Introduction of passive reference

Kengo Nakahara
(knakahara@n.o / k-nakahara@iij.ad.jp)

Internet Initiative Japan Inc.

AsiaBSDCon 2016 NetBSD BoF
March 11 2016



Table of contents

Overview
Motivation

Concept

Design

Operation overview
Summary



Overview

passive reference (psref) is a synchronization mechanism
like reference counting
— using pserialize(9) (*)

» pserialize(9) is one of lockless synchronization mechanisms like RCU of
Linux

— to scale better than reference counting

psref is under development for NetBSD kernel
— e.g. packet processing paths

psref is
— discussed by riastradh@n.o, rmind@n.o, and dyoung@n.o
— reviewed by riz@n.o

— being implemented by riastradh@n.o

* http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html

— and update http://mail-index.netbsd.org/tech-
net/2016/02/15/msg005621.html

— Thanks!
| am using psref for making gif(4) MP-ify



http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html
http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html
http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html
http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html
http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html
http://mail-index.netbsd.org/tech-net/2016/01/24/msg005507.html
http://mail-index.netbsd.org/tech-net/2016/02/15/msg005621.html
http://mail-index.netbsd.org/tech-net/2016/02/15/msg005621.html
http://mail-index.netbsd.org/tech-net/2016/02/15/msg005621.html
http://mail-index.netbsd.org/tech-net/2016/02/15/msg005621.html
http://mail-index.netbsd.org/tech-net/2016/02/15/msg005621.html
http://mail-index.netbsd.org/tech-net/2016/02/15/msg005621.html

Motivation

Network packet processing needs to share
resources

— route, tunnel configuration, and so on

pserialize(9) can achieve good scalability

— we verified it with bridge(4) (*)

— contract: sleep is prohibited in reader critical section
Packet processing may sleep even in fast paths
— e.g. adaptive mutex, rwlock, and rtallocl

How to resolve with good scalability?

— Changing all of these processings not sleeping in that
section is hard work because of complex
interdependency

— Reference count decrease scalability because of
interprocessor synchronization



Concept

e Somehow hold a reference to shared resource
without interprocessor synchronization

— like OpenBSD’s SRP(9) (I think. | don’t know detail)
* |f sleepable processing doesn’t migrate

between CPUs, interprocessor synchronization
is not needed

— Except for destruction, discuss later
e softint(9) and CPU-bound kthread satisfy this
assumption

— If not satisfied, we have to prevent it somehow
during using psref



Design

* Add a CPU-local list to each CPU to manage
references

* Read side (fast path)

— Acquiring a reference is represented as adding an
entry to the list of the current CPU

» pserialize(9) guarantees the entry isn’t destroyed during the
operation

— Releasing a reference is represented as removing the
entry from the list

* Write side (slow path)

— Before destroying a shared resource, wait for ALL
CPUs to release their references to it

* i.e. IPI (*) broadcast is needed



Operation overview (1/7)

initial state

CPU#1

CPU#0

shared
resource



Operation overview (2/7)
acquiring reference by CPU#0

CPU#0

list head list head
list entry

softintA#0

softintA#1

e acquiring reference to shared resource
 add new entry to CPU local list
e list entry refer to shared
resource
» refer list entry from call stack
e use shared resource

shared
resource



Operation overview (2-b/7)
re-acquiring reference by CPU#0

CPU#0

softintA#0
funch

softintA#0

funcB list entry

softintA#0O
funcC
‘\

list head

softintA#1

* re-acquiring shared resource
* the same as fist time
e add list entry, and...
* can acquire infinitely
* if we can allocate memory for
list entry

shared
resource




Operation overview (3/7)
acquiring reference by CPU#1

CPU#0

list head
softintA#0 softintA#1 l
list entry

e acquiring reference to shared
resource
* the same as CPU#0
* not need to interprocessor sync

shared
resource



Operation overview (4/7)

release reference by CPU#1

CPU#0

sleeping

list head list head

list entry

softintA#0 softintA#1

3

holding
reference

* release reference to shared resource
* remove entry from CPU local list
* cleanup reference from stack

* not need to interprocessor sync also

shared
resource




Operation overview (5/7)
try to destroy resource by CPU#1

sleeping o hond
ist hea

{

kick IPI

processing processing
kicked by IPI

softintA#0

before destroying shared resource
e check whether other CPUs
processing refer shared resource
* do IPlI broadcast and wait it
* kicked processing just has to
check CPU local list

shared
resource




Operation overview (6/7)

release reference by CPU#0

CPU#0

sleeping
list head list head

{

softintA#0

* release reference to shared resource
* remove entry from CPU local list
e cleanup reference from stack
* docv_broadcast if someone is
destroying

shared
resource



Operation overview (7/7)
do destroy resource by CPU#1

CPU#0 CPU#1

* wakeup by cv_broadcast
* resume to destroy shared resource



APIs

struct psref_class *psref_class_create (const char *name, int ipl);

void

void

void

void

void

void

bool

psref_class_destroy (struct psref_class *class);

psref target init (struct psref_target *xtarget, struct psref_class *class);
psref target destroy (struct psref target *target,
struct psref_class *class);

psref_acquire (struct psref *psref, struct psref_target *target,
struct psref_class *class);
psref_release (struct psref *psref, struct psref_target *target,
struct psref_class *class);
psref_copy (struct psref #pto, const struct psref *pfrom,
struct psref_class *class);

psref_held(struct psref_target *target, struct psref _class *class);



Pseudo code (read side)

lookup_elem_and_sleepable processing () {
struct record *elem;
struct psref psref;

s = pserialize_read_enter () ; // protect the list itself.

LIST_FOREACH(elem, head, field) {
if (elem—>key == key) {

psref_acquire (&psref, &elem—>targ;Ea; // protect the element.

break;
} pserialize read critical section
} ‘
pserialize_read_exit(s); -LJ // unprotect the list, but
// the element has been protected.
if (elem) | = psref holding reference section
some_processing _that_sleeps(elem) ; // may sleep, so this cannot do
// before pserialize read exit().
psref_release (&psref, &elem—>target):___ // unprotect the element.

} // to keep the reference across
// function, pass psref as argument.



Pseudo code (write side)

remove_elem() |{

mutex_enter (lock) ; // protect against other write
// side processing.
LIST_FOREACH(elem, head, field) {
if (elem—>key == key) {
LIST_REMOVE (elem) ;
pserialize_perform(psz) ; // wait for reader lookups to
// finish.
break;

J

mutex_exit (lock) ;

if (elem) {
psref_target_destroy (&elem—>psref_target); // wait for readers to drain.
kmem_free (elem) ; // destroy itself.



Summary

Introduce psref

psref enables us to work on parallelizing
packet processing incrementally without
making the significant changes

— The significant changes are needed as pserialize(9)
read side would require to avoid sleeping

psref will be merged to NetBSD-current
— soon?

Welcome to feedback to use pserialize(9) and
psref

If you have questions, please ask
riastradh@n.o ©



