Disk encryption in NetBSD

Taylor R Campbell
riastradh@NetBSD.org

BSDCan 2023
Ottawa, Canada
May 20, 2023

Disk encryption in NetBSD

https://www.NetBSD.org/gallery/presentations/
riastradh/bsdcan2023/diskencryption.pdf

[m] s

https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf

Goal

Present a logical disk device that behaves just like an underlying
physical disk device for file systems, swap, and other block storage.

logical disk physical disk
oo + e +
| 512-byte sector 0 | <=> | 512-byte sector 0 |
oo + e +

| 512-byte sector 1 | <-> | 512-byte sector 1 |

| 512-byte sector n-1 | <-> | 512-byte sector n-1 |

Goal

Present a logical disk device that behaves just like an underlying
physical disk device for file systems, swap, and other block storage.

logical disk physical disk
oo + e +
| 512-byte sector 0 | <=> | 512-byte sector 0 |
oo + e +

| 512-byte sector 1 | <-> | 512-byte sector 1 |

| 512-byte sector n-1 | <-> | 512-byte sector n-1 |

Sector writes must be atomic (if physical disk guarantees this)

Atomicity

» Applications like file systems and databases assume sector
writes are atomic (or close to it!)

» Breaking this can lead to data corruption on power loss

"https://wuw.sqlite.org/atomiccommit.html

https://www.sqlite.org/atomiccommit.html

Threat model

» Theft of laptop

Threat model

» Theft of laptop
» Tampering with laptop

Threat model

» Theft of laptop
» Tampering with laptop

Threat model

» Theft of laptop
> T . b

Threat model

» Theft of laptop (while powered off or hibernating)

> T o

Threat model

» Theft of laptop (while powered off or hibernating)
> T . .
» Recycling a disk

Not threat model

» Tampering with laptop
» Border search
» ‘Evil maid’
Adversary could modify firmware, install hardware keylogger,
etc.—can't be detected/prevented by storage protocol alone
» MITM on network storage devices
» iSCSI

Practical limitations with a disk device

Security properties

» (ideal) Adversary can't learn anything about what is stored

Security properties

» (ideal) Adversary can't learn anything about what is stored
» (realistic) Adversary can't learn much about what is stored
» Content of fixed-shape data indistinguishable
» Different shapes—directory structures, sparse file allocation,

write patterns, file systems—may be distinguishable

Caveats

1. Zero-fill

2. Wear-levelling

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)

Caveats

1. Zero-fill

» Exposes which sectors written, possibly shape of data
» Scrubbing disk first hides shape but bad for SSD performance

2. Wear-levelling

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)

Caveats

1. Zero-fill

» Exposes which sectors written, possibly shape of data

» Scrubbing disk first hides shape but bad for SSD performance
2. Wear-levelling

» SSD delays costly erasure with virtual sector remapping

» Adversary may see many snapshots of some sectors

3. Access patterns on network storage (even with just passive
eavesdropper, not active MITM)

Caveats

1. Zero-fill

» Exposes which sectors written, possibly shape of data

» Scrubbing disk first hides shape but bad for SSD performance
2. Wear-levelling

» SSD delays costly erasure with virtual sector remapping

» Adversary may see many snapshots of some sectors
3. Access patterns on network storage (even with just passive

eavesdropper, not active MITM)
» Can't conceal without cooperation of network protocol

Shape as proxy for content: newfs

ffs Ifs msdos

Shape as proxy for content: NetBSD vs OpenBSD

NetBSD sys/ source file sizes
87000 UL RLLL I R L1l B L L1 L B R L I L LA LL R R R ALY B R R LU B B R R LU B R R R R AL
6.000 | |
4,000 | |
2,000 - -
O) Y Y Y T Y S 71 I AT R |
100 10t 10 10° 10* 10° 10° 10" 10°
bytes

files

OpenBSD sys/ source file sizes

8,000 UL 11 1 1 1 1 1 e e MR B A m AL
6,000 | i
4,000 | §
2.000 | |
O T Y T Y A Y S T A1

100 10' 10% 10° 10* 10° 10° 107 10® 10°

bytes

files

No ciphertext expansion

> Atomic sector writes means No ciphertext expansion allowed

» No counter per block for nonce-based ciphers like AES-CTR
» No authentication tags to detect forgeries

No ciphertext expansion

> Atomic sector writes means No ciphertext expansion allowed

» No counter per block for nonce-based ciphers like AES-CTR
» No authentication tags to detect forgeries

» Can work around by adding logging layer

No ciphertext expansion

> Atomic sector writes means No ciphertext expansion allowed

» No counter per block for nonce-based ciphers like AES-CTR
» No authentication tags to detect forgeries

» Can work around by adding logging layer
P> ... at cost of 2x write amplification

No ciphertext expansion

> Atomic sector writes means No ciphertext expansion allowed

» No counter per block for nonce-based ciphers like AES-CTR
» No authentication tags to detect forgeries

» Can work around by adding logging layer

P> ... at cost of 2x write amplification
» . ..and still won't detect rollback

cgd(4) encryption

» Each logical cgd(4) device has an encryption key for a
‘tweakable block cipher’

C = Ei(P)

» Each sector is encrypted independently with sector number as
tweak

cgd(4) encryption

» Each logical cgd(4) device has an encryption key for a
‘tweakable block cipher’ (not quite)

C = Ei(P)

» Each sector is encrypted independently with sector number as
tweak

cgd(4) encryption

» Each logical cgd(4) device has an encryption key for a
‘tweakable block cipher’ (not quite)

C = Ei(P)

» Each sector is encrypted independently with sector number as
tweak

littleendian(/) (

physicalsector; = E, logicalsector ;)

Not quite tweakable block ciphers

» 512-byte sector broken into 32 16-byte blocks:
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

P User writes to some 16-byte blocks in the middle:
bbbbbbbbbwbbbbwwbbbbbbbbwbbbbbbb

Not quite tweakable block ciphers

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbwbbbbwwbbbbbbbbwbbbbbbb

AES-XTS reveals which 16-byte blocks changed:

————————— *————k————————k———————

AES-CBC reveals which 16-byte block prefixes of disk sectors
didn't change:

————————— skook ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok
Ideally entire sector is randomized by any change to content:
3k 3k 3k 5k >k 3k 5k 5k 5k %k 5k ok 3k 5k 5k 5k %k Sk ok 5k >k %k 5k %k sk ok sk ok k sk k k

(Can't use stream ciphers like AES-GCM or ChaCha20/Poly1305
because of multiple snapshots.)

Key management

» cgdconfig(8) userland tool configures cgd(4) with:
» physical disk
» cipher
> key
> verification method
» Driven by parameters file, e.g. /etc/cgd/wdOe:

algorithm aes-cbc;

iv-method encblknol;

keylength 256;

verify_method ffs;

keygen pkcsb5_pbkdf2/shal {
iterations 39361;
salt AAAAgMoHiYonye6KogdYJAobCHE=;

};

Key derivation

» Can derive key from:

» key stored in parameters file
» random key derived from /dev/random or /dev/urandom

» shell command
» password using stored salt and cost
> cgdconfig -g calibrates timing
» Can combine multiple keygen blocks—key combined with xor

Verification and 2-factor authentication

P Recall: zero ciphertext expansion

» Even with password-based key derivation, nothing in cgd(4)
ciphertext helps to guess password without also guessing salt

» Given key (e.g., derived from password and salt),
verify method checks for a known pattern like ffs or gpt, or
just re-entering password, to verify password entry

Verification and 2-factor authentication

P Recall: zero ciphertext expansion

» Even with password-based key derivation, nothing in cgd(4)
ciphertext helps to guess password without also guessing salt

» Given key (e.g., derived from password and salt),
verify method checks for a known pattern like ffs or gpt, or
just re-entering password, to verify password entry

> 2FA: Store cgd parameters file on separate USB flash drive

Verification and 2-factor authentication

P Recall: zero ciphertext expansion

» Even with password-based key derivation, nothing in cgd(4)
ciphertext helps to guess password without also guessing salt

» Given key (e.g., derived from password and salt),
verify method checks for a known pattern like ffs or gpt, or
just re-entering password, to verify password entry

> 2FA: Store cgd parameters file on separate USB flash drive

» Use cgdconfig -G to back up key in another parameters file
with no password—offline in a safe place

AES risk: side channels

» Table-based AES software leaks keys through cache timing
» CVE-2005-1797

» Demonstrated in practice against Linux dm-crypt?

» Requires arbitrary code execution to trigger disk 1/0

2Dag Arne Osvik, Adi Shamir, and Eran Tromer, ‘Cache Attacks and
Countermeasures: The Case of AES'. Topics in Cryptology—CT-RSA 2006,
pp. 1-20. https://link.springer.com/chapter/10.1007/11605805:1

https://link.springer.com/chapter/10.1007/11605805_1

AES risk: side channels

» Table-based AES software leaks keys through cache timing
» CVE-2005-1797
» Demonstrated in practice against Linux dm-crypt?

» Requires arbitrary code execution to trigger disk 1/0
» .. like JavaScript in a web browser

2Dag Arne Osvik, Adi Shamir, and Eran Tromer, ‘Cache Attacks and
Countermeasures: The Case of AES'. Topics in Cryptology—CT-RSA 2006,
pp. 1-20. https://link.springer.com/chapter/10.1007/11605805:1

https://link.springer.com/chapter/10.1007/11605805_1

Solution: Don’t do AES that way

» All table-based AES software ripped out of NetBSD 10 kernel
» Replaced by:

VVVyVYYVYY

AES-NI on newer x86

ARMvV8.0-AES on newer Arm

AES Padlock on VIA x86

Vector permutation AES on older x86 (SSSE3), Arm
Vectorized bitsliced AES on much older x86 (SSE2)
Portable C bitsliced AES from BearSSL

Solution: Don’t do AES that way

» All table-based AES software ripped out of NetBSD 10 kernel
» Replaced by:

VVVVYYVYYVYY

AES-NI on newer x86

ARMV8.0-AES on newer Arm

AES Padlock on VIA x86

Vector permutation AES on older x86 (SSSE3), Arm
Vectorized bitsliced AES on much older x86 (SSE2)
Portable C bitsliced AES from BearSSL

... got an exotic vector unit like SPARC or MIPS? Happy to
help adapt it to that!

Supported algorithms

Ciphers:
» blowfish-cbc
» 3des-cbc

» aes-cbc

Password-based key derivation:
» pkcs5_pbkdf2/shal

Supported algorithms

Ciphers:
> blewfish-ebe (still supported, but don't use it)
> 3des-ebe (still supported, but don't use it)

» aes-cbc

Password-based key derivation:
» pkcs5_pbkdf2/shal

Supported algorithms

Ciphers:
> blewfish-ebe (still supported, but don't use it)
> 3des-ebe (still supported, but don't use it)
> aes-cbc
> aes-xts
» adiantum
Password-based key derivation:
» pkcsb_pbkdf2/shal
> argon2id

New cipher: AES-XTS

Tweakable 16-byte block cipher based on AES
IEEE Std 1619-2007

NIST SP 800-38E

Faster than AES-CBC encryption

Comparable to AES-CBC decryption
Not a tweakable wide-block cipher

vVvyvyVvVvyyypy

New cipher: AES-XTS

Tweakable 16-byte block cipher based on AES
IEEE Std 1619-2007

NIST SP 800-38E

Faster than AES-CBC encryption

Comparable to AES-CBC decryption
Not a tweakable wide-block cipher
» Leaks slightly more than AES-CBC

vVvyvyVvVvyyypy

New cipher: Adiantum

» Based on ChaCha, Poly1305, NH, and AES
» One AES call per block (disk sector), so not a bottleneck
» Designed by Paul Crowley and Eric Biggers at Google
» Well-understood design with comfortable security bounds
proven relative to security of components>
» Suited for CPUs without hardware AES acceleration
> Tweakable wide-block cipher (arbitrary size >16-byte)

®Paul Crowley and Eric Biggers, ‘Adiantum: length-preserving encryption
for entry-level processors’. IACR Transactions on Symmetric Cryptology,
2018(4), pp. 39-61. https://doi.org/10.13154/tosc.v2018.i4.39-61

https://doi.org/10.13154/tosc.v2018.i4.39-61

New cipher: Adiantum

» Based on ChaCha, Poly1305, NH, and AES
» One AES call per block (disk sector), so not a bottleneck
» Designed by Paul Crowley and Eric Biggers at Google
» Well-understood design with comfortable security bounds
proven relative to security of components>
» Suited for CPUs without hardware AES acceleration
> Tweakable wide-block cipher (arbitrary size >16-byte)
» Best disk encryption security of all choices

®Paul Crowley and Eric Biggers, ‘Adiantum: length-preserving encryption
for entry-level processors’. IACR Transactions on Symmetric Cryptology,
2018(4), pp. 39-61. https://doi.org/10.13154/tosc.v2018.i4.39-61

https://doi.org/10.13154/tosc.v2018.i4.39-61

New key derivation: Argon2

» PBKDF2-SHAL can only use single-threaded CPU time before
you get bored to raise adversary's costs

> Argon2 can use memory and parallelism too
» Especially at boot time: memory is free, CPUs are idle

algorithm adiantum;
iv-method encblknol;
keylength 256;

verify_method gpt;
keygen argon2id {
iterations 32;
memory 5214;
parallelism 2;
version 19;
salt AAAAgLZ5QgleU2m/Ib6wiPYxz98=;

Configuring multiple disks

Configuring CGD devices.
/dev/dkl’s passphrase:

Configuring multiple disks

Configuring CGD devices.
/dev/dkl’s passphrase:
re-enter device’s passphrase:

Configuring multiple disks

Configuring CGD devices.
/dev/dkl’s passphrase:
re-enter device’s passphrase:
/dev/wd0e’s passphrase:

Configuring multiple disks

Configuring CGD devices.
/dev/dkl’s passphrase:
re-enter device’s passphrase:
/dev/wd0e’s passphrase:
/dev/1d0a’s passphrase:

Configuring multiple disks

Configuring CGD devices.
/dev/dkl’s passphrase:
re-enter device’s passphrase:
/dev/wd0e’s passphrase:
/dev/1d0a’s passphrase:
re-enter device’s passphrase:

Configuring multiple disks

Configuring CGD devices.
/dev/dkl’s passphrase:
re-enter device’s passphrase:
/dev/wd0e’s passphrase:
/dev/1d0a’s passphrase:
re-enter device’s passphrase:
/dev/dk5’s passphrase:

Configuring multiple disks

Configuring CGD devices.

/dev/dkl’s passphrase:

re-enter device’s passphrase:

/dev/wd0Oe’s passphrase:

/dev/1d0a’s passphrase:

re-enter device’s passphrase:

/dev/dk5’s passphrase:

i’m hungry please feed me more passphrases:

Shared key derivation

/etc/cgd/dkl
algorithm adiantum;
keygen argon2id { iterations 32; memory 5214;
shared "my laptop" \
algorithm hkdf-hmac-sha256 \
subkey AAAAQEGELNr3bj3I;
}
/etc/cgd/wd0e

algorithm aes-xts;

keygen argon2id { iterations 32; memory 5214;
shared "my laptop" \
algorithm hkdf-hmac-sha256 \
subkey AAAAQHSC15priPe4;

Configuring multiple disks from a shared key

Configuring CGD devices.
/dev/dkl’s passphrase:

Configuring multiple disks from a shared key

Configuring CGD devices.

/dev/dk1’s passphrase:

swapctl: setting dump device to /dev/dk12
Starting file system checks:

Loaded entropy from /var/db/entropy-file.
Setting tty flags.

Generating shared-key parameters files

Generate a parameter file for use with shared key:

cgdconfig -g -S -k argon2id -o /etc/cgd/dkl \
-V gpt adiantum

Generate a parameter file for another disk using same shared key:

cgdconfig -g -S -P /etc/cgd/dkl -o /etc/cgd/wdle \
-V gpt aes-cbc 256

fidocrypt—'storing’ keys with U2F /FIDO

https://github.com/riastradh/fidocrypt

i

» fidocrypt(1) tool stores a secret in a cryptfile
» Can be opened only with an enrolled U2F /FIDO device
» No cryptfile, or no enrolled U2F/FIDO device? No secret

https://github.com/riastradh/fidocrypt
https://github.com/riastradh/fidocrypt

Manage U2F /FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubibnano /etc/cgd.crypt

Manage U2F /FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubibnano /etc/cgd.crypt
tap key to enroll; waiting...

Manage U2F /FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubibnano /etc/cgd.crypt
tap key to enroll; waiting...
tap key again to verify; waiting...

$

Manage U2F /FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubibnano /etc/cgd.crypt
tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

Manage U2F /FIDO devices enrolled in a cryptfile

$ fidocrypt enroll -n yubibnano /etc/cgd.crypt
tap key to enroll; waiting...

tap key again to verify; waiting...

$ fidocrypt list /etc/cgd.crypt

1 yubibnano

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)
Usage: fidocrypt get -F <format> <cryptfile>
$

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)
Usage: fidocrypt get -F <format> <cryptfile>
$ fidocrypt get -F base64 /etc/cgd.crypt

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)
Usage: fidocrypt get -F <format> <cryptfile>
$ fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...

(For illustration only—don’t put your secrets anywhere visible!)

Get secret out of cryptfile with U2F/FIDO device

$ fidocrypt get /etc/cgd.crypt

fidocrypt: specify an output format (-F)
Usage: fidocrypt get -F <format> <cryptfile>
$ fidocrypt get -F base64 /etc/cgd.crypt

tap key; waiting...
yTpyXp1Hk3F48Wx3Mp7B2gNOChPyPWOVOH3C715AMOA=

(For illustration only—don’t put your secrets anywhere visible!)

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt
tap a key that’s already enrolled; waiting...

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt
tap a key that’s already enrolled; waiting...
tap key to enroll; waiting...

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...
tap key again to verify; waiting...

$

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...
tap key again to verify; waiting...
$ fidocrypt list /etc/cgd.crypt

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...
$ fidocrypt list /etc/cgd.crypt

2 redsolokey

Enroll another U2F /FIDO device

$ fidocrypt enroll -n redsolokey cgd.crypt

tap a key that’s already enrolled; waiting...

tap key to enroll; waiting...

tap key again to verify; waiting...
$ fidocrypt list /etc/cgd.crypt

2 redsolokey

1 yubibnano

Hook it up to cgd(4)

algorithm adiantum;
keygen argon2id {

s
keygen shell_cmd {

cmd "fidocrypt get -F raw /etc/cgd.crypt";
s

Note: Two-factor—password and U2F /FIDO device!

TODO

» Import fidocrypt(1) into base

» wip/fidocrypt-git in pkgsrc for now
> Integration with sysinst to configure cgd with fidocrypt
» Combine cgd(4) and login password

TODO

» Import fidocrypt(1) into base

» wip/fidocrypt-git in pkgsrc for now
> Integration with sysinst to configure cgd with fidocrypt
» Combine cgd(4) and login password

» . ..maybe via more general system keyring or key derivation
mechanism

Disk encryption in NetBSD

Questions?

https://www.NetBSD.org/gallery/presentations/
riastradh/bsdcan2023/diskencryption.pdf

[m] E s

https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2023/diskencryption.pdf

	What's old in NetBSD disk encryption
	Security model
	Implementation

	What's new in NetBSD disk encryption
	New AES implementation
	AES-XTS
	Adiantum
	Argon2
	Shared key derivation
	fidocrypt
	TBD: system integration

