
Disk encryption in NetBSD

Taylor R Campbell
riastradh@NetBSD.org

BSDCan 2023
Ottawa, Canada
May 20, 2023

Disk encryption in NetBSD

https://www.NetBSD.org/gallery/presentations/

riastradh/bsdcan2023/diskencryption.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf

Goal

Present a logical disk device that behaves just like an underlying
physical disk device for file systems, swap, and other block storage.

logical disk physical disk

+---------------------+ +---------------------+

| 512-byte sector 0 | <-> | 512-byte sector 0 |

+---------------------+ +---------------------+

| 512-byte sector 1 | <-> | 512-byte sector 1 |

: : : :

: : : :

| 512-byte sector n-1 | <-> | 512-byte sector n-1 |

+---------------------+ +---------------------+

Sector writes must be atomic (if physical disk guarantees this)

Goal

Present a logical disk device that behaves just like an underlying
physical disk device for file systems, swap, and other block storage.

logical disk physical disk

+---------------------+ +---------------------+

| 512-byte sector 0 | <-> | 512-byte sector 0 |

+---------------------+ +---------------------+

| 512-byte sector 1 | <-> | 512-byte sector 1 |

: : : :

: : : :

| 512-byte sector n-1 | <-> | 512-byte sector n-1 |

+---------------------+ +---------------------+

Sector writes must be atomic (if physical disk guarantees this)

Atomicity

▶ Applications like file systems and databases assume sector
writes are atomic (or close to it1)

▶ Breaking this can lead to data corruption on power loss

1https://www.sqlite.org/atomiccommit.html

https://www.sqlite.org/atomiccommit.html

Threat model

▶ Theft of laptop

(while powered off or hibernating)

▶ Tampering with laptop

▶ Recycling a disk

Threat model

▶ Theft of laptop

(while powered off or hibernating)

▶ Tampering with laptop

▶ Recycling a disk

Threat model

▶ Theft of laptop

(while powered off or hibernating)

▶ Tampering with laptop

▶ Recycling a disk

Threat model

▶ Theft of laptop

(while powered off or hibernating)

▶ Tampering with laptop

▶ Recycling a disk

Threat model

▶ Theft of laptop (while powered off or hibernating)

▶ Tampering with laptop

▶ Recycling a disk

Threat model

▶ Theft of laptop (while powered off or hibernating)

▶ Tampering with laptop

▶ Recycling a disk

Not threat model

▶ Tampering with laptop
▶ Border search
▶ ‘Evil maid’

Adversary could modify firmware, install hardware keylogger,
etc.—can’t be detected/prevented by storage protocol alone

▶ MITM on network storage devices
▶ iSCSI

Practical limitations with a disk device

Security properties

▶ (ideal) Adversary can’t learn anything about what is stored

▶ (realistic) Adversary can’t learn much about what is stored
▶ Content of fixed-shape data indistinguishable
▶ Different shapes—directory structures, sparse file allocation,

write patterns, file systems—may be distinguishable

Security properties

▶ (ideal) Adversary can’t learn anything about what is stored
▶ (realistic) Adversary can’t learn much about what is stored

▶ Content of fixed-shape data indistinguishable
▶ Different shapes—directory structures, sparse file allocation,

write patterns, file systems—may be distinguishable

Caveats

1. Zero-fill

▶ Exposes which sectors written, possibly shape of data
▶ Scrubbing disk first hides shape but bad for SSD performance

2. Wear-levelling

▶ SSD delays costly erasure with virtual sector remapping
▶ Adversary may see many snapshots of some sectors

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)

▶ Can’t conceal without cooperation of network protocol

Caveats

1. Zero-fill
▶ Exposes which sectors written, possibly shape of data
▶ Scrubbing disk first hides shape but bad for SSD performance

2. Wear-levelling

▶ SSD delays costly erasure with virtual sector remapping
▶ Adversary may see many snapshots of some sectors

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)

▶ Can’t conceal without cooperation of network protocol

Caveats

1. Zero-fill
▶ Exposes which sectors written, possibly shape of data
▶ Scrubbing disk first hides shape but bad for SSD performance

2. Wear-levelling
▶ SSD delays costly erasure with virtual sector remapping
▶ Adversary may see many snapshots of some sectors

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)

▶ Can’t conceal without cooperation of network protocol

Caveats

1. Zero-fill
▶ Exposes which sectors written, possibly shape of data
▶ Scrubbing disk first hides shape but bad for SSD performance

2. Wear-levelling
▶ SSD delays costly erasure with virtual sector remapping
▶ Adversary may see many snapshots of some sectors

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)
▶ Can’t conceal without cooperation of network protocol

Shape as proxy for content: newfs

ffs lfs msdos

Shape as proxy for content: NetBSD vs OpenBSD

100 101 102 103 104 105 106 107 108
0

2,000
4,000
6,000
8,000

bytes

fi
le
s

NetBSD sys/ source file sizes

100 101 102 103 104 105 106 107 108 109
0

2,000
4,000
6,000
8,000

bytes

fi
le
s

OpenBSD sys/ source file sizes

No ciphertext expansion

▶ Atomic sector writes means No ciphertext expansion allowed
▶ No counter per block for nonce-based ciphers like AES-CTR
▶ No authentication tags to detect forgeries

▶ Can work around by adding logging layer

▶ . . . at cost of 2x write amplification
▶ . . . and still won’t detect rollback

No ciphertext expansion

▶ Atomic sector writes means No ciphertext expansion allowed
▶ No counter per block for nonce-based ciphers like AES-CTR
▶ No authentication tags to detect forgeries

▶ Can work around by adding logging layer

▶ . . . at cost of 2x write amplification
▶ . . . and still won’t detect rollback

No ciphertext expansion

▶ Atomic sector writes means No ciphertext expansion allowed
▶ No counter per block for nonce-based ciphers like AES-CTR
▶ No authentication tags to detect forgeries

▶ Can work around by adding logging layer
▶ . . . at cost of 2x write amplification

▶ . . . and still won’t detect rollback

No ciphertext expansion

▶ Atomic sector writes means No ciphertext expansion allowed
▶ No counter per block for nonce-based ciphers like AES-CTR
▶ No authentication tags to detect forgeries

▶ Can work around by adding logging layer
▶ . . . at cost of 2x write amplification
▶ . . . and still won’t detect rollback

cgd(4) encryption

▶ Each logical cgd(4) device has an encryption key for a
‘tweakable block cipher’

(not quite)

C = E t
k (P)

▶ Each sector is encrypted independently with sector number as
tweak

physicalsector i = E
littleendian(i)
k (logicalsector i)

cgd(4) encryption

▶ Each logical cgd(4) device has an encryption key for a
‘tweakable block cipher’ (not quite)

C = E t
k (P)

▶ Each sector is encrypted independently with sector number as
tweak

physicalsector i = E
littleendian(i)
k (logicalsector i)

cgd(4) encryption

▶ Each logical cgd(4) device has an encryption key for a
‘tweakable block cipher’ (not quite)

C = E t
k (P)

▶ Each sector is encrypted independently with sector number as
tweak

physicalsector i = E
littleendian(i)
k (logicalsector i)

Not quite tweakable block ciphers

▶ 512-byte sector broken into 32 16-byte blocks:

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

▶ User writes to some 16-byte blocks in the middle:

bbbbbbbbbwbbbbwwbbbbbbbbwbbbbbbb

Not quite tweakable block ciphers

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbwbbbbwwbbbbbbbbwbbbbbbb

AES-XTS reveals which 16-byte blocks changed:

---------*----**--------*-------

AES-CBC reveals which 16-byte block prefixes of disk sectors
didn’t change:

---------***********************

Ideally entire sector is randomized by any change to content:

(Can’t use stream ciphers like AES-GCM or ChaCha20/Poly1305
because of multiple snapshots.)

Key management

▶ cgdconfig(8) userland tool configures cgd(4) with:
▶ physical disk
▶ cipher
▶ key
▶ verification method

▶ Driven by parameters file, e.g. /etc/cgd/wd0e:

algorithm aes-cbc;

iv-method encblkno1;

keylength 256;

verify_method ffs;

keygen pkcs5_pbkdf2/sha1 {

iterations 39361;

salt AAAAgMoHiYonye6KogdYJAobCHE=;

};

Key derivation

▶ Can derive key from:
▶ key stored in parameters file
▶ random key derived from /dev/random or /dev/urandom
▶ shell command
▶ password using stored salt and cost

▶ cgdconfig -g calibrates timing

▶ Can combine multiple keygen blocks—key combined with xor

Verification and 2-factor authentication

▶ Recall: zero ciphertext expansion

▶ Even with password-based key derivation, nothing in cgd(4)
ciphertext helps to guess password without also guessing salt

▶ Given key (e.g., derived from password and salt),
verify method checks for a known pattern like ffs or gpt, or
just re-entering password, to verify password entry

▶ 2FA: Store cgd parameters file on separate USB flash drive

▶ Use cgdconfig -G to back up key in another parameters file
with no password—offline in a safe place

Verification and 2-factor authentication

▶ Recall: zero ciphertext expansion

▶ Even with password-based key derivation, nothing in cgd(4)
ciphertext helps to guess password without also guessing salt

▶ Given key (e.g., derived from password and salt),
verify method checks for a known pattern like ffs or gpt, or
just re-entering password, to verify password entry

▶ 2FA: Store cgd parameters file on separate USB flash drive

▶ Use cgdconfig -G to back up key in another parameters file
with no password—offline in a safe place

Verification and 2-factor authentication

▶ Recall: zero ciphertext expansion

▶ Even with password-based key derivation, nothing in cgd(4)
ciphertext helps to guess password without also guessing salt

▶ Given key (e.g., derived from password and salt),
verify method checks for a known pattern like ffs or gpt, or
just re-entering password, to verify password entry

▶ 2FA: Store cgd parameters file on separate USB flash drive

▶ Use cgdconfig -G to back up key in another parameters file
with no password—offline in a safe place

AES risk: side channels

▶ Table-based AES software leaks keys through cache timing

▶ CVE-2005-1797

▶ Demonstrated in practice against Linux dm-crypt2

▶ Requires arbitrary code execution to trigger disk I/O

▶ . . . like JavaScript in a web browser

2Dag Arne Osvik, Adi Shamir, and Eran Tromer, ‘Cache Attacks and
Countermeasures: The Case of AES’. Topics in Cryptology—CT-RSA 2006,
pp. 1–20. https://link.springer.com/chapter/10.1007/11605805_1

https://link.springer.com/chapter/10.1007/11605805_1

AES risk: side channels

▶ Table-based AES software leaks keys through cache timing

▶ CVE-2005-1797

▶ Demonstrated in practice against Linux dm-crypt2

▶ Requires arbitrary code execution to trigger disk I/O
▶ . . . like JavaScript in a web browser

2Dag Arne Osvik, Adi Shamir, and Eran Tromer, ‘Cache Attacks and
Countermeasures: The Case of AES’. Topics in Cryptology—CT-RSA 2006,
pp. 1–20. https://link.springer.com/chapter/10.1007/11605805_1

https://link.springer.com/chapter/10.1007/11605805_1

Solution: Don’t do AES that way

▶ All table-based AES software ripped out of NetBSD 10 kernel
▶ Replaced by:

▶ AES-NI on newer x86
▶ ARMv8.0-AES on newer Arm
▶ AES Padlock on VIA x86
▶ Vector permutation AES on older x86 (SSSE3), Arm
▶ Vectorized bitsliced AES on much older x86 (SSE2)
▶ Portable C bitsliced AES from BearSSL

▶ . . . got an exotic vector unit like SPARC or MIPS? Happy to
help adapt it to that!

Solution: Don’t do AES that way

▶ All table-based AES software ripped out of NetBSD 10 kernel
▶ Replaced by:

▶ AES-NI on newer x86
▶ ARMv8.0-AES on newer Arm
▶ AES Padlock on VIA x86
▶ Vector permutation AES on older x86 (SSSE3), Arm
▶ Vectorized bitsliced AES on much older x86 (SSE2)
▶ Portable C bitsliced AES from BearSSL
▶ . . . got an exotic vector unit like SPARC or MIPS? Happy to

help adapt it to that!

Supported algorithms

Ciphers:

▶ blowfish-cbc

▶ 3des-cbc

▶ aes-cbc

▶ aes-xts

▶ adiantum

Password-based key derivation:

▶ pkcs5 pbkdf2/sha1

▶ argon2id

Supported algorithms

Ciphers:

▶ blowfish-cbc (still supported, but don’t use it)

▶ 3des-cbc (still supported, but don’t use it)

▶ aes-cbc

▶ aes-xts

▶ adiantum

Password-based key derivation:

▶ pkcs5 pbkdf2/sha1

▶ argon2id

Supported algorithms

Ciphers:

▶ blowfish-cbc (still supported, but don’t use it)

▶ 3des-cbc (still supported, but don’t use it)

▶ aes-cbc

▶ aes-xts

▶ adiantum

Password-based key derivation:

▶ pkcs5 pbkdf2/sha1

▶ argon2id

New cipher: AES-XTS

▶ Tweakable 16-byte block cipher based on AES

▶ IEEE Std 1619–2007

▶ NIST SP 800–38E

▶ Faster than AES-CBC encryption

▶ Comparable to AES-CBC decryption
▶ Not a tweakable wide-block cipher

▶ Leaks slightly more than AES-CBC

New cipher: AES-XTS

▶ Tweakable 16-byte block cipher based on AES

▶ IEEE Std 1619–2007

▶ NIST SP 800–38E

▶ Faster than AES-CBC encryption

▶ Comparable to AES-CBC decryption
▶ Not a tweakable wide-block cipher

▶ Leaks slightly more than AES-CBC

New cipher: Adiantum

▶ Based on ChaCha, Poly1305, NH, and AES
▶ One AES call per block (disk sector), so not a bottleneck

▶ Designed by Paul Crowley and Eric Biggers at Google

▶ Well-understood design with comfortable security bounds
proven relative to security of components3

▶ Suited for CPUs without hardware AES acceleration
▶ Tweakable wide-block cipher (arbitrary size ≥16-byte)

▶ Best disk encryption security of all choices

3Paul Crowley and Eric Biggers, ‘Adiantum: length-preserving encryption
for entry-level processors’. IACR Transactions on Symmetric Cryptology,
2018(4), pp. 39–61. https://doi.org/10.13154/tosc.v2018.i4.39-61

https://doi.org/10.13154/tosc.v2018.i4.39-61

New cipher: Adiantum

▶ Based on ChaCha, Poly1305, NH, and AES
▶ One AES call per block (disk sector), so not a bottleneck

▶ Designed by Paul Crowley and Eric Biggers at Google

▶ Well-understood design with comfortable security bounds
proven relative to security of components3

▶ Suited for CPUs without hardware AES acceleration
▶ Tweakable wide-block cipher (arbitrary size ≥16-byte)

▶ Best disk encryption security of all choices

3Paul Crowley and Eric Biggers, ‘Adiantum: length-preserving encryption
for entry-level processors’. IACR Transactions on Symmetric Cryptology,
2018(4), pp. 39–61. https://doi.org/10.13154/tosc.v2018.i4.39-61

https://doi.org/10.13154/tosc.v2018.i4.39-61

New key derivation: Argon2

▶ PBKDF2-SHA1 can only use single-threaded CPU time before
you get bored to raise adversary’s costs

▶ Argon2 can use memory and parallelism too

▶ Especially at boot time: memory is free, CPUs are idle

algorithm adiantum;

iv-method encblkno1;

keylength 256;

verify_method gpt;

keygen argon2id {

iterations 32;

memory 5214;

parallelism 2;

version 19;

salt AAAAgLZ5QgleU2m/Ib6wiPYxz98=;

};

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Configuring multiple disks

Configuring CGD devices.

/dev/dk1’s passphrase:

re-enter device’s passphrase:

/dev/wd0e’s passphrase:

/dev/ld0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Shared key derivation

/etc/cgd/dk1
algorithm adiantum;

...

keygen argon2id { iterations 32; memory 5214; ...

shared "my laptop" \

algorithm hkdf-hmac-sha256 \

subkey AAAAQEGELNr3bj3I;

};

/etc/cgd/wd0e
algorithm aes-xts;

...

keygen argon2id { iterations 32; memory 5214; ...

shared "my laptop" \

algorithm hkdf-hmac-sha256 \

subkey AAAAQHSC15pr1Pe4;

};

Configuring multiple disks from a shared key

Configuring CGD devices.

/dev/dk1’s passphrase:

swapctl: setting dump device to /dev/dk12

Starting file system checks:

Loaded entropy from /var/db/entropy-file.

Setting tty flags.

...

Configuring multiple disks from a shared key

Configuring CGD devices.

/dev/dk1’s passphrase:

swapctl: setting dump device to /dev/dk12

Starting file system checks:

Loaded entropy from /var/db/entropy-file.

Setting tty flags.

...

Generating shared-key parameters files

Generate a parameter file for use with shared key:

cgdconfig -g -S -k argon2id -o /etc/cgd/dk1 \

-V gpt adiantum

Generate a parameter file for another disk using same shared key:

cgdconfig -g -S -P /etc/cgd/dk1 -o /etc/cgd/wd0e \

-V gpt aes-cbc 256

fidocrypt—‘storing’ keys with U2F/FIDO

https://github.com/riastradh/fidocrypt

▶ fidocrypt(1) tool stores a secret in a cryptfile

▶ Can be opened only with an enrolled U2F/FIDO device

▶ No cryptfile, or no enrolled U2F/FIDO device? No secret

https://github.com/riastradh/fidocrypt
https://github.com/riastradh/fidocrypt

Manage U2F/FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubi5nano /etc/cgd.crypt

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

1 yubi5nano

Manage U2F/FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubi5nano /etc/cgd.crypt

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

1 yubi5nano

Manage U2F/FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubi5nano /etc/cgd.crypt

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

1 yubi5nano

Manage U2F/FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubi5nano /etc/cgd.crypt

tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

1 yubi5nano

Manage U2F/FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubi5nano /etc/cgd.crypt

tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

1 yubi5nano

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)

Usage: fidocrypt get -F <format> <cryptfile>

$

fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...

yTpyXp1Hk3F48Wx3Mp7B2gNOChPyPW0VOH3C7l5AM9A=

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)

Usage: fidocrypt get -F <format> <cryptfile>

$

fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...

yTpyXp1Hk3F48Wx3Mp7B2gNOChPyPW0VOH3C7l5AM9A=

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)

Usage: fidocrypt get -F <format> <cryptfile>

$ fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...

yTpyXp1Hk3F48Wx3Mp7B2gNOChPyPW0VOH3C7l5AM9A=

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)

Usage: fidocrypt get -F <format> <cryptfile>

$ fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...

yTpyXp1Hk3F48Wx3Mp7B2gNOChPyPW0VOH3C7l5AM9A=

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)

Usage: fidocrypt get -F <format> <cryptfile>

$ fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...

yTpyXp1Hk3F48Wx3Mp7B2gNOChPyPW0VOH3C7l5AM9A=

(For illustration only—don’t put your secrets anywhere visible!)

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$

fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Enroll another U2F/FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubi5nano

Hook it up to cgd(4)

algorithm adiantum;

...

keygen argon2id {

...

};

keygen shell_cmd {

cmd "fidocrypt get -F raw /etc/cgd.crypt";

};

Note: Two-factor—password and U2F/FIDO device!

TODO

▶ Import fidocrypt(1) into base
▶ wip/fidocrypt-git in pkgsrc for now

▶ Integration with sysinst to configure cgd with fidocrypt
▶ Combine cgd(4) and login password

▶ . . . maybe via more general system keyring or key derivation
mechanism

TODO

▶ Import fidocrypt(1) into base
▶ wip/fidocrypt-git in pkgsrc for now

▶ Integration with sysinst to configure cgd with fidocrypt
▶ Combine cgd(4) and login password

▶ . . . maybe via more general system keyring or key derivation
mechanism

Disk encryption in NetBSD

Questions?

https://www.NetBSD.org/gallery/presentations/

riastradh/bsdcan2023/diskencryption.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf

	What's old in NetBSD disk encryption
	Security model
	Implementation

	What's new in NetBSD disk encryption
	New AES implementation
	AES-XTS
	Adiantum
	Argon2
	Shared key derivation
	fidocrypt
	TBD: system integration

