EUROBSDCON 2005, EXTENDED ABSTRACT SUBMISSION; JULY 30, 2005

Single User Secure Shell

Adrian Steinmann

Abstract—Unix systems traditionally do integrity checks and other ini-
tialization before bringing up network services. System administration
tasks, like operating system upgrades, system disk reformatting or parti-
tioning, very often need to bedonein single user mode on a console, and not
via the network. We describe how a ‘ Secure Shell Maintenance RAMdisk
Environment’ can be built and launched very early in the boot process.
Thisenvironment can be used to remotely fix a problem when the machine
is stuck in single user mode. Our method has already been in use for a
number of yearsto upgrade remote managed firewall systems[3] from one
release to the next.

|. INTRODUCTION

NYONE who has needed to unexpectedly commute to a

production machine stuck in single user mode has wished
that it would possibly allow aremote SSH login. Infact, in most
cases the problem in question does not require network access
to be blocked. It is much more a policy decision that the sys-
tem first checks the root filesystem and runs other early startup
scripts which may stall before launching network services.

Inthis paper we describe away to build a* Secure Shell Main-

tenance RAMdisk Environment’ which can be started even be-
fore the root filesystem is checked. This environment can be
useful in many different situations:

Root filesystem failsto check: When a system crashes, it
may damage the root filesystem so that it cannot be au-
tomatically fixed. Traditionaly, the system then stays in
single user mode awaiting input on the console.

System partitions need to beresized: Asmore softwareisin-
stalled, the operating system partitions/ , / usr, or / var
occasionally need to be resized. This usualy calls for a
dunp, bsdl abel , newf s, rest ore cycle, which is
difficult or impossible while the system is running in multi
user mode.

Operating system upgradeviaa cleaninstall: Asisthe case
for the FreeBSD 4.x to 5.x migration, it may be desirableto
newf s al the system partitions to take advantage of new
features or smply todo a‘clean’ install.

Root filesystem should be on a RAID: Even in single user
mode, it is difficult to transform an aready installed
operating system onto a GEOM-based RAID because
the system is using the non-RAID devices. Similarly,
atacontrol creat e will fail onthedisk withthe sys-
tem partitions because they are busy.

Minimal installations on small systems: Full installations on
small machines— so-called embedded systems —with only
compact flash (PC-Engines [1], Soekris [2]) from a stan-
dard distribution or via CD may not be practicable.

Il. HOw TO BUILD THE SECURE SHELL RAMDISK IMAGE

MALL size of the Secure Shell Maintenance RAMdisk
filesystem is the prime concern, yet it should include
al the important tools that are needed for remote system

Adrian Steinmann is founder of Webgroup Consulting AG, CH-8032 Zirich,
Switzerland, <ast @webgr oup. ch>

administration, in particular a SSHv2 daemon and its re-
quired configuration files. In earlier releases, we man-
aged to fit a gzipped kernel and a gzipped RAMdisk im-
age onto one 1.44 MB floppy by using ‘smal’ versions
of tools (see, for example ports/shells/sash and
src/ rel ease/ pi cobsd/ ti nyware/ as well as SSHv1l
ports/security/ssh).

As of FreeBSD release 5., fitting everything on one floppy
became impossible, and in fact most systems deployed nowa-
days do not even carry afloppy drive. Nonetheless, the Secure
Shell Maintenance RAMdisk Environment is still viable be-
cause even systems with only 64MB of compact flash have am-
ple space to store such a RAMdisk image alongside a whittled-
down FreeBSD distribution.

A. Usecr unchgen to minimize RAM utilization

In our implementation, the following programs are available
in the RAMdisk environment:

RAMIi sk# |'s /bin

-sh ex kl dconfig red

[expr kl dl oad restore
atacontrol f ast boot kl dst at rm
badsect fasthal t ki dunl oad rodir
boot Ocf g fdi sk I dconfig route
bsdl abel fsck I'i nk rrestore
bunzi p2 fsck_4. 2bsd I'n scp
bzcat fsck_ffs I's sed

bzi p2 fsck_ufs ndconfig sh
cancontrol ghde mdnf s sl eep
cat gconcat m ni _crunch sl ogin
chfl ags geom nkdi r ssh
chgrp ggat ec nknod sshd
chnod ggat ed nount stty
chown ggat el nmount _cd9660 swapct |
chr oot gl abel nount _devfs swapof f
clri gmrror nmount _f descfs swapon
cp gnop nmount _| i nprocfs sync
date graid3 nmount _nfs sysct|
dd gshsec mount _procfs tar

df gstripe mount _std test
dhcl i ent gunzi p nv touch
dhclient-script gzcat newf s tset

di ski nfo gzip pax tunefs
di skl abel hal t pi ng unount
dnesg host nane ps unl i nk
du ifconfig pwd Vi

dunp init rdunp zcat
dunpf s kenv real pat h

ed kill reboot

RAMIi sk# du -k /bin/x*

2928 /bin/-sh

8 / bi n/ dhclient-script

First and foremost, sshd, ssh, scp as well as the net-
work filesystem utilities nount _nf s, ggat ed, and ggat ec
are present with the requisite network configuration utilities
i fconfig,route,anddhclient. Thestandard archiving
toolsdunp, rest ore, t ar, and pax withgzi p and bzi p2
are also available. Furthermore, since this is primarily an
environment for system administration, the low-level f di sk,
bsdl abel , newf s, and t unef s utilities are included, with
the added luxury of thevi editor (albeit withasmall t er ncap
file supporting only xt erm scr een, vt 220, at 386, and

2 EUROBSDCON 2005, EXTENDED ABSTRACT SUBMISSION; JULY 30, 2005

cons25 terminals). Finaly, at acontrol , canctontrol,
GEOM-based RAID, GBDE, and DHCP are supported when
the underlying kernel is adequately configured.

B. Usendconf i g to create a RAMdisk image

The script src/ rel easel/ scri pt s/ doFS. sh takes a
filesystem hierarchy and creates a file containing a RAMdisk
image of it. For example, src/ r el ease/ Makefi | e usesit
to create the ‘install’ and ‘fixit’ environments on the standard
FreeBSD distribution CD.

This RAMdisk image can be gzipped and placed, say, into a
/ boot / mai nt/ subdirectory, whereit can be accessed at boot
time.

C. Usetheloader to boot into RAMdisk

When FreeBSD boots, one can enter the / boot / | oader
environment on the console by choosing 6. Escape to loader
prompt at the ‘ beastie’ menu:

K |I's /boot/ mai nt
/ boot / mai nt
k. CUSTOM gz
fs_ing.gz
par ans
| oader.rc
K load -t md_i mage / boot/maint/fs_ing
K set vfs.root.nountfronrufs:/dev/nd0

OK aut oboot
Ht [Enter] to boot imediately, or any other ...
Booting [/ boot/kernel /kernel] in 9 seconds...

By setting thevf s. r oot . nount f r omvariable, the kernel
mounts the RAMdisk as the root filesystem instead of the one
foundin/ et c/ f st ab.

I11. SOME MINOR HURDLES

HE implementation of the described plan is straightfor-
ward, except for the following minor difficulties:

Crunching SSHv2: The standard build of FreeBSD sshd re-
quires many libraries, yet most are unnecessary for the
RAMdisk environment. We will show how we can get by
with only linking a fraction of those libraries.

Supporting runtime loader in a crunched binary: Some pro-
grams require runtime loading; this means we must link
some libraries statically and some dynamically — athough
weareusing cr unchgen.

Personalizing a generic RAMdisk image flexibly: It is better
to keep the personalization of the RAMdisk image sepa-
rate, so that deployment consists in one or two binary files
and one or more editable text files.

A. Crunching SSHv2 without too many libraries

Even if we specify lots of NO+ optionsin the cr unchgen
configuration file (figure 1), the link phase fails because
I i bpam a, among others, is still referenced.

Nevertheless, by also turning off the variables LI BWRAP,
USE_PAM HAVE_L| BPAM HAVE_PAMGETENVLI ST,
HAVE_SECURI TY_PAMAPPL H, and XAUTH_PATH directly
in src/crypto/openssh/ confi g. h, the link phase is
successful for the crunchgen fragment in figure 1. One
additionally required library (-1 nd) will be made avail-
able as dynamically loadable shared object in the RAMdisk
environment.

bui | dopt's - DNOPAM - DNCSECURE - DNOCRYPT - DNO_KERBERCS
bui | dopt's - DNONETGRAPH - DNO PSEC - DNO NET6

bui | dopt's - DNOATM - DNO_| PFI LTER - DNO_X

srcdirs /usr/src/secure/usr.bin

srcdirs /usr/src/secure/usr.sbin

progs scp

progs ssh

I'n ssh slogin

progs sshd

libs -1ssh -lutil -1z -lcrypto -lcrypt

Fig. 1. A crunchgen configuration file fragment for SSHv2.

B. Building mostly statically linked crunched binaries

Although the rest of the crunchgen configuration file
is straightforward, the geom programs require the runtime
loader for their dlopen() calls. As an added complication, the
/1'i bl geom geom=. so librariesalso expect| i bnd. so to
be dynamically loaded.

Mostly statically linked binaries can be built simply by
replacing $(CC) -static ... in the Makefile created
by crunchgen with $(CC) - Xl i nker -Bstatic ...
-Xli nker -Bdynam ¢ -1 nd, leaving the crunched binary
dynamically linkedto | i brd. so andl i bc. so.

For our RAMdisk environment to be functional, we will thus
need the/ | i b/ geom shared objectsas well as| i bnd. so
andl i bc. so:

RAMIi sk# du -k /lib

116 /1i b/ geom
1054 /1ib

RAMII sk# |'s
geon

-FR/1lib
libc.so.5 i bnd. so. 2
/1i b/ geom
geom concat . so
geom | abel . so
geommrror.so

geom nop. so
geom rai d3. so
geom shsec. so

geom stripe. so

To date, we haven't investigated if further dynamical linking
of a crunched binary would result in other advantages.

C. One RAMdisk image for many systems

Another important design goal is to have one RAMdisk im-
age for all machines, somehow personalizing it via a separate
configuraton file. This requirement can be solved by passing
information via the kernel environment. The RAMdisk envi-
ronment can then use kenv to configure the network and, in
particular, to create the / root /. ssh/ aut hori zed keys
file there.

set maint.ifconfig_XX0="192.168. 0. 254/ 24"
set maint.ifconfig_XX1="192.168. 1. 254/ 24"
set maint.ifconfig_YYO="dhcp"

set maint. defaul trouter="192. 168.0. 1"

set maint. host="GENERI C'

set mai nt.domai n="SETME. cont

set maint.sshkey_0la="ssh-d.. (120 chars) ..qgP"
set maint.sshkey_01b="1eQXQ . (120 chars) ..9d"
set maint.sshkey_0lc="b7zd+.. (120 chars) ..zu"
set maint.sshkey_01d="KrdBn.. (120 chars) ..tw'
set maint.sshkey_0le="7eMec (120 chars) 4G’

set maint.sshkey_01j =" thLKVUokhU4I &= 200567"

Fig. 2. A/ boot/ mai nt/ par ans file describing machine personality.

Adrian Steinmann: SINGLE USER SECURE SHELL

Inour setup, the/ boot / mai nt / par ans filedescribesthe
machine personality (see figure 2) and isincluded by the loader
when booting into the RAMdisk environment (figure 4).

A limitation of kenv is that the key and value lengths
may not exceed 128 characters. Since we need to craft a
/root/.ssh/aut hori zedkeys filein the RAMdisk en-
vironment, we split its contents into smaller pieces and then
paste them back together before launching the SSH daemon.

IV. PUTTING IT ALL TOGETHER

OR the *Single User Secure Shell’ to be launched early,

the startup script ‘sussh’ needs to be placed into
the /et c/rc. d/ directory with the correct REQUIRE and
BEFORE keywords:

#1/ bi n/ sh
PATH=/ r escue: / usr/ bi n: / bi n: /usr/sbin:/sbin
export PATH

REQUI RE:
PROVI DE:
KEYWORD: noj ai |

BEFORE: initdiskless

On a standard FreeBSD system, this means it will be started
second:

5. 4- STABLE$ rcorder /etc/rc.d/* | head -3
/etc/rc.dl/ preseedrandom

/etc/rc.d/ sussh

/etc/rc.d/initdiskless

preseedrandom
sussh

To control launching of the Single User Secure Shell,
/et c/rc. conf hasthese knobs and tunables:

sussh_enabl e="NO

sussh_mtdir="/boot/ maint"

sussh_fs_i mg="/boot/maint/fs_i m"
sussh_port="22222"

The effect of setting sussh_enabl e="YES" is that at
boot time — before practically any other initialization — the
$sussh_fs_i ng fileismounted onto $sussh _mt di r with
/rescue/ ndconfi g and / rescue/ nount and then the
RAMdisk SSH daemon is launched on port $sussh port.
Given the correct SSH private key and a correctly configured
/ boot / mai nt/ par ans file, aroot shell can be opened re-
motely on, say, port 22222, to work in the RAMdisk environ-
ment should the machine hang in single user mode.

The additional disk space requirementsare modest and hence
this method is also very well applicable to embedded devices.
A gzipped kernel and a gzipped Secure Shell Maintenance
RAMdisk image will be about 3 MB and are integrated into
the / boot hierarchy (figure 3). Note that the loader can also
be gzipped, roughly halving its space requirements. All files
which the loader may load can also be gzipped, and the loader
automatically searches for . gz files and uncompresses them
on-the-fly. Generally we prefer to supply acustom kernel which
has the devi ce nd compiled in and otherwise is stripped of
extraneous options not needed in the RAMdisk. Additional
non-standard options may be compiled in to support DHCP or
cancontrol .

Alternatively, instead of launching the sussh startup script
at boot time, the loader can be instructed to boot directly
into the RAMdisk by including the lines in figure 4 into
/ boot /| oader . r c. The machine can then be rebooted into
the Single User Secure Shell for a console-free system upgrade.

o

=
[N
ONNNONDAMONNNNAD

- STABLE$ /bin/ls -1sFR /boot
beastie. 4th. gz
def aul t s/
devi ce. hints
franmes. 4th. gz
kernel /
| oader *
| oader. 4t h. gz
| oader . conf
| oader . hel p. gz
| oader.rc
mai nt/
screen. 4th. gz
support. 4th. gz

[y

/ boot / def aul ts:
6 | oader. conf. gz

/ boot / ker nel
3216 kerne

/ boot / mai nt
1840 fs_ing.gz
1056 k. CUSTOM gz
2 | oader.rc
2 parans

Fig. 3. An example / boot / directory hierarchy with gzipped loader files,
RAMdisk image, custom RAMdisk kernel, and RAMdisk configuration files.

unl oad

| oad /boot/ mai nt/ k. CUSTOM

load -t nd_image /boot/ maint/fs_ing
i ncl ude / boot/ mai nt/ par ans

set vfs.root.nountfromrufs:/dev/ nmd0
aut oboot 10

Fig. 4. Anexample/ boot/ mai nt/| oader. rc file.

V. FUTURE DIRECTIONS

OOKING forward, we plan to investigate if a Secure Shell

Maintenance RAMdisk Environment could be loaded viaa
kernel module so that the dependence on the/ et ¢/ directory
could be removed. Today, the kernel already attempts to mount
from/ dev/ nd0 inafallback situationif opt i ons MD_ROOT
is defined. With this RAMdisk image, the system would then be
networked according to the configuration in figure 2.

Adrian Steinmann earned a Ph.D. in Mathematical
Physics from Swiss Federa Institute of Technology in
Zurich and has over 15 years experience as atechnical
consultant and software developer. He has been work-
ing on FreeBSD since 1993 (version 1.0) and since
1997 he maintains and develops the base system for a
remote managed firewall called ‘STY X’ [3]. Heisflu-
ent in Perl, C, English, German, ltalian, and has pas-
sion and flair for finding simple solutions to intricate
problems.

REFERENCES

[1] PC Engine WRAP: Wreless Router Application Platform; 2002-2005;
266 MHz AMD Geode SC1100 CPU, 128MB SDRAM, CF, 2-3 LAN, 1-2
Mini-PCI; ww. pcengi nes. ch

[2] Soekris net4501: Compact, low power, low-cost, communication com-
puter; 2001-2005; 133 MHz, 64MB SDRAM, CF, 3 LAN, 1 Mini-PClI;
www. soekri s. com

[3] STYX Firewall: FreeBSD-based Remote Managed Firewall; 1997-2005;
wwy. st yx. ch

