What’s the best practice for
implementation of rumpclient?

Kazuya GODA
<K-goda@iij.ad.jp>

Agenda

Introduce

Preliminary knowledge
— rumpkernel/client, OpenFlow and switch(4)/switch(8)

Why | took rump kernel to develop switch(4)
How to implement rump kernel client

Let’s practice

Conclusions

Who am I?
* Kazuya GODA

* Work at IlJ as software engineer

— I’'ve worked on SEIL team, using NetBSD, and Tornado team, using
OpenBSD

* OpenBSD developer <goda@openbsd.org>
— But I’ll only talk about NetBSD today

Introduction

* I’m porting switch(4)/switch(8) from OpenBSD
— switch(4) is an implementation of OpenFlow switch

* |’ve used rumpkernel to develop it

— | have to work not only switch(4) but also switch(8) in rump
* In other word, | have to implement switch(8) as rumpclient

* I’ve gotten some knowledges from this work
— I’ll share it with you

Agenda

Introduce

Preliminary knowledge
— rumpkernel/client, OpenFlow and switch(4)/switch(8)

Why | took rump kernel to develop switch(4)
How to implement rump kernel client

Let’s practice

Conclusions

anykernel

virtual
memory

’ schedulerJ

process]

execution

Rump kernel

rump kernel

e

TCP

/1P NF'S example of a
oot rump kernel

use case
802.11 NIC
D g
pick & choose
components

from anykernel

Rumprun unikernel

application
& libc

TCP

/1P NFS

PCI

802.11 NIC

bootstrap
& hypercalls
& scheduler

Rump kernel client

anykernel

virtual
memory

process }

’ scheduler _
execution

rump kernel ’

Rumprun unikernel

application
& libc

TCP

s1p | NFS

PCI

TCP

g /1E e example of a

PCI rump kernel
- use case

- 802.11 ilo
v
pick & choose
components

from anykernel

802.11

NIC

bootstrap
& hypercalls
& scheduler

Rump Kernel Client

Rumprun unikernel * Request something from a ump

application kernel
& libc — It’s an example application that be

TCP using TCP/IP stack and NFS etc...

/1P NF'S

PCI

802.11 NIC

* 3 types of rump kernel client

bootstrap
& hypercalls
& scheduler

— local, remote, microkernel

You Want to get more detail

* You must read the book
— There’re over 200 pages in the book

e THE DESIGN AND IMPLEMENTATION OF
THE ANYKERNEL AND RUMP KERNELS

— http://www.fixup.fi/misc/rumpkernel-book/

BHE DESIGN AND
4‘lﬁﬁiL.EMENTA'HONcn:
ANYKERNEL

AND RUMPIKERNELS

http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/

OpenFlow protocol

* OpenFlow is considered one of the first SDN standards

 Communication protocol that enable the SDN controller
to directly interact with the forwarding plane

switch(4)/switch(8)

switch(4) is much the same as bridge(4) except that has
capability of OpenFlow switch
— switch(4) can work OpenFlow switch itself

switch(8) proxy OpenFlow channel between OpenFlow
controller and switch(4)

<« Remote —»

<+«— Kernel ———»

Architecture of switch(4)/switch(8)

External controller

OpenFlow protocl

switch(8) other controller ifconfig(8)
K’
OpenFlow protocl OpenFlow protocl IOCTL
N
/dev/switchx [-----— ioctl - -

OpenFlow protocl

switch(4)

Controll Plane (switchctl.c)

OpenFlow protocol (switchof.c)

Forwarding Plane (if_ switch.c)

12

<Remote >

/O resources of switch(8)

<« Kernel —»

External controller

\4

\4

A

tcp socket

un|x domain socke

—_———
unix domain socket

unix domain socket

unix domain

unix domain

sogket |

— e e o — (/var/switch.sock) (/tmp/switch0) _soﬁet_
ovs—ofctl switchctl

switch: (parent)

switch: (main)

switchO

13

< Remotg

/O resources of switch(8)

(1) A socket for channel to OFC
(2) An UDS for channel between switch(8)

(3) An UDS for channel between

switchctl(8) <-> switch(8)

\l A [N
\ \ A4 \
¢ ket d . kel unix domain socket unix domain socket unix domain unix domain
unfx domain socke
cp socke (/var/switch.sock) (/tmp/switch0) socket I socket I

switch: (parent)

switch: (main) ovs—ofctl switchctl

/dev/switch0
4

A4

(4) An UDS for channel to local controller

<« Kernel —»

switchO

14

Agenda

Introduce

Preliminary knowledge
— rumpkernel/client, OpenFlow and switch(4)/switch(8)

Why | took rump kernel to develop switch(4)
How to implement rump kernel client

Let’s practice

Conclusions

15

Why | took rump kernel to develop switch(4)

* If switch(4) runs on rump kernel

1. It can be easy to develop [debug to switch(4)
2. It can use some debug [profile tools such as Valgrind

3. It can be useful for development of switch(8)

Goal
1. switch(4) can work on rump kernel

2. switch(8) can communicate switch (4) in rump kernel

— Any OFCs can communicate switch(4) in rump kernel via
switch(8)

3. Avoid modifying switch(8) as much as possible
— It’s decided by my own mind that how much it can modify

<« Remote —»

Architecture of switch(4)/switch(8)

External controller

<«—— Userland ———

«— Kernel ————»

switch(8)

other controller

][OpenFlow protocl 1; OpenFlow protocl

Work as rumpclient

/dev/switch*

OpenFlow protocl

switch(4)

Controll Plane (switchctl.c)

OpenFlow protocol (switchof.c)

Forwarding Plane (if_ switch.c)

Work as rumpkernel

Agenda

Introduce

Preliminary knowledge
— rumpkernel/client, OpenFlow and switch(4)/switch(8)

Why | took rump kernel to develop switch(4)
How to implement rump kernel client

Let’s practice

Conclusions

19

 |’ve selected remote

local
host kernel
“\
local client
rump kernel
roc1
P Y,

remote

host kernel

'\

remote client

rump call stubs

proc1

host kernel ‘

™~

local client

rump kernel

proc2

3 Types of Rump Kernel Client

microkernel

host kernel

—_—

/N

4 N\

pkernel client local client
rump kernel
roc1 roc2
P) p.

20

2 way implementation of remote client

* Use librumphijack
— Hijacks host system call by LD_ PRELOAD
— Not need any modify for rump kernel client

* Modify application to work as rump kernel client

librumphijack

* librumphijack hijacks system [procn | driverx broc m
” d t t fd 0 fs 1 driver x fd O
Call and proxy 1t to rump f(.j..l P drivery fc.inl
kernel fdj tcp/ip teplip fd k
host kernel rump kernel

A

libc | librumpclient |

librumphijack
application + libs

* Figure 3.27: System call hijacking Remote client architecture, THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUI\/IPz}ﬁERNELS

int

Modify application to work as rump kernel client

main(int argc, char *argv[])

{

[....]
/* bootstrap rump kernel */
rump_init();

/* open bpf device, fd is in implicit process */
if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, @)) == -1)
err(1, "bpf open");

/* set bpf to use it */
strlcpy(ifr.ifr_name, "virte", sizeof(ifr.ifr_name));
if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)
err(1l, "set if");
[....]

e

o

\\

remote
host kernel ‘ ‘ host kernel
I -
remote client /17 local client
rump call stubs rump kernel
proct proc2

-

23

Modify application to work as rump kernel client

int
main(int argc, char *argv[]) remote
{

[.]

/* bootstrap rump kernel */
rump_init(); host kernel ‘ ‘ host kernel

/* open bpf.device, fd is in implicit process */
if ((fd =|rump_sys_open(_PATH_BPF, O_RDWR, ©))|== -1)
el : ’ Epl UpE”) L~ ~ -~

/* set bpf to use it */ remote client local client

strlcpy(ifr.ifr_name, "virte", sizeof(ifr.ifr_name));
if (rump_sys ioctl(fd, BIOCSETIF, &ifr) == -1)
err(1, "set if"); proc1 proc2
e

rump call stubs rump kernel

Rump call stubs (librumpclient) proxys system call 24

Agenda

Introduce

Preliminary knowledge
— rumpkernel/client, OpenFlow and switch(4)/switch(8)

Why | took rump kernel to develop switch(4)
How to implement rump kernel client

Let’s practice

Conclusions

25

Attempt 3 ways to work switch(8) as rump client

1. Apply librumphijack

2. Modify switch(8) for rump kenel client

3. Put I/O Proxy daemon between switch(4) and switch(8)

Attempt 3 ways to work switch(8) as rump client

1. Apply librumphijack

Apply librumphijack

* Fortunately, switch(8) only calls rumpkernel-supporting
system calls

rump kernel

librumphijack

E<Rm te >
-

ooooooooooo

el —»

28

<« Kern

Couldn’t get good result...

* rumphijack doesn’t support kqueue/kevent
— *) rump kernel supports kevent/kgeueu

* A Commnet at kevent() in librumhijack

* Check that we don't attempt to kevent rump kernel fd's.

* That needs similar treatment to select/poll, but is slightly
* trickier since we need to manage to different kg descriptors.
* (TODO, in case you're wondering).

29

Review

* That’s how it goes

* The comment offers me to implement kqueue/kevent
to rumphijack

— But | guess it’s a lot difficult so | didn’t it at that moment

* | considered the other way

Attempt 3 ways to work switch(8) as rump client

2. Modify switch(8) for rump kenel client

Only calls rump kernel’s system calls
when /O resources are rump kernel’s

* Fortunately, only /dev/switcho communicates with
rump kernel

(1) A socket for channel to OFC

(3) A UDS for channel between
switchctl(8) <-> switch(8)

<«Remote

(4) A UDS for channel to local controller

< Kernel —

switchO 32

Couldn’t get any good results

* Not enough to consider using difference kernels

* It’s difficult to achieve I/O multiplexer for difference
kernels because it’s necessary to work tricky

What’s difficu

switch(8) has multip

t to handle I/O multiplexer?

e I/O such as for /dev/switcho,

OpenFlow Controller(OFQ), etc...
— switch(8) uses kgeueu/kevent to I/O multiplexer

The FD of channel between OFC s held by host kernel
The FD of channel between switch(4) held by rump kernel

.

It’s impossible to handle 1/O resources in difference kernels

by the one kernel

34

Review

* An approach that handles different kernel’s I/O seems
not so good, especially I/O multiplexing

 switch(8) should only handle either I/O resources of
rump’s or host’s

— switch(8) linked a few external libraries such as libevent, so it
have to replace every system call within external libraries

— | never want to do it!!

Attempt 3 ways to work switch(8) as rump client

3. Putan /O proxy daemon between switch(4) and switch(8)

An 1/O Proxy Daemon between switch(4) and switch(8)

* Fortunately, called system calls for /dev/switcho are
open, close, read, write, kqueue and kevent

* |t can replace easily to Unix Domain Socket

__' __
[] \ | \4 ¢ ¢ \i
©
= e ———
© A v
° I | switch: (parent) | | switch: (main) |
3 I
l f 2 open, close, read, write, kqueue
---------- | /dev/switch0 b

A

ernel —

v 37

swioproxyd(8)

Communicate between switch(8) and swioproxyd(8) via
Unix Domain Socket

swioproxyd(8) proxys between switch(8) and rumpkernel

\r—l/ S =)
il} \ J \ i . L l \ 4
) unix domain soc ket unix domain socket unix domain | |} unix domain
tep ket unjx domain sockeft . .
(/var/switch.sock) (/tmp/switch0) socket socket
:| switch: (parent) | | switch: (main) | I ovs-ofctl switchctl

switchO 38

-Kernel -»

swioproxyd(8)

Distinguish between l®

rump’s FDs and host’s FDs \
_____ . .. 0 .

Produces a new thread and host_kevent() ' ramp_kevent()
calls rump_kevent()] i]
:
|
|
|

Produces a new thread and
calls host’s kevent()

| _ _ Anotherproc 1 L_/A_@% proc__ |
. Wait for ready any FDs (4)

return caller

|

host kernel rump kernel

Review
v switch(4) can work on rump kernel

v switch(8) can communicate switch (4) in rump kernel

— Any OFCs can communicate switch(4) in rump kernel via
switch(8)

v" Avoid modifying switch(8) as much as possible
— It’s decided by my own mind that how much it can modify

Conclusion

* At any time, using rumphijack is 1st choice
— But it doesn’t work at a few cases such as switch(8)

* It doesn’t produce good result to handle both rump and
kernel I/O resource in the one program

* It’s effective for linked some external libraries program
to put on proxy

appendix

How to work select/poll in librumphijack

| @

select()

@/ - > A - --

host_select()

rump_select()

\4

\4

host kernel

rump kernel

return caller

|

-

Distinguish between rump’s
FDs and host’s FDs by
checking FD_SET

Produces a new thread and
calls rump_select()

Calls select() on Host kernel
too

. Wait for ready any FDs

