
Netpgp - BSD-licensed Privacy Software

Alistair Crooks
The NetBSD Foundation
agc@NetBSD.org

d415 9deb 336d e4cc cdfa 00cd 1b68 dcfc c059 6823
August 2009

Abstract

This paper describes libnetpgp, which is a library built to provide privacy functions
(digital signing, verification, encryption and decryption). This library has a BSD licence.
On top of the libnetpgp library, a number of utilities are crafted, all dealing with different
aspects of key management, data manipulation, and signed data verification. This
software is unique in a number of ways - it can be embedded in BSD-licensed software
with no licensing problems, it is designed to be able to handle large files and data
streams, and the user-interface aspects have been augmented to provide an improved
user experience. This paper describes the library and its functionality, shows how it can
be used in practice, and then outlines areas for future study.

1. Background

pgp was written in 1991 [Zimmerman1991], and was instrumental in challenging the US
laws on encryption and munitions. A GNU variant, gnupg or gpg, [GPG2009] provides
some of the functionality which pgp provides, but presents the user with a bewildering
array of command line options, to the extent that gpg has been described to the author
as "the utility with the worst user interface ever". gpg is available with a library
interface, gpgme, so that gpg functionality can be embedded in other programs and
libraries. More information can be found in [Wikipedia2009], under the section marked
"Problems"; this text explains how gpgme is simply a fork and exec wrapper around the
gpg standlaone utility, which can present its own set of problems.

In 2005, a Summer of Code project ran to provide a BSD-licensed Privacy Guard, known
as BPG. The project was successful, in that it allowed files to be signed with DSA
signatures, and to be verified. Provision of RSA or Elgamal signatures was beyond the
scope of the project, as was key management; likewise encryption and decryption. In
retrospect, the acronym chosen for its name was a mistake, since it is often mistaken
with BPG, with which it shares no common features whatsoever. The BPG sources can be
found in NetBSD's othersrc repository.

At the end of 2008, Ben Laurie made the openpgpsdk software available, constructed on
top of the big number functionality provided by openssl. This library was the corollary of
openssl in a number of ways - it was fully-provisioned, and did everything it could. There
are a huge number of functions exported by openpgpsdk. User-level access was by
means of a library, and a single utility providing command-line access. There were also a
number of deficiencies - the verification and decryption of files larger than 8192 bytes
was not supported. At the same time, the author of this paper found some of the
constructs difficult to understand and use, and a single, small, high-level interface to the
openpgpsdk library was needed. From that requirement, libnetpgp(3) was born, along

with a netpgp(1) driver program. Eventually, a number of userland utilities also
emerged:

• netpgp(1) deals with signing, verification, encryption and decryption
• netpgpkeys(1) handles key management
• netpgpverify(1) is a single, standalone utility which performed only verification of

files

This paper gives a brief overview of public and private keys, the web of trust, looks at
openpgpsdk and the reasons for netpgp's existence, and describes the user interfaces;
differentiators of the two systems are listed, and future work is identified.

2. Netpgp and Trust

2.1 Web of Trust

A key identifying a person is split into two separate parts - a public and secret part. In
fact, this key is a large multiple precision number (or big number), which is the product
of two prime numbers. The size of this number is decided at key generation time. Care
should be taken when generating online identities. Previous recommendations for key
length usually advise that they key length should be 1024 bits. This is now considered
to be too small. At the time of writing (late 2009), 4096 bits should be considered as
the minimum possible key length, with 8192 bits as recommended. By default, gpg
places the public part of the key in a user's pubring.gpg file in the $HOME/.gnupg
directory. Other public keys are also kept in that same file. A user's public key can be
uploaded to any of a number of public key servers.

The secret part of the key (or secret key) is protected by a password. The secret key is
placed by default by gpg in the secring.gpg file in the user's $HOME/.gnupg directory.

The key can be identified by a number of different means: the key fingerprint, the
userid (which is the last 8 or 16 characters of the fingerprint), the name (which does not
identify a key uniquely), an email address (which identifies a specific identity, but is
insufficient for identifying a key uniquely, since one person can have a number of
separate keys, and because generating a key with a specific email address is easy - it is
the trust of others in that key which identifies an identity uniquely). It is for this reason
that a number of projects and groups get together to have key-signing parties.

The netpgp suite of programs uses the existing gpg pubring.gpg and secring.gpg files
(by default, these are located in the .gnupg subdirectory of a user's home directory).
The pubring.gpg and secring.gpg files are created at key generation time.

There is also a secret keyring (usually containing a single key, and a number of
subkeys). These make up the secret part of the user's identity.

2.2 Signing and verification

Given some data, the secret key is used to "sign" that data. Anyone who has the public
key can "verify" that the same data has not been modified. The way this is done is that
a message digest of the data is taken. That digest is then modified by the user using the
secret key, and the result is the signature.

The data itself can be verified that it has not been changed - either maliciously or by

failure of a component. A one-bit change in the data will mean that the computed
signature at verification time will not match the signature as distributed.

The signature can be appended to the original file for ease of use - copying, transfer
between machines, etc. Alternatively, it can be manipulated as a detached signature, in
a file separate to the original file.

In addition, the signature can be "ASCII armoured". This means that the binary data of
the signature is base64-encoded.

A digital signature not only verifies the data itself - it also provides information about the
signatory, and the date and time that the signature was made.

This can be used in email to verify that, with so many spoofing measures available in our
mail user agents, the mail really was sent by the owner of the private key, and the date
and time at which it was sent.

2.3 Encryption and decryption

Netpgp encryption can be thought of as being the inverse operation to signing. Instead
of using the signatory's private key to produce the signature, the intended recipient's
public key is used. The recipient, and only the recipient, is then able to read the data
using their private key to decrypt the information. Since this key is kept secret, others
are unable to read the data.

This is now a de-facto standard for data backup off-site. The encryption of data means
that even if media is lost or mislaid, the recipient will be unable to view the data
(without the owner's private key). It can also be used to protect data after media has
been recycled. Again, the lack of the owner's private key means that the data cannot be
read.

In email, we encrypt using the recipient's public key to make sure that only the intended
recipient can view the message. This is used extensively in the security community these
days.

2.4 Standards

RFC 4880 [IETF2007] is the standard which manages openpgp implementations - it
actually defines the openpgp message format. Because openpgpsdk was written to
conform to this standard, netpgp is also compliant.

2.5 Key Management

With public and private keys in daily use, some means of distributing public keys is
needed - for this, we "piggyback" on the existing structure that exists for pgp keys. This
is seamless, since our keys are indistinguishable from PGP or GPG keys.

3. Openpgpsdk and Netpgp

Openpgpsdk was written with different goals - from the literature distributed with it, its
main goal is to allow people to write modules to link with it to verify other signature
types. All of its functions, low-level as well as high-level, are exported in a manner
similar to openssl. Some shortcomings of openpgp were also identified - the ability to

verify a signature only if the original data was less than 8192 bytes in size, and the
ability to decrypt of less than 8192 bytes, were considered critical, and were one of the
first areas to be addressed.

Openpgpsdk exports around 9 header files - numerous structs and functions, both at the
higher and lower levels of the openpgpsdk library. Netpgp has a single netpgp.h header
file, which defines all of the high level functions (and none of the lower level ones), and
a single netpgp_t structure, which is used to manage all of the state information.

Netpgp itself is built on top of openpgpsdk. All of the openpgpsdk functions have been
"hidden", and the only exported functions are high level functions. Similarly, the
netpgp_t struct is used by netpgp library functions use that as the handle for its
instances. No static data is kept in netpgp.

4. Netpgp

4.1 User Interface

The netpgp command line interface has differed from the openpgpsdk and the GPG
interfaces. This was one of the primary driving factors around the development of
netpgp. For the command line, there are three programs:

1. netpgp - for signing and verifying data, and for encryption and decryption of
data

2. netpgpkey - for all key management
3. netpgpverify - a standalone utility for simple verification of signed data

With the split between netpgp data and key management, a lot of the confusion about
command line arguments went away. For instance, an invocation of netpgp to sign some
data needs to know about hash algorithm choices, but not the favourite key server.
Certainly, the manual pages were easier to write.

In the same way, a high-level interface has been provided for the library interface. The
header file includes prototypes for the following functions:

/* begin and end */
int netpgp_init(netpgp_t *);
int netpgp_end(netpgp_t *);

/* debugging, reflection and information */
int netpgp_set_debug(const char *);
int netpgp_get_debug(const char *);
const char *netpgp_get_info(const char *);
int netpgp_list_packets(netpgp_t *, char *, int, char *);

/* variables */
int netpgp_setvar(netpgp_t *, const char *, const char *);
char *netpgp_getvar(netpgp_t *, const char *);

/* key management */
int netpgp_list_keys(netpgp_t *);
int netpgp_find_key(netpgp_t *, char *);
int netpgp_export_key(netpgp_t *, char *);

int netpgp_import_key(netpgp_t *, char *);
int netpgp_generate_key(netpgp_t *, char *, int);

/* file management */
int netpgp_encrypt_file(netpgp_t *, const char *, const char *, char *,
int);
int netpgp_decrypt_file(netpgp_t *, const char *, char *, int);
int netpgp_sign_file(netpgp_t *, const char *, const char *, char *, int,
int, int);
int netpgp_verify_file(netpgp_t *, const char *, const char *, int);

which are the only way to interface to libnetpgp(3).

4.2 Differentiators

The netpgp suite joins a long line of public/private key programs and libraries, and so
perhaps the reasons for its existence are unclear.

• Firstly, gpg and gpgme are covered by the GPL, and so are unsuitable for
embedding in a BSD-licensed piece of software. In addition, gpgme is not a
library implementation per se - it carries out work by using fork(2) and exec(2)
from within the library to call gpg(1) on the command line. This has problems
for threaded programs - since the behaviour of a fork(2) in a program which has
already spawned threads may be undefined. So embedding gpgme not only has
performance problems, but may be unpredictable in operation depending on the
calling site. By contrast, libnetpgp has none of these problems - all state data is
held in the netpgp_t structure which is used in every library API call, and no
external processes are used to get or set data.

• As mentioned before, openpgpsdk has problems with verification and decryption
of files larger than 8192 bytes (this failure mode is, unfortunately, silent). In
order to work with files of arbitrary size, netpgp is needed.

• As a performance boost, netpgp uses an mmap(2) interface to read the data. If
this fails, netpgp falls back to read(2), which is usually guaranteed to work, as
long as the user has permission to read that data.

• Netpgp is fully GNU autoconf-ed. Openpgpsdk has a custom configure script
written in Perl, and relies on Cunit to be present even if no testing is to be done.
In addition, netpgp has been extended to use libtool, and to have autotest
functionality.

• Userids (the last 8 or 16 hexadecimal bytes of the key fingerprint) are now
matched in a case-insensitive manner to improve the user experience. Matching
can also be done on email address, although this is not encouraged, since email
addresses in keys are not authenticated in any way - that is, anyone can
generate a key with the address <agc@netbsd.org> in it. However, the
c0596823 userid together with the address <agc@netbsd.org> is unique.

• Library user experience - netpgp has moved to text-based parameters.

• Manual pages have been written for the library and the utilities.

• The code is all WARNS=4 safe.

• All assert() calls have been removed - they are placed with runtime checks, and
errors thrown or returned. This caused some controversy on the NetBSD mailing
lists, but should be reviewed in light of the recent bind zero-day vulnerability
(which was due to an assertion being triggered by a specially-crafted dynamic
update message).

• Core dumps have been disabled by default; they can be enabled by specifying
the --coredump option on the command line. The reason for this is because
sensitive data (the secret key, and possibly its protecting password) may be held
in memory, and thus dumped to disk when a core dump is taken. This feature
ensures that, by default, no sensitive data ends up on disk unnecessarily.

• By default, sha256 digests of files are used, rather than sha1. This is because
collisions in sha1 are becoming more common, and easier (although still
relatively difficult) to generate. To try to protect ourselves as much as we can,
and since the whole signature of a document relies on the digest, netpgp moved
to sha256 as the default digest type.

• Netpgpkeys now prints out the size of the key in list-keys, to mirror the key
display provided by gpg.

• Netpgp also prints out the key information before prompting for any password
for the decryption key. This is in case a number of keys are in use by a single
user, so that the user can identify which key is desired.

• There was an asymmetry in the functionality originally provided by netpgp.
When signing a file, the signature is appended to the file itself - this is the
default mode. Verification of that signature will return a boolean answer of
whether the signature is a good one or not. However, there was no way to
retrieve that original data - remember that the act of signing it appended the
signature to the file. The --cat command verifies a signed file, and, if the
signature is good, displays the original contents of the file without its associated
signature.

• Netpgp has a separate standalone verification program, and a separate key
management program. This is partly to address the concerns about command
line confusion which was explored earlier. It is also a recognition of the fact that
these programs do separate things, and should not automatically be lumped
together into one.

• C++ guards have been provided in the netpgp.h header file.

• --passfd was added to netpgp(1), which is used as the file descriptor on which
the password is provided to the calling program. Care and discretion should be
used with this

4.3 Implications

With netpgp, we now have a user-level library, and standalone utilities, which can be
used to verify the provenance of arbitrary data on our systems. In that way, netpgp can
be thought of as checksums or message digests on steroids. We no longer have to
protect these checksums, though, since the date and identity of the signatory can be
verified. That means that digital signatures could be used in a number of places on our
systems where we current use message digests.

An example of this is in our packaging systems, where we use two message digests,
SHA1 and RMD160, to verify distfiles; we also use individual (MD5) message digests to
verify individual files in the inventory list of installed packages. Other packaging systems
(such as rpm) use a digital signature on the inventory file itself. If our inventory files
were augmented to keep owner, group and mode information, then we could use a
single digital signature on the inventory file itself to ensure that it has not been modified
in any way.

Manufacturers and vendors use digital signatures to ensure that authorised applications
are being run on their equipment. A number of ways of doing this are available.

NetBSD has a kernel subsystem called veriexec, which ensures that a binary's calculated
checksum matches a pre-computed one (loaded at boot time while the kernel is in a
secure state). By reworking the loading of checksums to load trusted signatory public
keys, a binary's digital signature can be verified at execution time - if the signatory
matches one of the trusted public keys, then the binary can be executed. To do this,
verification of signatures needs to be available in the kernel.

5. Worked Example

Netpgp can be used to sign a file:

% netpgp --sign netpgp-2009.txt
netpgp: default key set to "c0596823"
pub 2048/RSA (Encrypt or Sign) 1b68dcfcc0596823 2004-01-12
Key fingerprint: d415 9deb 336d e4cc cdfa 00cd 1b68 dcfc c059 6823
uid Alistair Crooks <agc@netbsd.org>
uid Alistair Crooks <agc@pkgsrc.org>
uid Alistair Crooks <agc@alistaircrooks.com>
uid Alistair Crooks <alistair@hockley-crooks.com>
netpgp passphrase:
Bad passphrase
pub 2048/RSA (Encrypt or Sign) 1b68dcfcc0596823 2004-01-12
Key fingerprint: d415 9deb 336d e4cc cdfa 00cd 1b68 dcfc c059 6823
uid Alistair Crooks <agc@netbsd.org>
uid Alistair Crooks <agc@pkgsrc.org>
uid Alistair Crooks <agc@alistaircrooks.com>
uid Alistair Crooks <alistair@hockley-crooks.com>
netpgp passphrase:
% ls -al netpgp-2009.txt*
-rw-r--r--@ 1 agcrooks staff 13894 30 Aug 11:18 netpgp-2009.txt
-rw------- 1 agcrooks staff 14208 30 Aug 18:57 netpgp-2009.txt.gpg
%

and the same signed file can be verified by both netpgp and by gnupg:

% netpgp --verify netpgp-2009.txt.gpg
netpgp: default key set to "c0596823"
Good signature for netpgp-2009.txt.gpg made Sun Aug 30 18:57:05 2009
using RSA (Encrypt or Sign) key 1b68dcfcc0596823
pub 2048/RSA (Encrypt or Sign) 1b68dcfcc0596823 2004-01-12
Key fingerprint: d415 9deb 336d e4cc cdfa 00cd 1b68 dcfc c059 6823
uid Alistair Crooks <alistair@hockley-crooks.com>
uid Alistair Crooks <agc@pkgsrc.org>
uid Alistair Crooks <agc@netbsd.org>
uid Alistair Crooks <agc@alistaircrooks.com>

% gpg --verify netpgp-2009.txt.gpg
gpg: Signature made Sun 30 Aug 18:57:05 2009 PDT using RSA key ID C0596823
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 1 signed: 35 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: depth: 1 valid: 35 signed: 33 trust: 2-, 1q, 2n, 27m, 3f, 0u
gpg: depth: 2 valid: 14 signed: 15 trust: 0-, 3q, 3n, 6m, 2f, 0u
gpg: next trustdb check due at 2009-12-21
gpg: Good signature from "Alistair Crooks <agc@pkgsrc.org>"
gpg: aka "Alistair Crooks <alistair@hockley-crooks.com>"
gpg: aka "Alistair Crooks <agc@netbsd.org>"
gpg: aka "Alistair Crooks <agc@alistaircrooks.com>"
%

6. Future work

A number of significant enhancements to netpgp have been identified. These are:

1. The intention is to separate netpgpverify from openssl by providing the crypto
and mpi functions separately, and to wrap the kernel's AES/Rijndael functions in
an openssl-compatible API. Netpgp can then be "dropped" into the kernel. This
will give us the ability to then hook netpgp verification of files into the veriexec
system, as described earlier. Veriexec "digests" can be loaded from userland as
the detached signatures of the binary files. Trusted public keys can be loaded at
early-boot securelevels. Netpgp verification of binary files can then be
performed at binary execution time, which will be slower than normal, but
provide much better protection for small, embedded devices, or bastion hosts.
This work is underway, and it is estimated that the code will hit the NetBSD
repository before the end of October 2009 It should be noted that signed binary
execution works well for static binaries. For dynamic binaries, some form of
integration into ld.elf_so is necessary.

2. Netpgpkeys needs some work, to enable key management to be performed. At
the present time, the emphasis has been placed on netpgp working with data -
digital signature and verification, encryption and decryption have been the
focus. As netpgp works with the pubring.gpg and secring.gpg files produced by
gpg, that utility is used right now for key management. Replacing this is a
priority in netpgp development.

3. Bulk-signing of data is also a high priority development item at the time of
writing.

4. By default, gpg will gzip the original data (if it is file-based) when signing the
data. Netpgp, by contrast, does not gzip the data. In light of recent
vulnerabilities in the zlib and bzip2 libraries, this may be regarded as being
fortunate. However, the principle of least astonishment calls for default gzip
compression of files signed with netpgp.

5. Another area for development is ELgamal encryption and decryption, for use with
DSA signatures.

6. GPG allows the encryptor to specify multiple decryption user ids - the resulting
encrypted file can be decrypted by any of the private keys by which it was
encrypted. Netpgp will follow a similar, but more expressive and dynamic system
based on threshold schemes such as Shamir's Secret Sharing Scheme
[SSSS2005]. A threshold scheme allows a secret to be shared amongst a
number of people, and the secret can be revealed only when the pre-defined
threshold (minimum number) of shares of the secret have been obtained.
Possible application areas for this are decryption of encrypted backups by a team
of backup specialists, and data escrow, to name but two.

7. Foreign language bindings - lua bindings have been written for libnetpgp, as
have Python bindings (by Oliver Gould). Perl bindings are a work in progress.

7. Conclusion

Netpgp is the result of a substantial amount of work, and would not have been possible
without openpgpsdk. Our thanks are due to its authors, Rachael Wilmer and Ben
Laurie. Netpgp has different aims and goals to openpgpsdk, though, and its
differentiators can be shown to be necessary in a signing and verification, and encryption
and decryption library and utility for the BSD world. It is suitable for embedding, and
can verify signatures made by gpg, and decrypt files which were encrypted by gpg. The
keys and key files used are interchangeable with gpg; yet libnetpgp suffers from none of
the fork and exec drawbacks of the equivalent gpgme library, in addition to netpgp's
BSD licensing. There are a number of areas where we currently use digests, where
digital signatures could be used more efficiently and to better effect.

8. References

[GPG2009] http://www.gnupg.org/
[IETF2007] http://tools.ietf.org/html/rfc4880
[SSSS2005] http://point-at-infinity.org/ssss/
[Zimmerman1991] http://philzimmermann.com/EN/essays/index.html

	Netpgp - BSD-licensed Privacy Software
	Abstract
	1. Background
	2. Netpgp and Trust
	2.1 Web of Trust
	2.2 Signing and verification
	2.3 Encryption and decryption
	2.4 Standards
	2.5 Key Management

	3. Openpgpsdk and Netpgp
	4. Netpgp
	4.1 User Interface
	4.2 Differentiators
	4.3 Implications

	5. Worked Example
	6. Future work
	7. Conclusion
	8. References

