Recent Security Enhancementsin NetBSD

Elad Efrat €lad@NetBSD.org

September 2006

Abstract

Over the years, NetBSD obtained the position of BI$® focusing on portability.
While it is true that NetBSD offers an easily pbteaoperating system, care is also
given to other areas, such as security. This pprEsents the NetBSD philosophy of
security, design decisions, and currently offerecusity features. Finally, some of the
current and future research will be revealed.

1. Introduction

Running on almost twenty different architecturesd seasily portable to others,
NetBSD gained its reputation as the most portaplerating system on the planet.
While that may indicate high quality code, the edlemanding networked world cares
about more than just that. Over the past year, SBtBvolved quite a bit in various
areas; this paper, however, will focus on the asgating to security.

This paper was written and structured to presduall @verview of the recent security
enhancements in NetBSD in an easily readable alahdxd form that will satisfy
new, intermediate, and experienced users. Refesemere sprinkled across the text to
provide more information to those who want the gdeyails, while preserving the
continuity.

Section 2 will present the bigger picture of seguin NetBSD: how NetBSD
perceives security, the design decisions of NetBS®Bware in general and the
security infrastructure and features more spedific&ection 3 will present a detailed
overview of the recent enhancements in the securftastructure and features of
NetBSD including, where relevant, details about tiesign, implementation, and
possible future development. Section 4 will presantent security-related research
and development in NetBSD, and section 5 will déscthow the described
enhancements work together to provide a more sqiatform. Section 6 concludes
the paper, and summarizes availability of discu$satlires.

2. TheTao of NetBSD Security

We are all familiar with the mantra thsdcurity is a process, not a product. When
regarding software development, specifically opegasystems, it should be part of
the design, from the ground up. As the descendeanmperating system over 20
years old, NetBSD carries a security model desigmetiimplemented with different
threats in mind; the Internet was smaller, more&aand less popular.

The following sections will provide background teetapproach taken to enhance the
security of the NetBSD operating system: the carsitibns, existing approaches, and
case-studies.

2.1 Considerations

Licensed under @reative Commons Attribution 2.5 License 1

When approaching to enhance the security of NetB®0D, of the most important
leading principles were maintaining compatibilitpdainteroperability. Presenting
changes that would dramatically impact the useelvass out of question, and careful
planning had to be done. In addition, any changenaerlying back-ends had to be
well thought-out so it maintains existing semantiaghout enforcing them during
design stage.

2.2 Security Approaches

Operating system security is nothing new, and NBXBSnot the first to address the
issue. In designing software — and security sofwarparticular, it is mandatory to

learn from the experience of previous work. Belaow some common approaches to
security and real-world case-studies.

2.2.1 Code Auditing

Code auditing addresses security issues by lodkingrogramming glitches in the
source code of the program, often with the asdisthautomated toofs Normally the
work of vulnerability researchers, when done prwaty by the programmers
themselves, has the potential of locating and gxougs with security implications
before anyone else finds and exploits them.

While some would argue that striving to produce-Ireg code is thene true way of
achieving security, this view is a fallacy for twoain reasons. The first is that
security issues are not always the result of prograng errors; while code auditing
tries to ensure no software bugs will be maliciguskploited because said bugs
would simply not exist, it alone ignores other impat aspects, such as configuration
errors and user behavior policies.

The second reason is that it is not possible taewsug-free codle Over the past

decade, the awareness to writing secure code tgsdicantly; automated tools

evolved, allowing easy pinpointing of software buggen-source software is
available for the review of thousands — if not mails — of people; yet, we still see
new security vulnerabilities on a daily basis. Soofighose, ironically, are of the
exact same type that affected us ten or twentysyegd.

2.2.2 Exploit Mitigation

The unorthodox approach of exploit mitigation addes bugs from the opposite
direction of code auditing: instead of looking iem in and removing them from
software to make it more secureadds bugs to the exploit code to prevent it from
working. While that may be over-simplified, the pase of exploit mitigation
technologies is to interfere with the inner-worlsngf the exploit, eliminating the —
often unusual — conditions that make it work.

On one hand, some would claim that exploit mitigatdiscourages developers from
writing secure code and vendors from quickly residog to security incidents: they

! Two other leading principles — not impacting tiygstem performance and an easy user interface, will
not be discussed in this paper.

Z Coverity, for example, offered its services toiwas open-source projects, including NetBSD, for
free. Sednttp://scan.coverity.com

? http://www.cs.columbia.edu/~smb/papers/acm-pregtift.

* http://www.cert.org/homeusers/buffer_overflow.html

Licensed under @reative Commons Attribution 2.5 License 2

know there's aafety net guarding them, and so they pay less attentioretargy
when writing code, or taking their time coming uphafixes for security issues.

On the other hand, however, this is also whereagxplitigation technologies excel:
they introduce the concept of preventing the swgfaésexploitation of security
vulnerabilities, even before a fix is available. fdover, they prevent entire classes of
bugs, and don't require constant updating.

2.2.3 Architectural Integration

So far, the previous two approaches assume the cdwssecurity breach is a bug in
the code that is being exploited. The first apphotiies to eliminate such bugs, and
the second one tries to make it next to impossiblesuccessfully exploit them.
However, some environments require more than hadt-+ for example, the ability to
define detailed usage policies and associate thigmentities on the system became a
mandatory part of many security policies. In ountext, we can relate that to the
Unix permissions model; simply put, due to the seaseparation between a normal
user and a superuser, it cannot be used to expiE®g security policies as detailed as
may be required.

That led to the research of various modern secuaragels, of which most recognized
ones are fine-grainéddiscretionary access controls (DACs) and mandasmgess
controls (MACs). To put things simple, DACs focus the data owner's ability to
specify who can use it and for what; MACs focusaomandatory policy that affects
everyone.

These systems allow an administrator — and whepécaple, the users — to specify
fine-grained policies; effectively, this means thatiser or a program can be made to
work with the minimal amount of privileges requiréat their operation (which, as
implied above, cannot be done with the traditiddalx security model), resulting in
damage containment in case of compromise or oteenminimized impact from
security vulnerabilities.

2.2.4 Layered security

To itself, layered securityis not a single approach. Where any of the previbuee
took a different route, the layered security apphosuggests that maximized security
can only be achieved by combining efforts on ahts: code auditing is important,
but does not come in place of useful exploit mitwatechnologies; and architectural
integration, of course, has little to do with arfytteem.

Although the above may sound obvious, it is notdfien when you see an operating
system that puts an emphasis on all three aspeuats; usually be the case that only
one of the approaches is fully practiced. Followarg some short case-studies that
illustrate the importance of each approach by useadrworld examples.

2.2.5 Case Studies
Shortly after splitting from NetBSD in 1995, OperiB&ecame widely known for its
unique — at the time — approach to security: preactode auditing. Instead of

® | emphasizdine-grained because DACs already exist on Unix; however, ascdhey are too
coarse.
® Also known adefense in Depth.

Licensed under @reative Commons Attribution 2.5 License 3

retroactively responding to security issues, OpdnBi8velopers performed thorough
code auditing sessiormsyeeping for bugs. This act proved itself more than onéiera
vulnerabilities found in other operating systemsengready fixed’ in OpenBSD.

This, however, did not last too long. In 2002, vénof change blew through the
OpenBSD mindset: the long standing fort of codeitangd fell, adopting exploit
mitigation technologies to its I&pWhile the reasons behind the move were not
published, some speculate that it was the relehs@é @xploit allowing full system
compromise of OpenBSD's default configurafidhat finally proved that even a
group of dedicated programmers cannot find all bagkast not first.

Said exploit mitigation technologies made their lpudebut around 1996, with the
appearance of the Openwalproject, and later evolved dramatically by the BaX
project in 2000. Research done in both projectséal the basis of today's exploit
mitigation technologies. Another commonality of ttveo was that they offered an
implementation based on Linux — which only makes amonder why it was

OpenBSD that was the first to officially adopt teechnologies.

Linux, however, took a different direction. Firsiithvthe addition of POSIX.1&
capabilities in 1999, fine-grained discretionargess controls, later with SELintix
an implementation of mandatory access controls,fiswadly with the introduction of
the Linux Security Modules framewdfk abstracting the implementation of both,
Linux focused mainly on offering means for an adstmator to define a detailed
security policy, hoping to minimize the effect ofanerability.

Not lagging behind too much, though, exploit mitiga technologies also appeared
in the official Linux kernel during 2004-2005; iadt, they also made an entrance to
the official Windows world with Windows XP SP?and Windows Vista is expected

to include even more such technolodfes

Simply put, all three major approaches have beantiged by widely used operating
systems at one point or another. It is clear to thaé although initially a single
approach was chosen, eventually it was understomtdayered security is the key to
stronger defense of computer systems.

2.3 The NetBSD Perception of Security

Learning from others’ experience, the approachrtdigeNetBSD employs three main

principles:

= Simplicity. There is no point in providing a featurwhether it's a kernel
subsystem or a userland tool, if it's not intuitimed easy to use. Furthermore,
overly complex code is harder to audit, which mead to additional bugs.

" http://www.openbsd.org/security.html#process

8 http://www.monkey.org/openbsd/archive/misc/0207/619y 7.html

® http://www.securityfocus.com/news/493

10 http://www.openwall.com

1 http://pax.grsecurity.net

12 http://wt.xpilot.org/publications/posix.1e/

13 http://www.nsa.gov/selinux/papers/module/t1.html

1 http://www.kroah.com/linux/talks/usenix_security 020 Ism_paper/Ism.pdf

15 http://www.microsoft.com/technet/prodtechnol/winxpfmaintain/sp2mempr.mspx
18 http://blogs.msdn.com/michael _howard/archive/20886/608315.aspx

Licensed under @reative Commons Attribution 2.5 License 4

= Layered security. It is well understood that thisrao single solution to security.
NetBSD addresses security from a variety of angleduding code auditing,
adequate and extensible security infrastructured axploit mitigation
technologies.

= Sane defaults. Accepting that security may not Hee Highest priority for all
users, NetBSD provides sane defaults to fit the mom case. Detailed
supplementary documentation helps enable and aoefithe various security
features.

Using the above guidelines, a variety of securitiytsons were evaluated to address
different threat models. With emphasis on implenmgnt. solution that would fix a
real problem and provide an intuitive and easys® interface (when one is required),
a variety of changes — ranging from tiny hooksotigh additional kernel subsystems,
to architectural modifications, NetBSD has madeantgmt first steps in improving its
overall security.

3. Overview of Recent NetBSD Security Enhancements

3.1 Kernel Authorization

The introduction of kernel authorization, oftenemeéd to as kauth(9), in the NetBSD
kernel has been one of the larger-scale changesiexe in NetBSD. The interface is
modeled after an interface of the same name deselby Apple for Mac OS ¥,
though unfortunately due to licensing issues it wgsossible to make use of existing
code, and so the NetBSD implementation was writtenpletely from scratch.

Kernel authorization redefines the way credentals handled by the kernel, and
offers a simple and easy to use — yet powerful @tdnsible — kernel programming
interface to enforce security policies. It is imaot to emphasize that kernel
authorization does not provide any additional ségbiy itself, but rather provides an
interface on top of which security policies candasily implemented. The strength of
the security directly depends on the strength efablicy used.

The Kkernel authorization infrastructure is requirtmt supporting fine-grained
capabilities, ACLs, and pluggable security modefsag other things. It will allow
NetBSD administrators and users to maintain thetiexg traditional Unix security
model, offer capabilities to replace set-user-id art-group-id programs, and allow
third-party developers and appliance manufactut@nsnplement a custom security
model to either replace or sit on-top of the ergpibne.

3.1.1 Related Work

Similar infrastructures are Linux's LSM (discussadlier) and TrustedBSD's (now in
FreeBSD) MAC frameworK. Both have been in use for a couple of years liket
kernel authorization, are still very young to bgehkuth real-world experiences.

3.1.2 Design
Apple did most of the design work for the kernelhauization infrastructure. A large
part of the design is available online, and it'srehe the implementation that was

17 http://developer.apple.com/technotes/tn2005/tn 2.
18 hitp://www.trustedbsd.org/trustedbsd-discex3.pdf

Licensed under @reative Commons Attribution 2.5 License 5

unavailable. Therefore, most of the design-relatedk in doing the native NetBSD
port focused on completing the missing parts frégv@ online documentation and
taking care of compatibility issues.

Kernel authorization maps the privilege landscafpth® kernel toactions grouped as
scopes. For example, thprocess scope groupsactions such as “can trace”, “can see”,

and “can signal” — which are all operations on psses.

When a request for an operation is made,atteon is passed to thauthorization
wrapper of the relevant scope, together with related cdnfehe context is variable:

it is different for each request. The authorizatvarapper dispatches the request and
the context to thdisteners associated with the scope. Each listener canmedur
decision — either allow, deny, or defer (indicatthg decision should be left to the
other listeners) — and the authorization wrappealuates the responses from all
listeners to decide whether to allow or deny tlpiest.

In order for a request to be allowed, no listenetymeturn a deny decision. If all
listeners return a defer decision, the requestisedi.

3.1.3 Implementation

The implementation of kernel authorization in NefB&as done in several stages.
First, the backend was written. This included thaiamty of the code that worked
behind the scenes to implement the credential mgm@nagement and reference
counting, locking, and scope and listener managénitemas then tested to ensure all
parts work as a black-boxes, allowing initial iragon in the NetBSD code. Part of
that work included merging the contents of tleeed andpcred structs into a single,
opaque (as possible) type calledith cred t.

The next step was a series of mechanical kernajr@naming interface changes.
Credentials could no longer be allocated on thekstand so a lot of code had to be
modified to use the kauth(9) memory managementmesit Additionally, code that
directly referenced members of thered andpcred structures had to be modified to
use the accessor and mutator routines providechéykauth(9) interface. Existing
interfaces such as suser(9) and groupmember(9) degneecated in favor of calls to
kernel authorization wrappers, and others such &s_ssetgroups(2) and
sys_getgroups(2) were modified to use the newfantes.

The following step consisted of thorough testingp-ensure transparent integration
and equivalent semantics — which uncovered soms Wity the kernel authorization
code, most of them in the NFS portion of the kernel

3.1.4 Future Development

While implementing the kernel authorization backieand making the kernel
dispatch its authorization requests to it was gpoirfantground preparation, there is
more work to be done before declaring this intexfaseful.

The first step in the integration of kernel autkation was mostly mechanical and
transparent to users, intended to preserve exisgngantics. The next logical step is
to examine the kernel to ensure the interface adtstrthe security model used in
NetBSD.

Licensed under @reative Commons Attribution 2.5 License 6

Given its heritage, the NetBSD kernel is too tightbupled with the Unix security
model, and the concept of a single super-user aitlser-id of zero is often hard-
coded. For example, a lot of privileged operatichsck for an effective user-id of
zero directly in the process’ credentials structuret making use of the suser(9)
interface.

The next logical step will be to identify these dtions, and properly replace these
vague effective user-id checks with calls to thenke authorization interface,
describing the privilege required to complete tperation. The same applies to any
authorization wrapper calls acting as placeholdgrscking for super-user rights.

The above work will result in the complete absimacibf the security model used in
the NetBSD kernel, allowing switching easy as a-lome change in the kernel
configuration between the Unix security model,refigrained capabilities model, or
a third-party security model possibly implementsthg an LKM.

3.2Veriexec

Veriexec is NetBSD's file-integrity subsystem, &lag the verification of a file's
digital fingerprint before accessing it. Introdudad\etBSD by Brett Lymn in 2032
and later integrating work from Vexec of the Stepbaproject® in 2005, Veriexec
provides means to ensure real-time file integribd anonitoring combined with
intrusion detection and prevention capabilities.

Initially self-contained, Veriexec’s core — thearface for associating meta-data with
files regardless of file-system support using imké memory — was recently
abstractet! to form the Fileassoc interface to satisfy simitegeds from other

features.

3.2.1 Related Work

Integrity checker implementations have been arownddecades. Used for various
purposes such as virus protection in DOS and fienges notifications in Unix, the
concept itself is not new to the security industy. Fred Cohen's research was
among the first to offer insight about using intggrcheckers to protect from
malicious softwarg. Tripwire?”®>, presented by Eugene Spafford and Gene Kim,
allowed system administrators to be notified abomtrupted or altered files in a
timely fashion.

Yet, while there are numerous products for evempmating environment, they all
share a common set of flaws that prevents them featizing their potential.

First, none of them integrates with the operatiygfesm deep enough to provide real-
time protection: most are retroactive tools usedatofy after changes were detected.

19 http://mail-index.netbsd.org/tech-security/20028000000.htm

20 http://ethernet.org/~brian/Stephanie/

2L http://mail-index.netbsd.org/tech-kern/2006/06/0&D.htm

22 hitp://vx.netlux.org/lib/afc03.htmDr. Fred Cohen also introduced the concephtefyrity shells,

with which Veriexec is sharing some commonalities;implementation was made available, however,
and therefore it is impossible to tell whether fénglts mentioned also apply to them.

2 http://portal.acm.org/citation.cfm?id=191183

Licensed under @reative Commons Attribution 2.5 License 7

This approach does not address potential damagdeheaused in the time-window
between a file was altered and improperly usedesemad when the administrator
receives notification of the matter and handlesltitalso does not guarantee the
integrity of the integrity checker itself: a sucskes compromise has the potential of
remainingunder the radar.

Furthermore, some implementations use weak algosithto calculate a file's
checksum, or rely on a small data-set for checksuaaiculation. Other
implementations rely on a file's attributes ratttean data to evaluate integrity. The
impact of the above is that a file can be modifiedsuch ways that even if the
integrity checker tries to evaluate it after thawge, it will not be able to detect it.
Whether it's by altering the file in a way to ddfdee checksum algorithm, or modify
areas of the file that the integrity checker iswndo ignore, or even tamper with the
file's attributes — these implementation flaws adirbe bypassed by an attacker quite
easily.

And last, they all leave out an important aspectontay's reality: the network. Our
environments become more and more inter-conneatediccess files from untrusted
locations on a daily basis; some architectures oalya networked environment for
everyday operation: centralized storage, backud, smon. Existing products may
provide a certain level of local protection on asthdut leave an important — and
interesting — question unanswered: how do you edgffethe compromise of a remote
resource?

While we cannot deal with all aspects of compronat@ remote resource we use,
and it is certainly not our goal either, it is innfamt to try and address the ones that
can be solved by using an integrity checker intiegk&n the operating system.

3.2.2 Design

Veriexec was designed to be a file-system indep@nidéegrity subsystem protected
from users, including root, by operating solelynfrthe kernel. Recent attacks against
various hashing algorithms once thought secure girothe need for interface
flexibility — such that can be used both for eadgiion of support for new hashing
algorithms, as well as future work on digitallyrsggl files.

Careful analysis of the bottlenecks for file accassl other file-system semantics
(such as rename and remove) resulted in generkshtm be called with the required
context for decision-making and policy enforcemehi.the time of writing, it is
impossible to implement the Veriexec policy on top kauth(9) due to lack of
required scopes.

The design process also took into account variowg@ments for Veriexec — from

workstations, through servers and critical systents,embedded task-oriented
appliances. Strict levels with varying implicationsre introduced to support multiple
uses, and were named semi-descriptively to hins&d uses: learning mode (level
0), intrusion detection system (IDS) mode (levelidfrusion prevention system (IPS)
mode (level 2), and lockdown mode (level 3).

% For example, CRhttps://www.kb.cert.org/vuls/id/25309

Licensed under @reative Commons Attribution 2.5 License 8

3.2.3 Implementation

The most recent version of Veriexec is implemenisithg the Fileassoc subsystem
for management of meta-data and file associatiogatly simplifying the Veriexec
code, and a device for kernel-userland interaction.

Veriexec is implemented by hooking policy enforcaetmeutines in various parts of
the kernel, monitoring execution of normal execlgalas well as scripts, opening of
regular files, and rename and remove operations.

When a file is opened or executed, the evaluaboitine, is called with the context of
the request (LWP, vnode, filename if any, and axflag indicating how the file was
accessed) to make a decision whether the file eaacbessed or not. The result is
cached to speed-up further evaluations of the Saene

3.2.4 Future Development

During research work on Veriexec, Thor Lancelot &npointed out a potential
attack>. Although Veriexec ensures integrity of files @tal file-systems, where all
access is done via the kernel, it cannot ensuegyriy of files located on remote
hosts, imported via NFS, for example.

While Veriexec could be told not to cache the emabdn of such files, the attack
vector is when a process, or part of it, is pagedamd later paged in. Because the
disk read is done by the VM system, and only ofc@se(pages) of the program,
Veriexec wasn't aware of it. If the remote host Vdobe compromised, an attacker
could write malicious data to the on-disk progrdorce a memory flush, which
would later force a page-in, effectively injectitige malicious data into the address
space of the running process on the Veriexec-pieddost.

The remedy to this problem is in the form of peg@é&ngerprints. During fingerprint
database generation, the administrator can addnthested flag to entries located on
remote hosts. Veriexec will generate per-page fingats for them, and hook the VM
system so that when a page-in occurs, the fingagoof the relevant pages will be
evaluated and compared to those calculated prdyious

Another natural development for Veriexec would bearitroduce support for digital
signatures; that is discussed in subsection 4.2.

3.3 Exploit Mitigation

Exploit mitigation techniques are part of the lageisecurity approach of NetBSD,
complementing code auditing and more traditionaliggy features, not intending on
replacing them.

The purpose of exploit mitigation technologies asiriterfere with the exploit code
itself, preventing entire classes of exploits framrking by short-circuiting common
exploitation techniques. One popular example isintakure areas of the memory
that are writable, such as the stack and the heapnon-executable, and vice versa:
areas that are executable, such as the where dlgeapr's code is, are not writable.

2 http://mail-index.netbsd.org/tech-security/200201¥0010. html

Licensed under @reative Commons Attribution 2.5 License 9

This prevents exploits that rely on injecting malis code to a program's memory
from working, because said code cannot be executed.

3.3.1PaX MPROTECT

For a while NetBSD had support for non-executablepping$® on hardware
platforms that allow it. However, experienced haskeave found a variety of ways to
bypass them. Two of these are return-to-lib exgibiand trashing arguments to
mprotect(2) to change the protection of mermbdry

The PaX MPROTECY feature was developed to address the latter. fress a
policy where memory that was once writable will betable to later gain executable
permission, and vice versa.

Naturally, this policy may break existing applicais that make valid use of writable
and executable memory, such as programs that lgadnidc modules. For this
reason, a tool is provided allowing marking exeblgs as excluded from the PaX
MPROTECT policy. It is also possible to revert thelicy, applying it only to
executables marked with an explicit enable flag.

While it is possible to modify programs that cuthgrviolate the PaX MPROTECT
policy to continue working correctly without doirsgp, this would be an unfeasible
effort with third-party applications.

3.3.2 SSP (Stack Smashing Protection) Compiler Extensions

Hiroaki Etoh developed SSP (also known R®Police) in IBM Researctf. Its
purpose is making exploitation of certain buffeediows harder by placing random
canary values right before the function return address on theckst as well as
reordering variables on the stack making it hardérnot impossible — to overflow
stack buffers in order to overwrite integers or diwon pointers, preventing
exploitation even without altering the return addre

First introduced in the OpenBSD 3.4 release, alainfiinctionality is now available
in the stock gcc 4.1 compiler, recently integratetletBSD by Matthew Green.

3.3.3 Future Development

One of the planned features in this area for NetBSinplementing PaX Address
Space Layout RandomizatidnAlso developed by the PaX author, ASLR addresses
exploitation via return-to-lib attacks by randomizing the location in memory of
shared libraries used by the application, thus ntakia lot harder to correctly guess
the location of library functions within the apgiton address space.

2 http://netbsd.org/Documentation/kernel/non-execl htm

27 hitp://seclists.org/lists/bugtrag/1999/Mar/0004.htm

2 See threatittp://seclists.org/dailydave/2004/q2/0045.html

2 http://pax.grsecurity.net/docs/mprotect.txt

30 http://www.trl.ibm.com/projects/security/ssp/

31 http://pax.grsecurity.net/docs/aslr.txt

32 paX ASLR addresses more than that; it also ranoEs stack/heap base addresses for both userland
and kernel threads.

Licensed under @reative Commons Attribution 2.5 License 10

As expected, hackers found ways to bypass ASLR. thleemost commonly used
attacks either combine an information leak bug ilEgado the disclosure of the
location of libraried®, or brute-force exploitation on respawning daemamsan
attempt to guess the correct address in one of mgempts*,

An ASLR implementation would not be complete with@usolution to the latter
technique. Such a solution, developed by Rafal ¥¥aj, isSegvguard®, employing
the basic concept of monitoring the rate of SIGSEEBjnals sent to an application in
a given time-frame, in an attempt to detect whdmwe-force exploitation attack is
taking place and prevent it by denying executiothefoffending application.

A similar monitor will be introduced in NetBSD oné&LR is implemented.
3.4 Misc. Features

3.4.1 Information Filtering

One of the most common requirements from multi-gystems (such as public shell
providers) is that users will not be able to teHaw other users are doing — such as
running programs, active network connections, lbggout times, etc.

NetBSD implements the above using the kernel aightion interface, and presents
the administrator with a single knob that can kbegi enabled or disabled. When
enabled, the authorization wrappers will match endals of the two objects (the
looker and thdookee) and return the decision.

This abstraction makes it easier to change thevi@haf this feature in the future.

3.4.2 Strong Digital Checksum Support

Support for SHA2 checksums has been availableenN®&tBSD kernel for a while,
mainly for the use of the IPSec network stack. ldser, however, was largely
neglected. Tools such as cksum(1) and mtree(8) aldecto make use only of hashes
that were proven wedk Given mtree(8) can be used to evaluate file-systgegrity,
this was rather dangerous.

The recent improvements to Veriexec, allowing istgport SHA2 hashes, amplified
the need for userland support for SHA2 hasheswaard the trigger to adding SHA2
hash routines to libc, as well as support in ckdyrafd mtree(8).

3.4.3 Fileassoc

Fileassoc is one of the latest additions to theBSEX kernel. It allows associating

custom meta-data with files, independent of filsteyn support (such as extended
attributes) using in-kernel memory. The interfasethie result of research of other
security features that stressed the need for atragben of code previously used

exclusively by Veriexec.

3.4.3.1 Design

% http://artofhacking.com/files/phrack/phrack59/P5009. TXT (mirror)
3 http://artofhacking.com/files/phrack/phrack58/P583@.TXT (mirror)
35 H

Ibid.
% http://www.schneier.com/essay-074.html

Licensed under @reative Commons Attribution 2.5 License 11

The Fileassoc interface extends an already-exisiegjgn used by Veriexec. The
requirements for the design were performance —hab wsing it in performance-
critical code would not cause a notable impact ystesn performance — and ease of
use. The interface was extended, allowing more thramhook to add its own file
meta-data.

Designed with simplicity in mind, the interfacealls multiple subsystems to hook
private data on a per-file and/or per-device basis.

3.4.3.2 Implementation

To achieve the desired goal of near-zero performampact of entry lookup, the
Fileassoc subsystem makes use of hash tables rddliists to resolve collisions.
The interface operates aruct mount * and struct vnode * to identify file-system
mounts and files, respectively. While the interingblementation identifies a file as a
pair of struct mount * and a file-id — the contents of fileid after a successful
VOP_GETATTR() call — this is planned to changehe tear future (see subsection
3.4.3.3).

In the current implementation, Fileassoc allowsr fbaoks (which can be modified
with a kernel option) to add private data to ealeh This is transparent to the users of
the interface, allowing changing in the futuresutch is required.

3.4.3.3 Future Development

As previously mentioned, Fileassoc still relies tbe va fileid field as the unique
identifier for files. This is an internal implematiobn detail, and expected to replaced
in the future with file-handles by using calls toetfile-system specifizptofh()
routines.

3.4.4 Password Policy

Administrators often need to enforce a passwordcpan the system — either a
system-global policy, per-application policy, oreava network-global policy. To
address that issue, the password policyvworpolicy(3), interface was developed.

With flexibility and simplicity in mind, thepw_policy(3) interface was designed to
allow an administrator to specify password policiesa collection of keywords, and
applying them to named entities.

The interface is part dfbutil and is small enough to be used from within angteng
application. It was designed in a modular way, vailhg future support for more
keywords and evaluation routines.

4. Current NetBSD Security Resear ch and Development

Discussed so far are solutions already implemeatedavailable in NetBSD. Below
you will find the current goals of the security @asch done in NetBSD, some of
which are planned to be introduced as soon as ¢tB3D 5.0 release.

4.1 Deprecating The Kernel Virtual Memory I nterface kmem(4)

The kmem(4) device allows raw reading of kernel mgmlt was introduced to allow
programs that needed information from the kernelag to extract it by reading the
symbol list from the live kernel’s on-disk imagedaseeking to it.

Licensed under @reative Commons Attribution 2.5 License 12

Several issues were raised regarding this d&yiead with 4.4BSD a new interface
meant to replace kmem(4) was introduced, nasysdl. Sysctl allowed structured
and controlled access to kernel information viacaljs carrying amanagement
information base (MIB). The kernel held a tree-like hierarchy ofarmation it can
provide, and the MIB described what informatiotoigked up.

From a security point of view, the kmem(4) devidioves malicious processes
running withkmem or root privileges to directly read or write kernel meni3ryThe
attack vector here is widely abuded® mainly to introduce stealth rootkits into
compromised systems.

Currently, NetBSD is doing loose usage of the kmgnfterface, using it for more
than a few userland utilities. There is an on-goeffprt to gradually convert
programs using kmem(4) to sysctl with proper kersepport, allowing us to
deprecate daily use of kmem(4) and maintain therfite for debugging needs only,
if required.

4.2 Digitally Signed Files

At the moment, the Veriexec subsystem providesgiitie based entirely on data.
While it is strong enough to maintain file-systemegrity on servers and critical
systems, it lacks two important features: abilitysécurely modify thbaseline during
runtime, and ability to associate an identity vathle-system object.

Securely modifying the baseline during runtimeasbfdden, even for the super-user,
for security reasons: a possible scenario is tihbst can be fully compromised and
trojanned by an attacker; preventing the super-fiser modifying critical programs
can prevent that.

Associating a digital signature with a file-systembject, regardless of

implementation, could solve the above two by allmyvan administrator to specify
trusted entities. These could run any programs — as long as thegigned by them.

That would mean that introducing a new program loa system required digital
signing by a trusted entity, rather than a super-asiding its digital checksum to a
database and rebooting.

It is planned to extend the Veriexec subsystem Witk capability, in either one of
two possible directions for the implementationheitdelegating the digital signature
processing to a user-space daemon, or making ugee @SD-licensed BPG inside
the kernel.

4.3 Access Control Lists

Perhaps one of the longest remaining Unix relicsNetBSD is the file-system
security model. Proven weak over time, modern dpegyaystems implemented file-
system access control lists,ACLSs.

37 “The Design and Implementation of the 4.4BSD OSiges 509-510.

% The use of raw access to bypass a security gsatdimited to kernel memory: on-disk inodes could
be modified using raw disk access, for example.

39 http://artofhacking.com/files/phrack/phrack58/P563@.TXT (mirror)

40 “Rootkits: Subverting the Windows Kernel”, chapter

Licensed under @reative Commons Attribution 2.5 License 13

An ACL allows finer-grained file access, extenditig owner-group-other scheme
currently used.

There are two main issues when approaching fileesysACLs. The first is where to
store them, and how to associate a potentiallyabégisized data-structure with a file.
The second is what ACL model to use, which mayadiéctnteroperability with other
operating systems.

For the former, NetBSD provides both the UFS2 s$istent’, where extended
attributes were introduced especially to address iisue, as well as the Fileassoc
kernel interface, allowing file-system independasdgociation of meta-data, after such
data has been loaded via a driver.

Given recent standardization in ACL structure bemv&/indows NT, Mac OS X, and
NFSv4, it was decided to go with the same modetHerlatter, allowing NetBSD to
properly operate in a heterogeneous environment.

4.4 Capabilities

Part of Unix's long-standing weaknesses is the afsset-id programs to elevate
privileges of a normal user, either temporarilyp@ermanently, required to complete
an operation restricted to the super-user — fomgi@, open a raw socket, bind to a
reserved port, and so on.

The above lead to the absurdity that bugs in oftemal and non-critical programs
could result in privilege abuse or even full systmpromise.

Introducing capabilities, implemented as a set erhkl authorization listeners, will
replace the role of the set-id bit in today's systeProviding a fine-grained privilege
model, each program will run with the minimal sétcapabilities required for its
operation. Furthermore, associating capabilitieth wsers will allow us to defingser
roles, dividing the work-load of the super-user — polys@himinating it entirely!

While a design for NetBSD capabilities hasn’t bégid out yet, it is expected that

support for capabilities will be provided on thdefsystem layer, allowing the

association of capabilities with a program usinteeged attributes, as well as an API
a la OpenSolaris ppriv(3) for dropping unneededabdjpies during runtime, and a

mechanism for associating capabilities with userthe system.

5. Component I nteraction

So far the focus was on introducing the new inftadtire and features in NetBSD, as
well as some on-going development. However, no @sighwas put on the
interaction between the various components, and hlogy all cooperate and
contribute to NetBSD's layered security model.

Throughout this section we'll examine the role attefeature in the layered security
model.

41 http://www.usenix.org/events/bsdcon03/tech/mckusitkl

Licensed under @reative Commons Attribution 2.5 License 14

5.1 Attack Vectors

Attacks can be conducted on various parts of tlséesy, most commonly exploiting
bugs in services (remote and local), misconfigorej general program misuse, and
user actions monitoring. Furthermore, post-compsemattacks include implanting
trojan horses, backdoors, and rootkits.

Being a multipurpose operating system, NetBSD'sirstigcwas designed to also be
flexible and without a single point of failure: amkvledging different needs in
different environments, the various security feasuare fully customizable, and the
system is configured with sane defaults to easdrasimation.

5.2 Layer One: Exploit Mitigation and Privacy

In attempt to render an exploitation attempt itsefuseless, the exploit mitigation
features in NetBSD provide the first layer of séguiThe curtain hooks help protect
the privacy of users in a multi-user environmeninimizing the potential of pre-
attack information gathering and reconnaissance.

5.3 Layer Two: Capabilities

As discussed in subsection 4.4, capabilities aman@d to replace the set-id bit. This
effectively reduces the amount of privilege eaabgpam is running with. Successful
exploitation of programs that today could resultpimoting* or super-user account
compromise will result in a less critical privilegéevation in the worst case, limiting
the impact of vulnerabilities on the overall seguaf the host.

5.4 Layer Three: Signed Files

Mentioned in subsection 4.2, signed files are th&unal evolution of Veriexec,
basically associating a signing entity with a fibeaddition to its digital fingerprint.
The immediate benefit is obviously in introducimgst in networked environments,
where4§i|es can be safely exchanged without feamattdcks such as man-in-the-
middle™,

Accessing files — in particular, running programbat are signed by "trusted” entities
in the default configuration could help reduce plossibility of running manipulated
binaries even in face of attacks on the digitalckbam algorithm. Doing so in the
event of a compromise, combined with Veriexdéotkdown mode, will allow real-
time investigation and remedy.

5.5 Layer Four: File-System Integrity

Interesting uses for Veriexec (presented in subse& 2) are its IDS and IPS modes.
With functionality somewhat resemblingfly-trap, Veriexec in IDS mode can be
used to silently monitor operations on critical teys files (services, configuration
files) in real-time, preventing any access to thmme changed. This can make post-
mortem analysis an easier task. IPS mode can lietog@event access to these files
altogether and generate proper log-files to hedmiifly the source of the attack.

These two modes of operation can ensure file-syatéegrity even in the face of a
super-user compromise, making it easier for an adtnator to handle an attack

“*2 Transition from one user to another.
3 Assuming, of course, that the kernel itself cari®manipulated.

Licensed under @reative Commons Attribution 2.5 License 15

without fear of trojanned, backdoored, or otherwisedified (via configuration files)
services.

5.6 Layer Five: Protected Kernel Memory

Aimed at preserving kernel memory integrity, therkvim-progress for deprecating
kmem(4) usage should result in the ability to remdhe interface altogetHér
preventing the possibility of kernel memory mangiidn by a malicious superuser on
a compromised host. The benefit is obvious: no stiphted rootkits or kernel-level
backdoors can be implementad

6. Conclusion

Throughout this paper I've outlined the recent ereanents in NetBSD security in

terms of infrastructure and features, and how toform to NetBSD's perception of

security. Finally, I've exposed some on-going regeand development, and showed
how it all works together to create a more secla#figrm

While it is true that a lot of work is still ahead us, this paper exposed the lot of
work that is behind us. Over the past year NetB8Iproved a lot on the security

front, and it is expected that these efforts walyff — if not already — within the next

major release.

6.1 Availability
NetBSD 4.0 will include kernel authorizatiin PaX MPROTEC?Y, GCC 4.1 with
ProPolice, the information filtering hod®sfileassoc(9%°, and pw_policy(3°.

Complete abstraction of the security model usingnéle authorization is being
considered for NetBSD 5.0, as well as PaX ASLR as#gvGuard, Veriexec support
for per-page fingerprints and digital signaturde;$ystem ACLs, and capabilities.

7. Credits

Thanks to the folks who reviewed this paper, eitimepart or in whole, helping
improve its accuracy, readability, and quality.aia¥. Miller, Brian Mitchell and the
guys at ISS, the PaX author, and Sean Trifero, Rpackrisson, and Christos
Zoulas.

Thanks to Brett Lymn, the PaX author, Bill StudemauYAMAMOTO Takashi,
Matt Thomas, Jason R. Thorpe, and Christos Zowa$élping with implementing
the features discussed in this paper.

4 From most systems. X would still require it withdkie use of an aperture driver.

“5 Unless, of course, a kernel vulnerability is ssstelly exploited.

“8 http://netbsd.gw.com/cgi-bin/man-cgi?kauth++NetB&Drent

*7 http://netbsd.gw.com/cgi-bin/man-cgi?paxctl++NetBSDrent

“8 See thesecurity.curtain knob.

“9 http://netbsd.gw.com/cgi-bin/man-cgi?fileassoc+#B&D-current

%0 http://netbsd.gw.com/cgi-bin/man-cgi?pw_policy++RB8D-current No programs were made aware
of the interface yet, though.

Licensed under @reative Commons Attribution 2.5 License 16

