
Alistair Crooks
agc@netbsd.org

c0596823

RBAC

mailto:agc@netbsd.org
mailto:agc@netbsd.org

Why do we do this?

• BSD Licensing?

• Belief that BSD combined kernel and
userspace is correct distribution model?

• Because design is done right?

• Respect for BSD developers?

Security Models

• Mandatory Access Control

• Discretionary Access Control

• Role-Based Access Control

Effort to plug leaks

• All efforts put into stopping access

• root is superuser

• root can do anything

Least privilege

• Only give as much privilege as is needed

• Why does ntpd need to run as root?

• Why does ping need to run as root?

RBAC

• No super-user

• Split privileges into roles

• Only use the least privilege role necessary

su & sudo

• We get least privilege through sudo

• Possibly

• More likely it’s superuser privileges on a
per-user basis

• Not least privilege

Why GNU `su' does not support the `wheel' group

Sometimes a few of the users try to hold total power over all the rest. For example, in
1984, a few users at the MIT AI lab decided to seize power by changing the operator
password on the Twenex system and keeping it secret from everyone else. (I was able
to thwart this coup and give power back to the users by patching the kernel, but I
wouldn't know how to do that in Unix.)

However, occasionally the rulers do tell someone. Under the usual `su' mechanism,
once someone learns the root password who sympathizes with the ordinary users, he
or she can tell the rest. The "wheel group" feature would make this impossible, and
thus cement the power of the rulers.

I'm on the side of the masses, not that of the rulers. If you are used to supporting the
bosses and sysadmins in whatever they do, you might find this idea strange at first.

-- Richard Stallman

Back to RBAC

Abstraction and
Indirection

A famous aphorism of Butler Lampson goes: All problems in computer
science can be solved by another level of indirection; this is often
deliberately mis-quoted with "abstraction" substituted for

"indirection". Kevlin Henney's corollary to this is, "...except for the
problem of too many layers of indirection."

http://www.reference.com/browse/wiki/Butler_Lampson
http://www.reference.com/browse/wiki/Butler_Lampson
http://www.reference.com/browse/wiki/Kevlin_Henney
http://www.reference.com/browse/wiki/Kevlin_Henney

Abstraction

• Currently, we have a nanny state

• Root does what’s best for us

• Some people can get to play root

• and do anything they like

Abstraction

• We could split up the jobs into tasks

• Opportunity to do tasks they’re good at

Abstraction

• Give people what they need to do the task

Cornwall

Exploits

• ntpd, sshd, named

• chroot jails

• running with elevated privileges

Another way?

• Take away ability to do everything

• Do one thing, and do it well

• Not just users, programs that do things on
our behalf - setuid root binaries

Roles

• If want to open a raw socket, don’t need to
be able to format the disks

• If want to set time, don’t need to be able to
trace processes

• We chroot-jail some processes - why not
least privilege for all applications?

Identify Roles

• kauth does this for us

• 57 distinct roles in the form of kauth
actions

• map kauth actions onto roles

kauth

• No more issuser()

• Instead calling sites call kauth functions

• kauth decides to allow, deny or defer

• group logically related choices together

bsd44% ls -al /sbin/ping
-r-sr-xr-x 1 root wheel 68448 29 Nov 2007 /sbin/ping
bsd44%

rbac% ls -al /sbin/ping
-r-xr-sr-x 1 root net_open_sockraw_role_ 68448 29 Nov 2007 /sbin/ping
rbac%

Visual Differences

Get raw socket - bsd44

bool isroot;

isroot = (kauth_cred_geteuid(cred) == 0);
...
case KAUTH_REQ_NETWORK_SOCKET_RAWSOCK:
 if (isroot)
 result = KAUTH_RESULT_ALLOW;
 break;

Get raw socket - rbac

 case KAUTH_REQ_NETWORK_SOCKET_RAWSOCK:
 if (role_allows(cred, RBAC_SOCKET_RAWSOCK))
 result = KAUTH_RESULT_ALLOW;
 break;

role_allows()

static int
role_allows(kauth_cred_t cred, int role)
{
 int ismember = 0;

 return kauth_cred_gid_has_role(
 cred, role, &ismember) == 0 && ismember;
}

kauth_cred_gid_has_role()

int kauth_cred_gid_has_role(kauth_cred_t cred, gid_t roleneeded, int *resultp)
{
 int scope;
 int role;
 int i;

 *resultp = 0;

 scope = ROLE_SCOPE(roleneeded);
 role = ROLE_MASK(roleneeded);
 for (i = 0; i < cred->cr_ngroups; i++) {
 if (scope != 0 && ROLE_SCOPE(cred->cr_groups[i]) == scope) {
 if (ROLE_MASK(cred->cr_groups[i]) & role) {
 *resultp = 1;
 break;
 }
 }
 }
 return 0;
}

ROLE_SCOPE and ROLE_MASK

#define ROLE_SCOPE(r) ((r) & 0xff000000)
#define ROLE_MASK(r) ((r) & 0x00ffffff)

Socket Scope

/* specific socket roles */
RBAC_SOCKET_BIND_PRIVPORT = 0x0c000001,
RBAC_SOCKET_OPEN_SOCKRAW = 0x0c000002,
RBAC_SOCKET_CANSEE = 0x0c000004,
RBAC_SOCKET_RAWSOCK = 0x0c000008,
RBAC_SOCKET_ALL = 0x0c00000f

rbac# id
uid=0(root) gid=0(wheel) groups=0(wheel),2(kmem),3(sys),
4(tty),5(operator)
rbac# mknod -m 600 node c 0 0
mknod: node: Operation not permitted
rbac#

With RBAC, not quite so rooty

make node - bsd44

bool isroot;

isroot = (kauth_cred_geteuid(cred) == 0);
...
case KAUTH_REQ_NETWORK_SOCKET_RAWSOCK:
 if (isroot)
 result = KAUTH_RESULT_ALLOW;
 break;

make node - rbac

case KAUTH_REQ_NETWORK_SOCKET_RAWSOCK:
 if (role_allows(cred, RBAC_SYS_MKNOD)) {
 result = KAUTH_RESULT_ALLOW;
 }
 break;

rbac# id
uid=0(root) gid=0(wheel) groups=0(wheel),2(kmem),3(sys),
4(tty),5(operator)
rbac# mknod -m 600 node c 0 0
mknod: node: Operation not permitted
rbac# su - agc
$ id
uid=1000(agc) gid=1000(agc) groups=1000(agc),
1342177296(sys_mknod_role_)
$ mknod -m 600 node c 0 0
$ ls -al node
crw------- 1 agc agc 0, 0 Feb 4 06:19 node
$ exit
rbac# exit

RBAC mknod example

Bring Up

Oh what fun we had...

• mknod - worked first time

Finding the time

• KAUTH_REQ_SYSTEM_TIME_ADJTIME

• RBAC_SYS_TIME_ADJTIME

• sys_time_adjtime_role_ and adjtime(2)

• src/bin/date/date.c

• src/usr.sbin/rdate/rdate.c

• src/usr.sbin/timed/correct.c

• src/usr.sbin/timed/timed.c

Mountain climbing

• mountall does a “mount -a” which does an
update mount on everything mounted

• su :mountroot -c 'mount /' in /etc/rc.d/root
(instead of just mount /)

• add the su :mountroot before mount -a in
mountall

Are we there yet?

• booting

• third-party software

• finding userland utilities calling sites

Rules for RBAC

• setuid binaries become setgid binaries

• sudo - give user group membership

Problem

• I can’t put a single user into 57 groups!

Problem 2

• No one else uses this!

Problem 3

• I don’t feel safe giving a role to a user!

Problem 4

• It’s not the Unix way!

What have we learned?

• very useful research

• surprisingly effective

• large-scale deployments

• can’t be modified easily

Disadvantages

• tightly coupled kernel and userland

• fileassoc might be better tool

• huge amount of work in userland/packages

Advantages

• more than 50% complete

• can tie down some tasks to be non-root

• partial solution works very well

• useful if userland is “tied-down”

Further work

• look at fileassoc(9) for attaching roles to
setuid and setgid binaries

• move rest of actions into roles

Alistair Crooks
agc@netbsd.org

c0596823

Thanks

mailto:agc@netbsd.org
mailto:agc@netbsd.org

Alistair Crooks
agc@netbsd.org

c0596823

Questions?

mailto:agc@netbsd.org
mailto:agc@netbsd.org

What’s the score?

