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Who am I? 

• Kazuya GODA 

 

• Work at IIJ as software engineer 
– I’ve worked on SEIL team , using NetBSD, and Tornado team, using 

OpenBSD  

 

• OpenBSD developer <goda@openbsd.org> 
– But I’ll only talk about NetBSD today 
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Introduction 

• I’m porting switch(4)/switch(8) from OpenBSD 
– switch(4) is an implementation of OpenFlow switch 

 

• I’ve used rumpkernel to develop it 
– I have to work not only switch(4) but also switch(8) in rump  

• In other word, I have to implement switch(8) as rumpclient  

 

• I’ve gotten some knowledges from this work 
–  I’ll share it with you 
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Rump kernel  
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* Figure 2.4: Client types illustrated , THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUMP 
KERNELS 



Rump kernel client 
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* Figure 2.4: Client types illustrated , THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUMP 
KERNELS 



Rump Kernel Client 
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• Request something from a ump 
kernel 

– It’s an example application that be 
using TCP/IP stack and NFS etc…  

 

• 3 types of rump kernel client 

– local, remote, microkernel 



You Want to get more detail 
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• You must read the book 
– There’re over 200 pages in the book 

 

• THE DESIGN AND IMPLEMENTATION OF 
THE ANYKERNEL AND RUMP KERNELS 
– http://www.fixup.fi/misc/rumpkernel-book/ 

http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/
http://www.fixup.fi/misc/rumpkernel-book/


OpenFlow protocol 

• OpenFlow is considered one of the first SDN standards 

 

• Communication protocol that enable the SDN controller 
to directly interact with the forwarding plane 
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switch(4)/switch(8) 

• switch(4) is much the same as bridge(4) except that has 
capability of OpenFlow switch 

– switch(4) can work OpenFlow switch itself 

 

• switch(8) proxy OpenFlow channel between OpenFlow 
controller and switch(4) 
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Architecture of switch(4)/switch(8) 
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(1) A socket for channel to OFC 

(5) FD to /dev/switch0 

(2) An UDS for channel between switch(8) 

(3) An UDS for channel between 
switchctl(8) <-> switch(8) 

(4) An UDS for channel to local controller 
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Why I took rump kernel to develop switch(4) 

• If switch(4) runs on rump kernel 

 

1. It can be easy to develop / debug to switch(4)  

 

2. It can use some debug / profile tools such as Valgrind  

 

3. It can be useful for development of switch(8) 
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Goal 
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1. switch(4) can work on rump kernel 

 

2. switch(8) can communicate switch (4) in rump kernel 
– Any OFCs can communicate switch(4) in rump kernel via 

switch(8) 

 

3. Avoid modifying switch(8) as much as possible 
– It’s decided by my own mind that how much it can modify  

 

 



Architecture of switch(4)/switch(8) 
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3 Types of Rump Kernel Client 
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• I’ve selected remote 



2 way implementation of remote client 

• Use librumphijack  

– Hijacks host system call by LD_PRELOAD 

– Not need any modify for rump kernel client 

 

• Modify application to work as rump kernel client 
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librumphijack 

• librumphijack hijacks system 
call and proxy it to rump 
kernel 

 

 

 

22 * Figure 3.27: System call hijacking Remote client architecture, THE DESIGN AND INMPLEMENTATION OF THE ANYKERNEL AND RUMP KERNELS 



Modify application to work as rump kernel client 
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int 
main(int argc, char *argv[]) 
{ 
     [....]  
        /* bootstrap rump kernel */ 
        rump_init(); 
  
        /* open bpf device, fd is in implicit process */ 
        if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, 0)) == -1) 
                err(1, "bpf open"); 
  
        /* set bpf to use it */ 
        strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name)); 
        if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1) 
                err(1, "set if"); 
     [....]  
} 



Modify application to work as rump kernel client 
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int 
main(int argc, char *argv[]) 
{ 
     [....]  
        /* bootstrap rump kernel */ 
        rump_init(); 
  
        /* open bpf device, fd is in implicit process */ 
        if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, 0)) == -1) 
                err(1, "bpf open"); 
  
        /* set bpf to use it */ 
        strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name)); 
        if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1) 
                err(1, "set if"); 
     [....]  
} 

Rump call stubs (librumpclient)  proxys system call 
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Attempt 3 ways to work switch(8) as rump client 

1. Apply librumphijack 

 

 

2. Modify switch(8) for rump kenel client 

 

 

3. Put I/O Proxy daemon between switch(4) and switch(8) 
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Attempt 3 ways to work switch(8) as rump client 

1. Apply librumphijack 

 

 

2. Modify switch(8) for rump kenel client 

 

 

3. Put I/O Proxy daemon between switch(4) and switch(8) 
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Apply librumphijack 

• Fortunately, switch(8) only calls rumpkernel-supporting 
system calls 

28 
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Couldn’t get good result… 

• rumphijack doesn’t support kqueue/kevent 

– *) rump kernel supports kevent/kqeueu 

 

• A Commnet at kevent() in librumhijack 
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    /* 
     * Check that we don't attempt to kevent rump kernel fd's. 
     * That needs similar treatment to select/poll, but is slightly 
     * trickier since we need to manage to different kq descriptors. 
     * (TODO, in case you're wondering). 
     */ 



Review 

• That’s how it goes 

 

• The comment offers me to implement kqueue/kevent 
to rumphijack  

– But I guess it’s a lot difficult so I didn’t it at that moment 

 

• I considered the other way 
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Attempt 3 ways to work switch(8) as rump client 

1. Apply librumphijack 
– Failed because it doesn’t support kqueu/kevent 

 

2. Modify switch(8) for rump kenel client 

 

 

3. Put I/O Proxy daemon between switch(4) and switch(8) 
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Only calls rump kernel’s system calls  
when I/O resources are rump kernel’s 

• Fortunately, only /dev/switch0 communicates with 
rump kernel 
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Couldn’t get any good results 

• Not enough to consider using difference kernels 

 

 

• It’s difficult to achieve I/O multiplexer for difference 
kernels because it’s necessary to work tricky 
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What’s difficult to handle I/O multiplexer? 

• switch(8) has multiple I/O such as for /dev/switch0, 
OpenFlow Controller(OFC), etc… 
– switch(8) uses kqeueu/kevent to I/O multiplexer 

• The FD of channel between OFC is held by host kernel  

• The FD of channel between switch(4)  held by rump kernel  

 

 

• It’s impossible to handle I/O resources in difference kernels 
by the one kernel 
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Review 

• An approach that handles different kernel’s I/O seems 
not so good, especially I/O multiplexing 

 

• switch(8) should only handle either I/O resources of 
rump’s or host’s 

– switch(8) linked a few external libraries such as libevent, so it 
have to replace every system call within external libraries 

– I never want to do it!! 
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Attempt 3 ways to work switch(8) as rump client 

1. Apply librumphijack 
– Failed because it doesn’t support kqueu/kevent 

 

2. Modify switch(8) for rump kenel client 

– Failed because it’s too difficult to work I/O multiplexing 

 

3. Put an I/O proxy daemon between switch(4) and switch(8) 
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An I/O Proxy Daemon between switch(4) and switch(8)  

• Fortunately, called system calls for /dev/switch0 are 
open, close, read, write, kqueue and kevent 

• It can replace easily to Unix Domain Socket 
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swioproxyd(8) 
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open, close, read, write, kqueue 

Host kernel の UDS へ open, close, read, write, kqueue 

• Communicate between switch(8) and swioproxyd(8)  via 
Unix Domain Socket 

• swioproxyd(8) proxys between switch(8) and rumpkernel 
 

 

 



swioproxyd(8) 

1. Distinguish between 
rump’s FDs and host’s FDs 

2. Produces a new thread and 
calls rump_kevent()  

3. Produces a new thread and 
calls host’s kevent()  

4. Wait for ready any FDs 
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Review 

40 

 switch(4) can work on rump kernel 

 

 switch(8) can communicate switch (4) in rump kernel 
– Any OFCs can communicate switch(4) in rump kernel via 

switch(8) 

 

Avoid modifying switch(8) as much as possible 
– It’s decided by my own mind that how much it can modify  

 

 



Conclusion 

• At any time, using rumphijack is 1st choice 
– But it doesn’t work at a few cases such as switch(8) 

 
• It doesn’t produce good result to handle both rump and 

kernel I/O resource in the one program 
 

• It’s effective for linked some external libraries program 
to put on proxy 
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appendix 
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How to work select/poll in librumphijack 

1. Distinguish between rump’s 
FDs and host’s FDs by 
checking FD_SET  

2. Produces a new thread and 
calls rump_select()  

3. Calls select() on Host kernel 
too 

4. Wait for ready any FDs 
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