
How to break long-term compatibility in NetBSD

Jörg Sonnenberger <joerg@NetBSD.org>

Abstract

NetBSD has been maintaining ABI compatibility
of libc since 1997. The implementation has un-
dergone major changes in the mean time. Thread-
awareness or the move to 64bit ino t and time t are
just a few examples with huge impact on the exter-
nal ABI. Some desirable changes like supporting
more than 32767 open files in stdio are impossible
without breaking this compatibility. If the compat-
ibility is broken, it allows fixing a number of historic
mistakes and putting better abstractions in place
for future improvements. The high price mandates
a detailed strategy, covering necessary changes, de-
sirable changes and a plan for testing. This pa-
per aims at identifying the problems and providing
choices for their solution. It allows a clear under-
standing of the process and improves collaboration
between the interested parties.

1 Introduction

NetBSD has been maintaining ABI compatibility
on the kernel level all the way back to NetBSD
0.9. The first intentional break of compatibility
on the system call level was the removal of Sched-
uler Activations with NetBSD 6.0 after libpthread
changed to a much simpler 1:1 threading model
with NetBSD 5.0. The dynamic linker maintains
compatibility back to NetBSD 1.3, when NetBSD
switched from a.out to ELF. The libc ABI has been
kept backwards compatibility since 1997. It is easy
to see why such compatibility is useful. When
maintaining production systems, it is commmon to
have some binaries without matching source code
or even binaries where the source code was never ac-
cessible at all. Breaking compatibility makes such
programs more difficult or impossible to use. Re-
moving compatibility on the kernel level requires
keeping a (virtual) machine with the old kernel run-
ning; removing compatibility in libc or the dynamic

linker might require a separate chroot. The com-
patibility comes with a cost though:

1. Code bloat for conversion functions or redun-
dant implementations.

2. Code bugs due to rarely exercised code paths.

3. Security issues due to bugs and conflicts with
modern mitigation techniques.

4. Frozen design choices.

5. Difficult to change assumptions.

It is not surprising that the different members
of the BSD family evaluate the cost/benefit rela-
tion differently. OpenBSD decided to implement
the migration to 64bit time t with a flag day, where
NetBSD’s earlier implementation involved a signif-
icant amount of glue in libc. The flag day approach
limits the work for developers as they have to spend
less time on identifying the full impact of a change
on the ABI. The time t type is used as part of many
structures and has even been used as part of some
on-disk formats in the past. It is not always easy
or even possible to rebuild programs, since e.g. the
source code might be owned by a third party or lost
due to an accident.
For NetBSD the balance has slowly been moving

toward breaking compatibility on the userland side.
Such a move allows addressing a great variety of
issues:

1. Removal of compatibility code.

2. Moving legacy interface like gets into separate
libraries.

3. Changing interfaces to be explicitly versioned
or more friendly to future extensions.

4. Moving non-essential functionality into sepa-
rate libraries or plugins.

1

5. Providing a consistent mechanism for linking
plugins into static binaries.

6. Clarifying architectural choices like ownership
of global resources or the interaction between
libc and libpthread.

7. Catch up with platform specific changes in the
runtime ABIs like moving from init sections to
init array sections.

This paper aims at identifying the problems in
the libc and dynamic linker ABI contract that
should be addressed in one logical step. Approaches
for solving the problems either incrementally or by
using a flag day are discussed. Based on this analy-
sis, a migration strategy is proposed. This provides
a detailed foundation for developers, release engi-
neering and third parties to agree on one approach.

2 Interface versioning

Interface versioning is necessary when changing the
(physical) layout of a structure by changing the
size of individual members. Adding new fields can
work, if the total size is not part of the ABI con-
tract, i.e. if all instances are created and copied us-
ing functions of the library “owning” the interface.
Special care is needed for global variables since ac-
cess from the main program can implicitly leak the
size of the variable via copy relocations.
In this section, two specific variants of the prob-

lem are investigated. The first part concerns user-
land ABI contracts between shared libraries as well
as shared libraries and the main program. The sec-
ond part concerns the ABI contract between user-
land and kernel.

2.1 Shared libraries and interface
versioning

The problem interface changes creates for shared
libraries is best illustrated by an example. Con-
sider NetBSD’s switch to 64bit time t. The time

system call takes a pointer to time t as argument,
returns the current time and modifies the location
referenced by the pointer. If the application using
this function has been compiled for a 32bit time t,
it will expect that only that much memory is modi-
fied. It will generally also provide a location aligned

typedef i n t 3 2 t o f f t ;
typedef i n t 6 4 t o f f 6 4 t ;

int open (const char ∗ , int , . . .) ;
int open64 (const char ∗ , int , . . .) ;
o f f t l s e e k (int , o f f t , int) ;
o f f 6 4 t l s e ek64 (int , o f f 6 4 t , int) ;

#i f LFS LARGEFILE − 1 == 0
#define open open64
#define l s e e k l s e ek64
#define o f f t o f f 6 4 t
#endif

Listing 1: Symbol renaming for LFS

typedef i n t 6 4 t t ime t ;

t ime t time (t ime t ∗) asm(” t ime2 ”) ;

Listing 2: Symbol renaming via assembler name

for 32bit access. As libc can’t know if the caller has
been compiled for 32bit or 64bit time t, it has to
provide two different versions of the function with
different name on the object code side. It must also
ensure that new code gets the 64bit version during
compilation. Two different approaches have been
used to address this:

1. Symbol renaming in the C headers,

2. Symbol versioning during linking.

Symbol renaming itself can be implemented us-
ing macros (figure 1) or via the GCC extension of
assembler names (figure 2). Macros are very in-
trusive and can easily break valid source code in
surprising ways. The GCC extension on the other
hand is exactly that, a language extension that
purists will scoff at the pollution of headers with
it. NetBSD has been using assembler names since
1997 to implement symbol renaming. The author is
not aware of any other OS making extensive use of
this feature. Macro based symbol renaming is most
prominently used by the Large File Summit (LFS)
option for 64bit off t. The optional LFS support
can still be found in GNU libc and most commercial
Unix variants. The main advantage of symbol re-
naming is that it allows building older source code

2

typedef i n t 3 2 t t ime32 t ;
typedef i n t 6 4 t t ime64 t ;

asm(” . symver time , time@NetBSD 5 . 0 ”) ;
asm(” . symver time2 , ”

” time@@NetBSD 6 . 0 ”) ;

t ime64 t time2 (t ime64 t ∗ t s) {
/∗ do magic ∗/

}

t ime32 t time (t ime32 t ∗ t s) {
t ime64 t t = time2 (NULL) ;
i f (t s)

∗ t s = t ;
return t ;

}
Listing 3: Symbol versioning, source part

against a newer library by providing it with the
same old header files. On the other hand, it can
interact badly with broken configure scripts that
don’t include headers and assembler names don’t
provide a good way to extract the symbol name
as string for use with dladdr or other situations
like Foreign Function Interfaces in Python, Java or
other non-C derived languages. A compiler built-in
like builtin asm name could be used to address
part of the dladdr problem, but there is no easy
answer for the other use cases.

A special purpose variant of symbol renaming
has been introduced with GCC 5.1 in the form of
the abi tag attribute. It is used to allow coex-
istance of the old copy-on-write string implement-
ing and the new implementation needed for C++11
compliance in one shared library. Existing means
like C++11 inline namespaces (as used by libc++)
would have solved most of the problems as well with
one exception. If two functions share the same ar-
gument types, the Itanium name mangling conven-
tion will produce the same assembler name. This
makes it impossible to have a function returning
the old string type and a function returning the
new string type in the same namespace.

Symbol versioning is implemented by a combi-
nation of function annotations in the implementa-
tion (figure 3) and an additional linker input file,

NetBSD 5 . 0 {
} ;
NetBSD 6 . 0 {
} NetBSD 5 . 0 ;

Listing 4: Symbol versioning, version map

the version map (figure 4). The version map spec-
ifies a tree of symbol lists via inheritance. Every
symbol in the NetBSD 5.0 category is also part of
NetBSD 6.0.

In the example, the NetBSD 6.0 version of time
is the default version as it is using @@. If a sym-
bol has no default version, it can only be used by
existing shared libraries or by specifying a version
explicitly. This can be used for obsoleting inter-
faces without breaking existing programs.

A single implementation can have more than one
version associated with it. This is useful for re-
lease engineering when backporting new interfaces
to older version. It would look strange to have a
NetBSD 6.0 symbol in libc from NetBSD 5.1, so
a new version tag NetBSD 5.1 would be needed in
this case. To allow forward compatibility, the same
version tag is also needed in NetBSD 6.1, so that
binaries from NetBSD 5.1 can run on NetBSD 6.1.
Assigning more than one version to a single imple-
mentation is more tricky than necessary though, as
GNU as insists on a one-version-per-alias rule. It is
still open for discussion whether this (mis)feature
should be just disabled and whether it should pos-
sible to create versioned symbols without exposing
the intermediate artifacts in the symbol table.

Another limitation of the symbol versioning def-
inition from GNU is the interaction between relo-
cations using versioned symbols and unversioned
overrides. Normal ELF rules for unversioned sym-
bols specify a search order starting from the main
program and the first match wins. This allows
f.e. replacing the libc memory allocator with a cus-
tom version that better reflects the specific needs of
an application. In the world of versioned symbols,
it is difficult to see this as desirable. If a symbol
has more than one version, overriding all of them
with a single replacement seems to be wrong most
of the time. If the replacement rules are changed to
consider the version of a symbol an inherent part
of the identifier, new applications appear as well.

3

Tagging symbols in headers explicitly with versions
would create a kind of name space system for C,
so that an application program can use identifiers
like dprintf without interfering with the libc def-
inition as long as it is built f.e. with strict C11
header visibility. An unversioned or default fall-
back symbol in libc would allow autoconf-like fea-
ture detection to still work and the existing linker
warnings when linking against certain symbols can
detect cases of using system functions without in-
cluding the proper headers. The downside is that
LD PRELOAD replacements would have to include the
system headers, so that they know which versions
to replace.
Over all, the primary advantages of symbol ver-

sioning are less pollution of headers for the common
case of using the most recent version of a symbol
and better support in the toolchain. The addi-
tional run-time validation adds a slight increase to
the load time. Handling release branches gets a
bit more complicated, but also safer. Switching to
symbol versioning is therefore a net gain.

2.2 Kernel interfaces

Kernel and userland interact via a number of dif-
ferent mechanisms:

1. System calls,

2. System controls,

3. I/O controls.

System calls follow the C function call ABI
and generally are optimised for raw performance.
Change to the argument lists or the return type are
implemented by adding a new system call with glue
in the kernel to convert the old types to the new
ones as needed. This is the same process as used
for running 32bit processes on a 64bit kernel. His-
torically, extended system calls only added to the
list and never deprecated the existing ones. The
addition of openat for example didn’t move open

to a compatibility list, even though libc can easily
provide open in userland. The advantage of keep-
ing both system calls is that the kernel normally
has to keep them for compatiblity anyway, so the
translation in libc would be duplicated code. On
the other hand, especially for embedded use, com-
patibility options in the kernel are often disabled,

so a leaner kernel can effectively reduce the total
memory foot print.

The exceptions to the rule of system calls be-
ing optimised for raw performance are ptrace,
getcontext and setcontext. While the perfor-
mance is still highly relevant, they also have to deal
with semi-regular changes on living architectures
like x86. Support for the SSE2 and AVX instruc-
tion sets requires space in the platform-dependent
register set definitions. Vector instructions on other
platforms like MIPS, ARM or PowerPC provided
similar issues in the past. Unlike other system calls,
it is therefore important to (re)design these inter-
faces to allow for future growth. The next iteration
will therefore include two important changes:

• The kernel exports the space needed for the
full context via sysctl.

• The structures themselve are prefixed by their
size and version field.

Extensions are still supposed to happen backwards
compatible, even if that means duplication of data.
Special purpose tools can still use a plain C struc-
ture, but are unable to access later platform addi-
tions. Libraries wanting to do signal frame inspec-
tion and other operations can allocate space dy-
namically and only parts wanting to deal with the
new features have to fully support the new fields.

A review of other system calls is planned to check
if they can benefit from explicit versioning. Some
good candidates like the stat and statvfs families
cannot directly benefit from versioning as their use
is partially dictated by POSIX. Nevertheless pro-
viding a NetBSD-specific version for internal use
in libc and an external userland-only view without
the versioning fields can help pushing ABI stability
concerns fully from the kernel/userland boundary
into libc.

For system controls, API and ABI stability is
handled inconsistently. Many driver and subsys-
tem specific controls are created and removed at
will following the development of the code. Other
interfaces are used by many programs for query-
ing the system state and are considered a central
part of the kernel ABI contract. Querying the pro-
cess table, the state of the VM subsystem or statis-
tics of all network interfaces are just a few example
of those. Just like system calls, NetBSD provides

4

compatibility handlers for dealing with older ver-
sions or 32bit programs running on a 64bit kernel
for those. Performance constraints still apply in
so far as the amount of data queried can be large
and query rate can be high. The data itself is well
structured, but often a mix of text and counters.
As alternative to implementing versioning manu-
ally, using tools like Protobuf[Cam15] can auto-
mate the process. Schema validation helps to re-
duce the attack surface of the kernel for writeable
interface. The schema themselve help the docu-
mentation and allow automatic human-friendly de-
coding during debugging.
The final category, I/O controls is the area with

the least amount of systematic compatibility. The
controls are identified by a single integer and inter-
preted according to device referenced. The BSDs
encode the size of the argument structure into the
integer, so addition of fields naturally result in a
new I/O control number. The interface is problem-
atic for a number of reasons:

• The context dependent interpretation of the
request number makes it difficult to automati-
cally decode the argument for debugging pur-
poses. The kdump sources have hard-coded
preferences to resolve conflicts. On NetBS-
D/AMD64 for example, the meteor driver and
dtrace use overlapping requests.

• Passing variable-length data is difficult and er-
ror prone. Address space annotations could
improve the situation a bit by allowing the
compiler to flag direct access to userland point-
ers inside the kernel, but this is currently not
used in NetBSD.

• No tools currently exist to automatically de-
tect ABI incompatible changes.

The same approaches discussed for system controls
apply here as well. A potential solution could in-
volve a global registry of Protobuf schemas, identi-
fying each one with a UUID. Due to the amount of
legacy code using I/O controls to query the network
stack alone, this is a daunting task though.

3 Performance vs. flexibility

The libc interfaces are often used in many perfor-
mance sensitive functions. As such, the abstrac-

int t rue e l ement s ;

void TEST(void) {
int ch ;

for (ch = 0 ; ch < 256 ; ++ch) {
i f (i s a l pha ((unsigned char) ch)) {

#ifde f FORCERELOAD
asm volat i le (”” : : : ”memory”) ;

#endif
++true e l ement s ;

}
}

}
Listing 5: Benchmark function for isalpha

tions of the interface are sometimes broken by leaky
implementations in the form of macros or inline
functions. The two most important cases are the
ctype.h predicates and the parts of the standard
I/O interface related to character based I/O. The
former uses bit masks into an array, making the
bitmasks and element size part of the libc ABI con-
tract. The latter exposes the FILE layout directly,
so third parties can investigate or change things
(gnulib has such hacks) or encode size, position and
content of certain fields via the macros in stdio.h.
Another issue of wide spread implications is keep-

ing the POSIX thread interface as separate library
or merging it into libc. They already have a very
tight coupling as thread cancellation has to inter-
act with system calls and libc requires mutexes in
a number of thread-safe interfaces like malloc.

3.1 isalpha as representative of the
ctype.h

The ctype.h predicates are commonly used in
parsers. The current NetBSD implementation is of
isalpha and friends is a macro and involves load-
ing a pointer from a global variable and indirection
with the character to be tested. As isalpha uses
the process locale, the pointer load often needs to
be redone as the compiler can’t know if setlocale
has been called. Using the isalpha l interface for
accessing an explict locale like the C locale doesn’t
have this constraint as a data associated with a lo-
cale t instance doesn’t change during its life time.

5

isalpha macro isalpha function isalpha l function
Dynamic program: 252µs 856 µs 863µs
...with reload: 288µs 856 µs 863µs
Static program: 246µs 614 µs 615µs
...with reload: 286µs 614 µs 614µs

Table 1: Run time of figure 5 on an AMD64 system

The current implementation of isalpha l as func-
tion call doesn’t exploit this knowledge though. A
micro-benchmark (figures 5 and 1) shows the op-
timisation is still highly desirable as the function
call overhead and the associated code generation
changes slow down the function version by a factor
of 2.5 even on a platform with very fast function
calls. Two options are available for implementing
this optimisation for the explicit locale variants:

• Make the position of the classification tables
public parts of locale t.

• Wrap the logic for obtaining the classification
table in a function that the compiler can opti-
mise.

The second option is clearly more desirable as it
keeps the ABI contract small. GCC and Clang
both allow tagging functions as immutable for a
given set of arguments, but there is currently no
attribute that cleanly matches the expections of ar-
guments with a limited life-time. Discussions with
both groups are underway to clarify and/or rectify
this situation. The end result would be that a call
to isalpha l in a function would look up the lo-
cale specific classification table once and reuse it for
all further calls, independent of any function calls
in the function. For hot loops, this would cut the
number of memory loads in half. As seen in figure
1, just the pointer reload is 10% of the run time of
the simple test case. Other architectures benefit a
lot more.

3.2 getc as representative of the
standard I/O interface

Historically, NetBSD has provided macro versions
of feof, ferror, clearerr, getc and putc. Even
though getchar and putchar are macros as well,
they only add the appropiate arguments for call-
ing getc and putc. As such, they are not relevant

void TEST(void) {
int ch ;
FILE ∗ f = fopen (” t e s t . txt ” , ” r ”) ;

while ((ch = getc (f)) != EOF) {
i f (ch != ’ 0 ’)

abort () ;
}

}
Listing 6: Benchmark function for getc

for the purpose of ABI exposure. Of the five func-
tions initially mentioned, clearerr is used much
less often and generally only when handling error
conditions or end-of-file. There doesn’t seem to be
a good reasonn for keeping it on the list as it is
not performance sensitive. feof and ferror are
commonly used in two ways:

• Before closing a stream to see if everything has
been processed without error.

• After individual operations indiciated a prob-
lem.

Neither case is typically the hot path, so dropping
them from the macro list would only affect code
using them directly as exit conditions of a loop or
similar cases. Optimising for badly written code
doesn’t sound like a good justification. That leaves
getc and putc.
A simple test function (figure 6) was used to eval-

uate the impact of the macro when processing one
MB of zeroes. AMD64 is used as platform to repre-
sent modern CPUs with efficient function call han-
dling. HPPA is special as it is the NetBSD with
the highest function call overhead, especially across
shared library boundaries.
The first notable result is that the getc macro

on NetBSD is clearly too fast to be correct. A
look at the code confirms that it is not thread-safe

6

getc macro getc function getc unlocked
AMD64 Dynamic program: 2.89ms 11.3ms 3.57ms
AMD64 Static program: 2.91ms 8.43ms 3.39ms
HPPA Dynamic program: 0.290 s 2.293 s 0.825 s
HPPA Static program: 0.350 s 1.587 s 0.644 s

Table 2: Run time of figure 6 on a AMD64 and HPPA

and cannot be used correctly in multi-thread pro-
grams. The design of the test case ensures that the
buffer can be filled as much as possible, so the fall-
back path in the macro version to refill the buffer
is rarely hit. Even then it is less than 20% faster
than the getc unlocked function on AMD64. The
story looks different on HPPA though. The func-
tion version needs three times as long for dynamic
linking, highlighting just how slow the architecture
is for this use case.

The 20% gain of the macro version relative to the
unlocked function call by itself would not justify
exposing the internals of the FILE buffering. The
factor of three seen on HPPA is significant enough
to not make it a clear cut decision. Careful mea-
surements on the other NetBSD architectures have
to be done to verify whether HPPA is singular ex-
ception and to decide if it should affect the design
here.

Another important result from the tests is that
the macro version must be made thread-safe by de-
fault, but it is also clear that a build-time switch
is desirable for programs that want to use the un-
locked interface without code changes when they
know that they are not going to use the same
stream from different threads.

If macro versions of the getc unlocked and
putc unlocked functions are to be kept, a min-
imal buffer interface must be exposed. For
getc unlocked, the best choice seems to be to ex-
pose the current position and the end of the read
buffer, so that only one increment is needed for con-
suming input. For putc unlocked, a slight compli-
cation is introduced by the difference between line
buffering and full buffering. If the former is used,
the buffer has to be flushed on newlines. As such,
a flag is needed in addition to the current position
and of the write buffer.

3.3 Multi-threading and libc

The history of multi-threading in NetBSD reflects
the general of the last two decades toward multi-
processor environments. When the native POSIX
thread support started, new hooks in libc where
introduced to allow a thread library to replace mu-
tex stubs in a way that a non-threading program
gets as small a performance penalty as possible.
Over time, many (third party) libraries have be-
come thread-aware by expecting stub implementa-
tions for mutex and conditional variables. When
badly designed libraries appeared that mix thread-
creating code with thread-aware code and expect
to load such libraries via dlopen, even more parts
of libpthread had to move into libc. At this point,
it becomes a valid question on whether a separate
thread library is useful or not.
One complicated part of the POSIX thread in-

terface is the concept of cancellation points. One
thread of a program can ask another thread to ter-
minate whenever that threads hits the next cancel-
lation point. Cancellation points are functions like
read or write, so a full merge would introduce ad-
ditional checks in many system calls. At the same
time, a good amount of the weak aliasing of system
calls in libc could go away. When using a hidden
counter of all threads with outstanding cancellation
requests, the common case of not using cancellation
gets a penalty of one instruction relative load and
predicted-true branch. Compared to the cost of
system calls in general, that should be in the noise.
The other important part of the thread inter-

face is the earlier question of avoiding or mini-
mizing overhead for non-threaded programs. Two
approaches are possible here. Keeping libpthread
as library containing just pthread create would
allow declaring a program as non-threaded, if
libpthread was not initially loaded. In that case,
libc can check whether mutex functions with atomic
operations are required or the cheaper non-atomic
versions. Indirect functions can be set appropiately.

7

This makes the single threaded mutex operations as
expensive as a function call and whatever basic san-
ity checking is desired. The other option is to have a
hidden variable to determine if threading is active.
This variable would be set when pthread create is
used first. The advantage is that it allows dlopen
of libpthread without any restrictions, but it means
that all atomic operations have to be protected by
a check, which slows down every operation slightly.
It is currently not clear which choice is better.

4 Balancing modularity vs.
essential functionality

Over the years, NetBSD’s libc has accumulated a
number of interfaces that (by themselve) are clearly
not essential for many programs. A major bump
provides a good chance to verify which components
really belong into libc and which don’t. Four can-
didates for moving out of libc come immediately to
mind:

• NIS (a.k.a. Yellow Pages),

• SUN-RPC,

• ISC’s resolver interface,

• Berkeley DB (BDB).

The main reason for NIS keeping in libc so far are
short-comings of the Name Service Switch(NSS)
implementation. With the improvements outlined
in section 6, the necessity for keeping it in libc goes
away.
SUN-RPC is primarily used by NIS and NFS and

with NIS no longer being needed in libc, the RPC
code can move out as well.
The DNS resolver is a bit more involved. On one

hand, the ability to resolve DNS entries is clearly
required by central interfaces like getaddrinfo

and moving those to a separate library like So-
laris’s libnsl seems a move in the wrong direc-
tion. On the other hand, just because libc must
be able to resolve DNS entries, it doesn’t have
to publically expose its resolver. A practical ap-
proach is completely hidding the libc resolver un-
der a prefix like resolver and using weak aliases
(static linking) or indirect functions (dynamic link-
ing) to provide a public interface library. Con-
crete, libc contains res nquery under the name

resolver res nquery. In the static version, a
weak alias res nquery is provided, that can be
replaced by other programs if necessary without
getting a duplicate definition error from ld. For
dynamic linkage, libresolv.so provides res nquery

as indirect function (STT GNU IFUNC). An in-
direct function will be called by the dynamic
linker to determine the address for the GOT entry,
i.e. res nquery is called and returns returns the
address of resolver res nquery. Non-reentrant
interfaces like res query don’t have to be imple-
mented the dynamic libc at all. The advantage
of this approach is that libc can move to a com-
pletely different resolver implementation and the
only coordination is keeping libresolv.so in sync as
it now has to provide the full implementation by it-
self. Candidates for alternative DNS resolvers exist,
but none provide a good enough or well established
enough interface that it.
The last item is BDB. The existing code base is

ancient and code quality is still somewhat question-
able. Bugs for edge cases still pop up every now and
then in the BSDs. Newer versions of BDB exist, but
Sleepycat and later Oracle decided to change the
code license to something GPL-like. A code update
is therefore not acceptable for legal reasons. As a
general purpose storage backend, the BSD licensed
version of BDB has serious limitations like the lack
of transactions, very coarse locking schemes and no
crash safety. NetBSD’s libc had a number of users
of BDB, to avoid parsing text files over and over
again or building adhoc hash tables as cache. Most
instances like getservbyname have been converted
to use the NetBSD Constant Database (CDB) for-
mat instead. As the name implies, it is a read-
only format. It features true O(1) look-up complex-
ity and the creation is typically significantly faster
than rebuilding a BDB file from scratch. The two
remaining users of BDB in libc are the password
database and the utmpx record database.
The password database is somewhat complicated

to replace due to the way NIS support has been
integrated. Specifically, the NIS compatibility of +
overrides and - exclusions significantly increase the
code complexity. While explicit name based over-
rides and exclusions can be reasonably handled via
additional hash-friendly look-ups, netgroup sup-
port is somewhat different. The existing code has
thread-safety issues and the number of look-ups
scaled linearly with the number of netgroup en-

8

tries in passwd. For new code, this would clearly
not be acceptable and implementing it on top of
a hash database like CDB requires explicit record
chains. With NSS it would be possible to introduce
a general overlay layer, specifying which backend to
query and how to combine the results. It would re-
quire breaking the legacy passwd files though. A
discussion of both approaches is still needed.

The utmpx database finally is a special issue as it
is accessed as part of the login process and any form
of locking is problematic when processes can be sus-
pended via SIGSTOP by an attack while potentially
holding a write lock. The older utmp file was a
fixed-size record file indexed directly by the user
id. This worked well enough when user ids were
16bit, but sparse files in the GB range are handled
badly by many tools. The current BDB use on the
other hand has the problem that a suspended pro-
cess can hold the file lock and prevent other modifi-
cations. The author has devised a storage efficient
file format for semi-sparse integer key access requir-
ing compare-and-swap (CAS) on memory mapped
files for quantities as the key. All NetBSD plat-
forms except SPARC qualify for this. SPARC is
special as it has both available and supported SMP
hardware and lacks hardware support for CAS or
equivalent functionality. No benchmarks compar-
ing BDB and the new format exist yet.

In summary, moving BDB out of libc is a feasi-
ble project, but decisions about NIS compatibility
in the password database have to be made first.
The utmptx database can be replaced in the near
future. Components like NIS and SUN-RPC pri-
marily depend on fixing the NSS implementation,
which can be tackled incrementally first. The re-
solver implementation can be easily isolated, hid-
den and optionally provided via a stub library to
third parties while adding only initialisation over-
head.

5 The dynamic linker and dy-
namic linking

The dynamic linker naturally forms a special con-
tract with the rest of the system. Some of the
interface changes are adjustments of historic mis-
takes, the NetBSD legacy interface of calling the
dynamic linker via pointers in the object handle

is a good example of this and detailed in the first
subsection. Sometimes platform create strange re-
quirements. PowerPC and HPPA are examples of
platforms using function labels, but HPPA is spe-
cial as it requires dynamic allocation in dladdr for
them unlike every other platform. Memory alloca-
tions are tricky as they must be signal safe due to
lazy TLS allocation. Finally, copy relocations are a
problem when designing interfaces involving global
variables with ABI compatibility in mind.

5.1 The legacy dlfcn.h interface

When ELF was originally introduced in NetBSD,
dlopen and friends were provided by crt0.o as in-
direct function calls to addresses stored in the ob-
ject handle passed from the dynamic linker. This
was fixed in 2003 by providing only weak symbols
in libc and strong versions directly from the dy-
namic linker. The old interface has to be retained
since binaries created before 2000 still use the same
ld.elf so. This means removing fields from the
main object definition in the dynamic linker or
shuffling them around to better group them is not
possible when they are early enough in the struc-
ture.

5.2 HPPA and inter-object calls

HPPA (or PA-RISC) has a somewhat peculiar call-
ing convention for inter-library calls. Some (espe-
cially newer) architectures make it very easy to cre-
ate Position Independent Code by providing both
instruction-relative jump/call instructions as well
as instruction-relative load/store. Other architec-
tures like i386 use a relative call instruction to push
the current instruction pointer on the stack and
load it back to a general purpose register. Either
way allows access to functions and variables of the
current shared object, including the Global Offset
Table (GOT) for indirect access to global functions
and variables. For all those architectures, the PIC
setup is the responsibility of the callee, the caller
doesn’t know about the details at all. For vari-
ous historic reasons, the HPPA ELF ABI preserved
many of the pecularities of the older HP-UX calling
convention.
Calls to non-local functions on HPPA use the

special $$dyncall helper function with the target
as argument. If the second-lowest bit is not set

9

in the target addres, the helper function jumps di-
rectly to the target. This is used if the dynamic
linker resolved the argument to a function within
the same shared object. Otherwise, the argument
is a procedure label (plabel), a pair of target ad-
dress and the address of the GOT of the target.
The helper function will now load the new GOT
and call the real target. Every PIC function is re-
sponsible for reloading the previously saved value
of the GOT register from the stack.
It is not obvious why this calling convention is

any better than the approach used i.e. on i386, but
it creates a specific challenge when plabels are used
for indirect calls. The C ABI allows testing func-
tion pointers for equality, even across shared object
boundariese. This means that taking the address
of a (global) function must provide the same value
from the main program and a shared library. Nor-
mally, the plabel is stored in the Procedure Link-
ing Table (PLT) of the importing shared object
and two shared objects referencing the same global
function would therefore use different addresses as
they have different PLTs. For even more question-
able reasons, shared objects on HPPA do not con-
tain space for the necessary plabels in the exporting
library, so whenever the dynamic linker has a relo-
cation that might be used as a function pointer, it
has to search an internal table for an existing plabel
and otherwise allocate additional memory for a new
one. The same requirements apply to dlsym and
similar functions. This is problematic as it costs
time and requires an exclusive lock. It also leaks
HPPA internals into generic platform-independent
code.
There are two different approaches to fix this

problem:

• Reserve space for plabels for every function in
the dynamic symbol table.

• Fix the calling convention to work more like
other platforms.

While the second approach would simplify things
a lot, it requires changes to linker, compiler and
various assembler modules. It is currently not seen
as feasible. The other option is much more con-
tained as the linker already has most of the pieces
necessary in place. The 64bit HPPA linker already
has some logic for creating a .opd section with the
plabels, but retrofitting it into the 32bit creation

is not that difficult either. It requires introducing
either a new segment type in the program header
to mark a part of the PLT. This part of the PLT
contains one plabel for exported function, sorted
by address. Normal PLT relocations can be used
for resolving the relative function address and for
storing the GOT reference in the plabel. Whenever
the dynamic linker has to find find a plabel now,
it can check if the defining shared object contains
the new segment. If it does, all it needs to do is
a binary search to find the authoritive plabel. A
missing entry is a bug and doesn’t have to be han-
dled.
For objects without the new segment, it just has

to allocate entries as before. If the dynamic linker
has access to the section table of the binary, it can
also process the .dynstr section on startup and
build the same data structure dynamically. Since
providing a section header is optional and no other
way to determine the size of the dynamic symbol
table exists, the old fallback path of individual al-
location has to be retained as long as old binaries
have to be supported.

5.3 Copy relocations

Copy relocations in ELF are a side effect of the
desire to link the same object files of the main bi-
nary either dynamically or statically. For normal
function calls, this is not a problem as the linker
will insert a local stub in the PLT to do the ac-
tual call via the GOT. Problematic is the access to
global variables or attemps to load the address of a
function explicitly. When linking against a static li-
brary, the linker knows the precise absolute address
of the symbol. When linking against a dynamic li-
brary on the other hand, the absolute address is
only known at link time. If location containing the
not-yet-known address is in a writeable section, the
linker can just create a relocation, but this doesn’t
work for the text segment. Depending on the plat-
form specific load/store instructions and the reloca-
tions, the linker might be able to turn the absolute
address into a load via GOT, but if it can’t, it has
to cheat. This final solution is the dreaded copy
relocation. What it means is that the linker du-
plicates the variable from the shared library in the
uninitialized data section of the main program and
instructs the dynamic linker to copy the content
at run-time. Possible complications are changes of

10

alignment (which broke libc++ with Clang 3.7 on
FreeBSD) and changes in size.
This problem can be solved in two different ways.

The first approach is switching to position indepen-
dent executables (PIE). Since the main program is
a shared object as well, it will always use the GOT
for accessing global variables. As PIE comes with
both a performance and size penalty on most archi-
tectures, it is not always an option. The alternative
is to selectively tag the moderately few variable ex-
ports from libraries with an attribute, similar to
what is already done for ELF visibility. Now the
compiler can generate code for indirect access to
these variable and depend on the linker to remove
most of the associated overhead when linking stat-
ically. When combined with an explicit header flag
to forbid copy relocations, the problem would be
gone.

6 Plugins and static linking

Plugins are a common part of modern system de-
sign. They allow extending the functionality at
run-time without having to rebuild programs. Ex-
amples of interfaces using or even depending on
plugins in the base system are NSS, PAM and the
Citrus I18N framework. The natural way to imple-
ment plugins in ELF systems is via the dlopen in-
terface of the dynamic linker, but this naturally is a
problem with statically linked programs. GNU libc
contains an attempt of providing dynamic modules
for statically linked binaries, but it tends to create
more problems than it actually fixes as the binaries
are no longer standalone and the version restric-
tions are often not well understood.
NetBSD provides an ad-hoc workaround for link-

ing a fixed set of PAM modules into static binaries.
Patches for similar functionality in Citrus exist, but
are not part of the base system. A common motive
is that they require a non-trivial amount of code in
each plugin framework, so a more systematic ap-
proach is desirable.
crunchgen is a special build tool used for merg-

ing a number of utilities into a single program, ideal
for static linking. On NetBSD it is used for build-
ing the rescue binary, which includes most of /bin
and /sbin in a single program. It works by link-
ing the object files i.e. of ls together into a single
relocatable object and then mangling the symbol

table so to effectively hide all defined symbols ex-
cept main. When renaming main to ls main and
adding a dispatcher based on called program name,
various tools can be mixed together.
The crunchgen approach can be tweeked for an

emulation of dlopen with minimal source changes.
The first step is to link all object files of the modules
together with ld -r. The second step is to extract
a list of symbols for use with dlsym and friends.
There are two basic policies here:

• Modules use ELF visibility to identify public
symbols.

• Modules provide an explicit export list.

Independent of the source of the list, a helper mod-
ule is built to create a linker set with the module
name as used for dlopen and all exported symbols
as strings and a reference to the symbol. The third
step is to mark all symbols as local. As final step,
all the helper module and the relocatable object
from the first step are linked together again. The
final result can be added to the linker invocation ex-
plicitly or in a bundle of other things with a linker
script. No changes to the module source or the
plugin framework itself are necessary. There is one
important restriction that one module can’t depend
on another. This is generally considered bad design
though, the primary example being X.org. Video
drivers often depend on other modules to resolve
some references, where as normally shared libraries
would be used to provide common functionality.
Even worse, the way the X server loads modules
can interact badly with valid compiler optimisa-
tions like tail call elimination, when those optimi-
sations prevent lazy linking. The implementations
of dlopen and dlsym in libc are straight-forward.
For performance concerns it might be useful to pre-
sort all symbol list in the helper modules, so that
dlopen can extract the first and last symbol of a
module for a binary search.

7 Overall migration strategy

This paper has outlined a number of changes with
different levels of disruption. It is highly desirable
to implement as many changes as possible itera-
tively on the main development branch to get wide
spread testing and minimize development overhead.

11

Symbol versioning can be introduced in top of the
existing symbol renaming (section 2.1) by keeping
the existing (renamed) symbols and just tagging
the oldest symbol as unversioned and the current
symbol as default. The export list of libc can be
trimmed conditionally to allow bulk build testing of
a version without legacy support. Userland wrap-
pers for deprecated kernel interfaces (section 2.2)
can be introduced at any time as well. The discus-
sion option of switching to Protobuf for the kernel
interaction can be implemented without flag day as
well.
The implement of the ctype.h family without

explicit locale argument has proven to be nearly
optimal (section 3.1) if thread-safety is a concern.
The discussed optimisations for the versions with
explicit locale argument are waiting on clarifica-
tions of function attributes. No need for further
expansion of the current 16bit character classifica-
tion is seen.
For the stdio.h family, the testing has shown

two issues (section 3.2). The current macro versions
of getc and putc should be used to implement
getc unlocked and putc unlocked, without a fast
path for the reentrant functions. A new option for
requesting the non-reentrant behavior via compile
time define should be introduced. All other macros
can be dropped without replacement. The fallout
from fully hiding the implementation of FILE can
tested by moving the members into a new struc-
ture and making FILE have this structure as single
member. This will create some churn in the libc
code, but preserve the ABI. A new version of the
buffer access is harder to test without ABI changes,
so the final step for information hiding will likely
have to happen on a branch.
Modularisation of libc (section 4) can be pre-

pared by removing internal consumers and intro-
ducing (nearly) empty wrapper libraries. Convert-
ing BDB users like the utmpx database is an ex-
ample for the former. Moving i.e. the resolver li-
brary from an internal namespace and providing
the legacy interface via aliases and as separate li-
brary can be prepared, but the aliases in libc can
only be removed via a non-default option or on a
flag day. Fallout is expected for the resolver and
BDB; NIS and SUN-RPC are less likely to be a
problem.
Removal of the legacy interface of the dynamic

linker (section 5.1) only involves cleanup, it doesn’t

require an actual code change. The HPPA plabel
section (section 5.2) can be introduced as optional
improvement, only the removal of the old interface
requires a flag day. No clear strategy for copy relo-
cations currently exists.
Merging libpthread into libc can be done at any

time, the ABI contract of both libraries can be kept
in place due to the ELF symbol look-up rules.
The new framework for plugins (section 6) only

involves API, not ABI compatibility. Impact on
third party software is estimated to be low.
One of the starting points for investigating a

libc major bump was the libgcc dependency. The
sources of libgcc have been tricky to use for a long
time by making excessive use of conditional com-
piliation and other compile time tricks. The code
is often written to make subtile use of GCC op-
timisations, so a different optimiser can introduce
dependency cycles and other issues. The depen-
dency on GCC’s libgcc is already conditional and
most platforms could switch at any point in time.
The remaining exceptions are platforms with spe-
cial “milli code” requirements, i.e. HPPA’s division
routine, which is linked into every shared library.
The goal is to try to merge as much of the code
upstream into LLVM’s compiler-rt, but the prove-
nience of the libkern source is sometimes difficult
for the necessary MIT license change.

8 Summary and conclusions

In this paper, issues in the current NetBSD user-
land and kernel interfaces have been identified.
Some of those choices can be incrementally ad-
dressed at the cost of keeping legacy code around,
others are more fundamentally limiting. A strategy
has been proposed for moving forward and prepar-
ing as many of the tasks as possible without break-
ing the ABI compatibility, as well as how testing
can be done in preparation for the final ABI break.
Based on the identified tasks, collabaration can be
coordinated and the feasibility of finishing them
in time of NetBSD 8.0 can be evaluated. Open
questions around the migration towards Protobuf
or other schema based extensible data formats re-
main and await a decision.
Further coordination with other platforms using

ELF on the specifics of symbol versioning rules is
desirable as well as how to make versioning anno-

12

tations less painful for developers. Compiler sup-
port has been identified as another area with short-
comings for specific performance sensitive inter-
faces.
At the end of the road, the userland will con-

tain a separate dynamic linker and libc, so that
old binaries can continue to work. Interoperability
will be limited in some areas like having separate
utmpx databases, but central files like the password
database files can be provided in multiple versions.

References

[Cam15] Taylor R. Campbell. Protobufs for ker-
nel/user interface. EuroBSDcon, October
2015.

13

