
What’s the best practice for
implementation of rumpclient?

Kazuya GODA

<K-goda@iij.ad.jp>

1

Agenda

• Introduce

• Preliminary knowledge

– rumpkernel/client, OpenFlow and switch(4)/switch(8)

• Why I took rump kernel to develop switch(4)

• How to implement rump kernel client

• Let’s practice

• Conclusions

2

Who am I?

• Kazuya GODA

• Work at IIJ as software engineer
– I’ve worked on SEIL team , using NetBSD, and Tornado team, using

OpenBSD

• OpenBSD developer <goda@openbsd.org>
– But I’ll only talk about NetBSD today

3

Introduction

• I’m porting switch(4)/switch(8) from OpenBSD
– switch(4) is an implementation of OpenFlow switch

• I’ve used rumpkernel to develop it
– I have to work not only switch(4) but also switch(8) in rump

• In other word, I have to implement switch(8) as rumpclient

• I’ve gotten some knowledges from this work
– I’ll share it with you

4

Agenda

• Introduce

• Preliminary knowledge

– rumpkernel/client, OpenFlow and switch(4)/switch(8)

• Why I took rump kernel to develop switch(4)

• How to implement rump kernel client

• Let’s practice

• Conclusions

5

Rump kernel

6

* Figure 2.4: Client types illustrated , THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUMP
KERNELS

Rump kernel client

7

* Figure 2.4: Client types illustrated , THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUMP
KERNELS

Rump Kernel Client

8

• Request something from a ump
kernel

– It’s an example application that be
using TCP/IP stack and NFS etc…

• 3 types of rump kernel client

– local, remote, microkernel

You Want to get more detail

9

• You must read the book
– There’re over 200 pages in the book

• THE DESIGN AND IMPLEMENTATION OF
THE ANYKERNEL AND RUMP KERNELS
– http://www.fixup.fi/misc/rumpkernel-book/

http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/

OpenFlow protocol

• OpenFlow is considered one of the first SDN standards

• Communication protocol that enable the SDN controller
to directly interact with the forwarding plane

10

switch(4)/switch(8)

• switch(4) is much the same as bridge(4) except that has
capability of OpenFlow switch

– switch(4) can work OpenFlow switch itself

• switch(8) proxy OpenFlow channel between OpenFlow
controller and switch(4)

11

Architecture of switch(4)/switch(8)

12

IOCTL

IOCTL

s
w

it
c
h
(4

)

Forward ing Plane (if_ sw itch.c)

OpenFlow protocol (sw itchof.c)

Controll Plane (sw itchctl.c)

sw itch(8)

/dev/sw itch*

ifconfig (8)

External controller
K

e
rn

e
l

U
s
e
rl

a
n
d

ioctl

R
e
m

o
te

other controller

OpenFlow protocl

OpenFlow protocl OpenFlow protocl

OpenFlow protocl

sw itch0

sw itch: (m ain)

/dev/sw itch0

External controller

K
e
rn

e
l

U
s
e
rl

a
n
d

R
e
m

o
te

ovs-ofctl

tcp socket
unix dom ain socket

(/tm p/sw itch0)

unix dom ain

socket

unix dom ain socket

(/var/sw itch.sock)

sw itchctl

unix dom ain

socket

External controller
External controller

unix dom ain socket

sw itch: (parent)

I/O resources of switch(8)

13

sw itch0

sw itch: (m ain)

/dev/sw itch0

External controller

K
e
rn

e
l

U
s
e
rl

a
n
d

R
e
m

o
te

ovs-ofctl

tcp socket
unix dom ain socket

(/tm p/sw itch0)

unix dom ain

socket

unix dom ain socket

(/var/sw itch.sock)

sw itchctl

unix dom ain

socket

External controller
External controller

unix dom ain socket

sw itch: (parent)

I/O resources of switch(8)

14

(1) A socket for channel to OFC

(5) FD to /dev/switch0

(2) An UDS for channel between switch(8)

(3) An UDS for channel between
switchctl(8) <-> switch(8)

(4) An UDS for channel to local controller

Agenda

• Introduce

• Preliminary knowledge

– rumpkernel/client, OpenFlow and switch(4)/switch(8)

• Why I took rump kernel to develop switch(4)

• How to implement rump kernel client

• Let’s practice

• Conclusions

15

Why I took rump kernel to develop switch(4)

• If switch(4) runs on rump kernel

1. It can be easy to develop / debug to switch(4)

2. It can use some debug / profile tools such as Valgrind

3. It can be useful for development of switch(8)

16

Goal

17

1. switch(4) can work on rump kernel

2. switch(8) can communicate switch (4) in rump kernel
– Any OFCs can communicate switch(4) in rump kernel via

switch(8)

3. Avoid modifying switch(8) as much as possible
– It’s decided by my own mind that how much it can modify

Architecture of switch(4)/switch(8)

18

IOCTL

IOCTL

s
w

it
c
h
(4

)

Forward ing Plane (if_ sw itch.c)

OpenFlow protocol (sw itchof.c)

Controll Plane (sw itchctl.c)

sw itch(8)

/dev/sw itch*

ifconfig (8)

External controller
K

e
rn

e
l

U
s
e
rl

a
n
d

ioctl

R
e
m

o
te

other controller

OpenFlow protocl

OpenFlow protocl OpenFlow protocl

OpenFlow protocl

Agenda

• Introduce

• Preliminary knowledge

– rumpkernel/client, OpenFlow and switch(4)/switch(8)

• Why I took rump kernel to develop switch(4)

• How to implement rump kernel client

• Let’s practice

• Conclusions

19

3 Types of Rump Kernel Client

20

• I’ve selected remote

2 way implementation of remote client

• Use librumphijack

– Hijacks host system call by LD_PRELOAD

– Not need any modify for rump kernel client

• Modify application to work as rump kernel client

21

librumphijack

• librumphijack hijacks system
call and proxy it to rump
kernel

22 * Figure 3.27: System call hijacking Remote client architecture, THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUMP KERNELS

Modify application to work as rump kernel client

23

int
main(int argc, char *argv[])
{
 [....]
 /* bootstrap rump kernel */
 rump_init();

 /* open bpf device, fd is in implicit process */
 if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, 0)) == -1)
 err(1, "bpf open");

 /* set bpf to use it */
 strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name));
 if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)
 err(1, "set if");
 [....]
}

Modify application to work as rump kernel client

24

int
main(int argc, char *argv[])
{
 [....]
 /* bootstrap rump kernel */
 rump_init();

 /* open bpf device, fd is in implicit process */
 if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, 0)) == -1)
 err(1, "bpf open");

 /* set bpf to use it */
 strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name));
 if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)
 err(1, "set if");
 [....]
}

Rump call stubs (librumpclient) proxys system call

Agenda

• Introduce

• Preliminary knowledge

– rumpkernel/client, OpenFlow and switch(4)/switch(8)

• Why I took rump kernel to develop switch(4)

• How to implement rump kernel client

• Let’s practice

• Conclusions

25

Attempt 3 ways to work switch(8) as rump client

1. Apply librumphijack

2. Modify switch(8) for rump kenel client

3. Put I/O Proxy daemon between switch(4) and switch(8)

26

Attempt 3 ways to work switch(8) as rump client

1. Apply librumphijack

2. Modify switch(8) for rump kenel client

3. Put I/O Proxy daemon between switch(4) and switch(8)

27

Apply librumphijack

• Fortunately, switch(8) only calls rumpkernel-supporting
system calls

28
sw itch0

sw itch: (m ain)

/dev/sw itch0

External contro ller

K
e
rn

e
l

U
s
e
rl

a
n
d

R
e
m

o
te

ovs-ofctl

tcp socket
unix dom ain socket

(/tm p/sw itch0)

unix dom ain

socket

unix dom ain socket

(/var/sw itch.sock)

sw itchctl

unix dom ain

socket

External contro ller
External contro ller

unix dom ain socket

sw itch: (parent)

open, read , w rite, socket, sendm sg , recvm sg , close, …

lib rum phijack

rum p kernel

Couldn’t get good result…

• rumphijack doesn’t support kqueue/kevent

– *) rump kernel supports kevent/kqeueu

• A Commnet at kevent() in librumhijack

29

 /*
 * Check that we don't attempt to kevent rump kernel fd's.
 * That needs similar treatment to select/poll, but is slightly
 * trickier since we need to manage to different kq descriptors.
 * (TODO, in case you're wondering).
 */

Review

• That’s how it goes

• The comment offers me to implement kqueue/kevent
to rumphijack

– But I guess it’s a lot difficult so I didn’t it at that moment

• I considered the other way

30

Attempt 3 ways to work switch(8) as rump client

1. Apply librumphijack
– Failed because it doesn’t support kqueu/kevent

2. Modify switch(8) for rump kenel client

3. Put I/O Proxy daemon between switch(4) and switch(8)

31

Only calls rump kernel’s system calls
when I/O resources are rump kernel’s

• Fortunately, only /dev/switch0 communicates with
rump kernel

32 sw itch0

sw itch: (m ain)

/dev/sw itch0

External contro ller

K
e
rn

e
l

U
s
e
rl

a
n
d

R
e
m

o
te

ovs-ofctl

tcp socket
unix dom ain socket

(/tm p/sw itch0)

unix dom ain

socket

unix dom ain socket

(/var/sw itch.sock)

sw itchctl

unix dom ain

socket

External contro ller
External contro ller

unix dom ain socket

sw itch: (parent)

(1) A socket for channel to OFC

(5) FD of /dev/switch0

(2) A UDS for channel between switch(8)
(3) A UDS for channel between

switchctl(8) <-> switch(8)

(4) A UDS for channel to local controller

Couldn’t get any good results

• Not enough to consider using difference kernels

• It’s difficult to achieve I/O multiplexer for difference
kernels because it’s necessary to work tricky

33

What’s difficult to handle I/O multiplexer?

• switch(8) has multiple I/O such as for /dev/switch0,
OpenFlow Controller(OFC), etc…
– switch(8) uses kqeueu/kevent to I/O multiplexer

• The FD of channel between OFC is held by host kernel

• The FD of channel between switch(4) held by rump kernel

• It’s impossible to handle I/O resources in difference kernels
by the one kernel

34

Review

• An approach that handles different kernel’s I/O seems
not so good, especially I/O multiplexing

• switch(8) should only handle either I/O resources of
rump’s or host’s

– switch(8) linked a few external libraries such as libevent, so it
have to replace every system call within external libraries

– I never want to do it!!

35

Attempt 3 ways to work switch(8) as rump client

1. Apply librumphijack
– Failed because it doesn’t support kqueu/kevent

2. Modify switch(8) for rump kenel client

– Failed because it’s too difficult to work I/O multiplexing

3. Put an I/O proxy daemon between switch(4) and switch(8)

36

An I/O Proxy Daemon between switch(4) and switch(8)

• Fortunately, called system calls for /dev/switch0 are
open, close, read, write, kqueue and kevent

• It can replace easily to Unix Domain Socket

37

sw itch0

sw itch: (m ain)

/dev/sw itch0

External controller

K
e
rn

e
l

U
s
e
rl

a
n
d

R
e
m

o
te

ovs-ofct l

tcp socket
unix dom ain socket

(/tm p/sw itch0)

unix dom ain

socket

unix dom ain socket

(/var/sw itch.sock)

sw itchctl

unix dom ain

socket

External controller
External controller

unix dom ain socket

sw itch: (parent)

open, close, read, write, kqueue

swioproxyd(8)

38 sw itch0

sw itch: (m ain)

/dev/sw itch0

External contro ller

K
e
rn

e
l

U
s
e
rl

a
n
d

R
e
m

o
te

ovs-ofctl

tcp socket
unix dom ain socket

(/tm p/sw itch0)

unix dom ain

socket

unix dom ain socket

(/var/sw itch.sock)

sw itchctl

unix dom ain

socket

External contro ller
External contro ller

unix dom ain socket

sw itch: (parent)

sw ioproxyd(8)

open, close, read, write, kqueue

Host kernel の UDS へ open, close, read, write, kqueue

• Communicate between switch(8) and swioproxyd(8) via
Unix Domain Socket

• swioproxyd(8) proxys between switch(8) and rumpkernel

swioproxyd(8)

1. Distinguish between
rump’s FDs and host’s FDs

2. Produces a new thread and
calls rump_kevent()

3. Produces a new thread and
calls host’s kevent()

4. Wait for ready any FDs

39

Review

40

 switch(4) can work on rump kernel

 switch(8) can communicate switch (4) in rump kernel
– Any OFCs can communicate switch(4) in rump kernel via

switch(8)

Avoid modifying switch(8) as much as possible
– It’s decided by my own mind that how much it can modify

Conclusion

• At any time, using rumphijack is 1st choice
– But it doesn’t work at a few cases such as switch(8)

• It doesn’t produce good result to handle both rump and

kernel I/O resource in the one program

• It’s effective for linked some external libraries program
to put on proxy

41

appendix

42

How to work select/poll in librumphijack

1. Distinguish between rump’s
FDs and host’s FDs by
checking FD_SET

2. Produces a new thread and
calls rump_select()

3. Calls select() on Host kernel
too

4. Wait for ready any FDs
43

