

Jan Schaumann

jschauma@{cs.stevens.edu,netbsd.org}

jschauma@netbsd.org: 136D 027F DC29 8402 7B42 47D6 7C5B 64AF AF22 6A4C jschauma@cs.stevens.edu: 4C58 6D3F B5F7 5E1E 4B5A EC21 1F7D B5CE B80E 83A5

Department of Computer Science

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

look at general requirements of a Desktop System

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

look at general requirements of a Desktop System

consider specific requirements of the environment in question

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

- look at general requirements of a Desktop System
- consider specific requirements of the environment in question
- analyze what constitutes "user-friendliness"

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

- look at general requirements of a Desktop System
- consider specific requirements of the environment in question
- analyze what constitutes "user-friendliness"

think about how to maintain large numbers of identical desktop systems

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

- look at general requirements of a Desktop System
- consider specific requirements of the environment in question
- analyze what constitutes "user-friendliness"
- think about how to maintain large numbers of identical desktop systems
- present a scalable framework in production use

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

- look at general requirements of a Desktop System
- consider specific requirements of the environment in question
- analyze what constitutes "user-friendliness"
- think about how to maintain large numbers of identical desktop systems
- present a scalable framework in production use
- analyze strengths and weaknesses

Let's debunk the myth that NetBSD is "not ready for the desktop"!

We will:

- look at general requirements of a Desktop System
- consider specific requirements of the environment in question
- analyze what constitutes "user-friendliness"
- think about how to maintain large numbers of identical desktop systems
- present a scalable framework in production use
- analyze strengths and weaknesses
- conclude wisely (and timely)

Requirements of a user-friendly Desktop System

- in general:
 - common hardware must be supported
 - primary use as a desktop → certain "standard" applications must be available
 - user-friendly → knowledge and consideration of the users needs

Requirements of a user-friendly Desktop System

- in general:
 - common hardware must be supported
 - ullet primary use as a $desktop \rightarrow certain "standard" applications must be available$
 - user-friendly → knowledge and consideration of the users needs
- specificially, in this environment:
 - academic target userbase
 - users vary widely in experience, knowledge, interest
 - large number of different applications needs to be available
 - several key applications are required
 - open source a plus

Requirement: User-friendly

Common understanding of user-friendliness:

- easy OS installation
- easy software installation / upgrades
- safe and reliable handling of security patches
- installed software is easy to use

Requirement: User-friendly

Common understanding of user-friendliness:

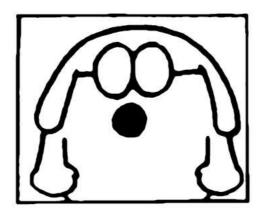
- easy OS installation
- easy software installation / upgrades
- safe and reliable handling of security patches
- installed software is easy to use

But: most of these tasks are not – and should not – be performed by the user!

Requirement: User-friendly

Common misunderstanding of user-friendliness:

- easy OS installation
- easy software installation / upgrades
- safe and reliable handling of security patches
- installed software is easy to use


In other words, user-friendliness means:

- applications the user needs are installed
- consistent environment across networked machines
- users need not know or notice which particular OS is chosen
- hide unneccessary complexities
- don't restrict advanced users

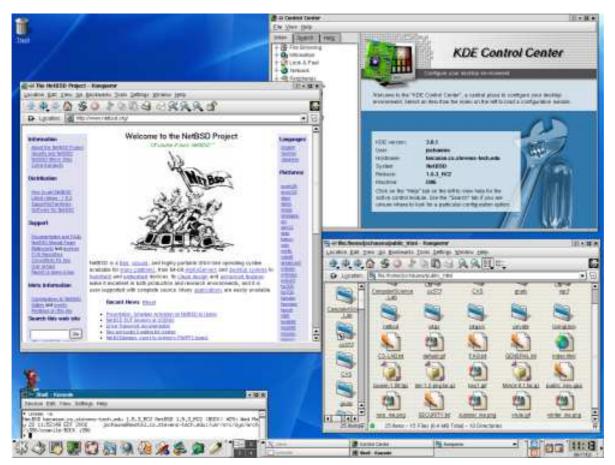
Requirement: Admin-friendly

An admin-friendly OS allows for:

- easy OS installation
- easy software installation / upgrades
- safe and reliable handling of security patches

Requirement: Admin-friendly

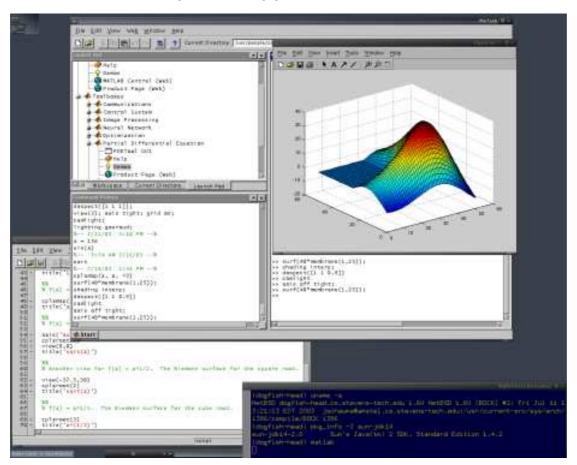
An admin-friendly OS allows for:

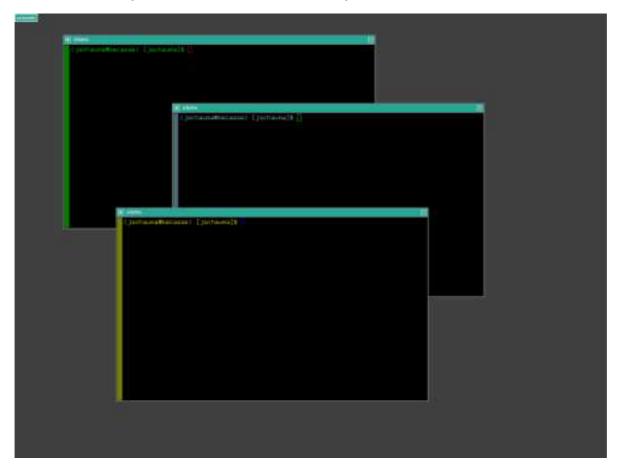

- easy OS installation / upgrades
 - hardware support
 - capable of non-interactive and/or customized installation
 - complete source tree
 - reliable release engineering
- easy software installation / upgrades
 - mature package management system
 - support for (proprietary) third-party vendor applications
- safe and reliable handling of security patches

Choosing a Desktop System

Consider:

- general user requirements
- specific requirements posed by the target user base
- number of applications installed
- type of applications installed
- number of desktop systems deployed
- potential expansion


It's friendly to users who like KDE:


It's friendly to users who like GNOME:

It's friendly to users who need specific applications:

It's friendly to users who prefer a clean desktop:

Alright, we get it, NetBSD is user-friendly! What else?

Alright, we get it, NetBSD is user-friendly! What else?

Why, NetBSD is admin-friendly, too. Of course!

- complete OS (kernel and userland from one source tree)
- stable releases known to actually be stable
- releases are supported for a long time
- new versions only released when they're really ready
- thousands of third-party applications available
- incredible cross-platform package management using pkgsrc
- support for required proprietary applications
- great reference platform for Computer Science students

Case Study: NetBSD Desktops at Stevens Institute of Technology

Infrastructure:

- large number of NetBSD workstations
 - public laboratories
 - faculty desktops
 - research facilities
- (almost) identical hardware
 - easy replacement of faulty hardware
- identical software installation
 - users can move from machine to machine
 - replacing hardware does not mean users can't access their work environment

NetBSD/Desktop @ Stevens: Infrastructure (cont'd)

- central build server
 - easy maintenance of workstation image
 - one place to build and install software
 - server initiated push-strategy updates clients

In numbers:

# of administrative scripts	7
total LOC of administrative scripts	388
# of users	approx. 2900
# of workstations	70
# of third-party packages not under pkgsrc	7
# of third-party packages under pkgsrc	1054
size of workstation image	9.3 GB

NetBSD/Desktop @ Stevens: Infrastructure (cont'd)

Server Setup:

- plenty of RAM and disk space
- full source tree
- three pkgsrc trees:
 - latest stable (ie pkgsrc-2004Q3)
 - HEAD
 - custom
- two chroots:
 - /sandbox
 - /new
- audit-packages(8) run nightly
- allows syslogging of workstations over IPSec
- talks to clients via rsh(1)+IPSec or ssh(1)

NetBSD/Desktop @ Stevens: Infrastructure (cont'd)

Client Configuration:

- /new (on server) contains full image, including over 1000 third-party applications
- very few files need to be unique to each host:

```
etc/X11/XF86Config
etc/master.passwd
etc/racoon/psk.txt
etc/rc.conf
etc/spwd.db
etc/ssh/ssh_host*_key.admin{,.pub}
etc/printcap
```

NetBSD/Desktop @ Stevens: Software Installation

In general:

- all software installed if at all possible via the NetBSD Packages Collection
- new packages created as necessary
- non-pkgsrc'd software goes into /usr/local

In detail:

- if software is not available in latest stable branch
 - software available in HEAD:
 - merge by hand into custom tree
 - software not available in HEAD:
 - create package in HEAD
 - commit package to pkgsrc
 - add new package into custom tree

NetBSD/Desktop @ Stevens: Software Installation (cont'd)

Installation procedure:

```
$ chroot /sandbox
# make install package
# exit
$ chroot /new
# pkg_add <newpackage>
```

Upgrade procedure:

```
$ chroot /sandbox
# make update package
# exit
$ chroot /new
# pkg_add -u <newpackage>
```

Important variables in /etc/mk.conf:

IGNORE_RECOMMENDED=YES
DEPENDS_TARGET=package

NetBSD/Desktop @ Stevens: Update Procedure

The script push.sh updates a given workstation:

- push initiated by server
- rsync(1) via either IPSec'd rsh or SSH on a separate port using a secret key
- sync in individual passes
- allow for site-wide exclusions
- allow for per-host exclusions and "absolute" files
- execute initial or final commands on each remote host

NetBSD/Desktop @ Stevens: Update Procedure (cont'd)

Security considerations:

- push initiated by server
 - no client can "request" an update
- rsync(1) via either IPSec'd rsh or SSH on a separate port using a secret key
 - clients are authenticated
 - sensitive files are transferred encrypted

NetBSD/Desktop @ Stevens: Update Procedure (cont'd)

Times for a single push:

type	remote shell	time
minor update	rsh + ipsec	5.5m
minor update	ssh	7.6m
major update	rsh + ipsec	7.9m
major update	ssh	8.25m
full update	rsh + ipsec	21.8m
full update	ssh	23.8m

- minor update: update of a few files or a small package
- major update: update of at least three large packages (such as mozilla, KDE etc.)
- full update: update of the entire userland and several large packages

NetBSD/Desktop @ Stevens: Update Procedure (cont'd)

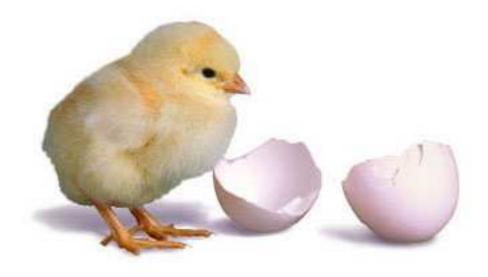
Times for an update of all workstations:

type	remote shell	time
minor update	rsh + ipsec	36m
minor update	ssh	49m
major update	rsh + ipsec	47m
major update	ssh	51m
full update	rsh + ipsec	149m
full update	ssh	155m

- minor update: update of a few files or a small package
- major update: update of at least three large packages (such as mozilla, KDE etc.)
- full update: update of the entire userland and several large packages

NetBSD/Desktop @ Stevens: New Workstation Installation

The basic steps to integrate a new workstation into this setup are trivial:


- create the necessary host-specific configuration files on the server (hostname, unique IKE PSK, ssh keys, X11 configuration, printcap etc.)
- install new host
 - boot off standard install media
 - disklabel(8) and newfs(8) disk
 - configure network
 - nfs mount client image from server
 - pax(1) over data
 - install bootblocks

NetBSD/Desktop @ Stevens: New Workstation Installation (cont'd)

Security considerations:

- 1. certain files must not be transmitted in the clear, so must not be in the client image and can not be installed initially
- 2. some of these exact files are necessary to allow subsequent pushes

Hmmm...

NetBSD/Desktop @ Stevens: What's next?

Improving the general setup:

- consider switching to pkgviews framework
- consider bulk-building the set of installed packages on a regular basis from both stable branch and HEAD
- consider running bulk-builds of all packages to ensure availability of binary packages
- consider creation of custom install CDs (possibly per host)
- place client-specific configuration files under CVS control
- consider CVS or similar approaches for entire workstation image
- provide documentation... oh, wait... done! :-)

NetBSD/Desktop @ Stevens: What's next?

Improve Security:

- consider mapping IPs and MAC addresses
- consider asymmetric cryptography approach to chicken-and-the-egg problem
- consider use of install-key to encrypt the few sensitive files for installation process
- perform installations on private network only

Conclusion

NetBSD is

- "ready for the desktop"
- user-friendly
- admin-friendly

The framework presented:

- is simple yet flexible
- can easily be deployed
- has (of course) room for improvement

Questions? Comments?

Thanks!