct sb_slot sb_slots[SBA_NSLOTS - 1];

};

/*

* SnailBus slot types.

*/

#define SB_EMPTY 0xffffffff /* empty slot */

#define SB_SBA 0 /* SnailBus Adapter */

#define SB_SCSI 1 /* SCSI host adapter */

#define SB_BD 2 /* bitmapped display */

#define SB_IPIDISK 3 /* IPI disk - unsupported */

#define SB_EN 4 /* Ethernet card */

#define SB_MAXTYPE 5

#ifdef SB_TYPENAMES

static char *sbaslottypes[] =

{ "sba", "SCSI host adapter", "bitmapped display", "IPI disk", "Ethernet" };

21

#endif

/*

* Bits in SB_CSR.

*/

#define SB_RESET 1 /* reset adapter */

#define SB_FAST 2 /* set burst transactions (v2 only) */

In order to con�gure devices on a SnailBus, we will have to probe each of the slots. Each

subdevice on the SnailBus will thus need to match against a type code and a slot number. This

gives us the following \sbavar.h" variables:

/*

* SnailBus autoconfiguration information.

*/

struct sba_attach_args {

int sa_slot;

u_int sa_type;

};

Finally, the SnailBus adapter con�guration driver might look something like this. Note that

sbaprint is called whether or not the appropriate driver is found. It will typically result in

something like \sc0 at xba0 slot 3" (where \sc0 at xba0" has already been printed) or \IPI disk

at xba0 slot 9 unsupported" (where \unsupported" is printed because xbaprint returns UNSUPP).

(The �le mainbusvar.h, which is not shown here, presumably de�nes the mb_attach_args structure

appropriately for the machine's main bus.)

#include <sys/param.h>

#include <sys/device.h>

#include "mainbusvar.h"

#define SB_TYPENAMES

#include "sbareg.h"

#include "sbavar.h"

/* software state per SnailBus adapter */

struct sba_softc {

struct device sc_dev; /* base device, must be first */

volatile struct sbareg *sc_sba; /* hardware registers */

};

static int sbamatch(struct device *, struct cfdata *, void *);

static void sbaattach(struct device *, struct device *, void *);

static int sbaprint(void *, char *);

struct cfdriver sbacd =

{ NULL, "sba", sbamatch, sbaattach, DV_DULL, sizeof(struct sba_softc) };

static int

sbamatch(parent, cf, aux)

struct device *parent;

struct cfdata *cf;

void *aux;

{

struct mb_attach_args *ma = aux;

22

volatile struct sbareg *sba;

/* make sure it is at the right address, or allowed anywhere */

if (cf->cf_loc[0] != ma->ma_addr && cf->cf_loc[0] != 0)

return (0);

/* make sure it claims to be an SBA */

sba = (volatile struct sbareg *)ma->ma_addr;

if (sba->sb_typesba != SB_SBA)

return (0);

/* we like it; take it */

return (1);

}

static void

sbaattach(parent, self, aux)

struct device *parent, *self;

void *aux;

{

struct sba_softc *sc = (struct sba_softc *)self;

struct mb_attach_args *ma = aux;

struct sba_attach_args args;

volatile struct sbareg *sba;

volatile struct sb_slot *ss;

int slot;

/* locate registers and print hardware revision */

sba = (volatile struct sbareg *)ma->ma_addr;

printf(": SnailBus version %d\n", sba->sb_ver);

/* remember register address */

sc->sc_sba = sba;

/* scan all the slots */

for (slot = 1; slot < SBA_NSLOTS; slot++) {

ss = &sba->sba_slots[slot - 1];

if (ss->ss_type == SB_EMPTY)

continue;

args.sa_type = ss->ss_type;

args.sa_slot = slot;

(void)config_found(&sc->sc_dev, (void *)&args, sbaprint);

}

}

static int

sbaprint(aux, sbaname)

void *aux;

char *sbaname;

{

struct sba_attach_args *sa = aux;

u_int ty = sa->sa_type;

23

if (sbaname != NULL) {

if (ty >= SB_MAXTYPE)

printf("SnailBus type %u", ty);

else

printf("%s", sbaslottypes[ty]);

printf(" at %s", sbaname);

}

printf(" slot %d", sa->sa_slot);

return (ty == SB_IPIDISK || ty >= SB_MAXTYPE ? UNSUPP : UNCONF);

}

D Make�le

As noted earlier, config produces a Makefile based on a prototype. In our example, this prototype

would be called Makefile.snail. Most of the prototype �le is copied unchanged, but certain \%-

constructs" are expanded. These are listed below. The description here is rather sketchy, since

most of the details are actually machine-dependent; the best way to produce a prototype make�le

for a new machine is to modify one for an existing machine. Other changes to prototype make�les

shoudl be straightforward (and rare).

%OBJS

This is replaced with a de�nition of the \make" variable OBJS, which will list all the object

�les making up the target kernel, according to the various \�les" �les. Note that on most

systems, the prototype make�le will de�ne some \special" objects (such as the traditional

locore.o) that need special handling (such as being �rst in the link command). These will

not appear in a \�les" �le, and hence also not in OBJS.

%CFILES

This is replaced with a de�nition for CFILES, which will list of all the source �les whose names

end in \c", according to the \�les" �les.

%SFILES

This is replaced with a de�nition for SFILES, which will list of all the source �les whose names

end in \s", according to the \�les" �les.

%LOAD

This is replaced with several sets of lines, one set per config line in the system description

�le (here SS1). Each set of lines makes up a \load" command for a kernel. For a kernel named

k, config will emit the following four lines:

k: ${SYSTEM_DEP} swapk.o

${SYSTEM_LD_HEAD}

${SYSTEM_LD} swapk.o

${SYSTEM_LD_TAIL}

The rest of the make�le must de�ne the variables used here.

%RULES

This is replaced with individual compilation rules for the various objects involved. Most

will simply invoke ${NORMAL_C} or ${NORMAL_C_C}. Files marked device-driver will invoke

24

${DRIVER_C}; assembly �les whose name ends with \.s" will use ${NORMAL_S}; and so on.

Again, the rest of the make�le must de�ne these variables.

All source �le references will be pre�xed with $S/ unless the �le name is absolute (begins with a

slash). The prototype make�le must set S to the path of the source directory, i.e., \../..".

E Output Files

In addition to the various \.h" �les generated from needs-count or needs-flag names, config

emits two or more \.c" �les and makes a symbolic link. All of these �les wind up in a directory of

the form ../../compile/system-name, e.g., ../../compile/SS1.

The symbolic link is named machine and points back to ../../machine-type/include (here

../../snail/include). This allows references of the form <machine/types.h>, given that the

compiler is run with appropriate -I ags.

For each kernel k named in a config line, the config program emits a �le called swapk.c.

Thus, for config vmunix root on sd0, config would generate a swapvmunix.c giving sd0 as

the root, swap, and crash dump device. These same names appear in link lines from the %LOAD

directive. (The config program also emits compilation rules for these, using ${NORMAL_C}.)

The last �le is called ioconf.c. This �le contains the cfdata table, along with tables of

locators, parent indicies, interrupt vectors, and tree-root indices. The top of the �le is copied from

ioconf.incl.machine-name (ioconf.incl.snail), if it exists. If not, config emits a default set

of #include lines. The ioconf.incl �le, if any, can override or augment these, e.g., in order to

de�ne symbolic locators.

20

The remainder of the �le consists of, in order:

� Interrupt vectors, if any.

� External declarations for con�guration drivers.

� The locator table.

� The parent vector index table.

� The table of con�guration data.

� The table of root device indicies.

� A set of pseudo-device initializations.

21

The con�guration data table is simply an array of struct cfdata, with one entry for each device

alias. Each cfdata carries a driver pointer, a unit number, a \state" ag (found/not-found/clone),

a pointer to the �rst of its locators, ags from the machine description �le (default 0), a pointer

to possible parent devices, and a (possibly NULL) pointer to the �rst of its interrupt vector stubs.

Locator vector lengths are implicit. Parent device vectors are terminated by a �1 value, and

interrupt stubs are terminated by a NULL pointer. The entire cfdata table itself is terminated by

an entry with a NULL driver pointer.

For obvious reasons, device drivers should avoid using these \internals", instead going through

the o�cial config_search and config_found interfaces. These are described here mainly for

completeness (and for anyone who needs to work on config).

20

Note that config cannot do as much to minimize locator duplication when symbolic names are used. This e�ect

is usually small. It may someday be worth �xing by having config expand the symbolic names; this would make the

ioconf.incl �le unnecessary.

21

Currently this is disabled with #ifdef, as the rest of the system has not been converted for them.

25

References

[1] Le�er, Samuel J. and Karels, Michael J. \Building Berkeley unix Kernels with Con�g," 4.3bsd

unix System Manager's Manual, online.

[2] Torek, Chris. \A New Framework for Device Support in Berkeley unix," Proceedings of the

UKUUG, London (Summer 1990).

26

