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Chapter 1.

What is pkgsrc?

1.1. Introduction
There is a lot of software freely available for Unix-based systems, which is usually available in form of
the source code. Before such software can be used, it needs to be configured to the local system,
compiled and installed, and this is exactly what The NetBSD Packages Collection (pkgsrc) does. pkgsrc
also has some basic commands to handle binary packages, so that not every user has to build the
packages for himself, which is a time-costly task.

pkgsrc currently contains several thousand packages, including:

• www/apache24 - The Apache web server

• www/firefox - The Firefox web browser

• meta-pkgs/gnome - The GNOME Desktop Environment

• meta-pkgs/kde4 - The K Desktop Environment

. . . just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

1.1.1. Why pkgsrc?

pkgsrc provides the following key features:

• Easy building of software from source as well as the creation and installation of binary packages. The
source and latest patches are retrieved from a master or mirror download site, checksum verified, then
built on your system. Support for binary-only distributions is available for both native platforms and
NetBSD emulated platforms.

• All packages are installed in a consistent directory tree, including binaries, libraries, man pages and
other documentation.

• Tracking of package dependencies automatically, including when performing updates, to ensure
required packages are installed. The configuration files of various packages are handled automatically
during updates, so local changes are preserved.

• Like NetBSD, pkgsrc is designed with portability in mind and consists of highly portable code. This
allows the greatest speed of development when porting to a new platform. This portability also ensures
that pkgsrc is consistent across all platforms.
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• The installation prefix, acceptable software licenses, international encryption requirements and
build-time options for a large number of packages are all set in a simple, central configuration file.

• The entire source (not including the distribution files) is freely available under a BSD license, so you
may extend and adapt pkgsrc to your needs. Support for local packages and patches is available right
out of the box, so you can configure it specifically for your environment.

The following principles are basic to pkgsrc:

• “It should only work if it’s right.” — That means, if a package contains bugs, it’s better to find them
and to complain about them rather than to just install the package and hope that it works. There are
numerous checks in pkgsrc that try to find such bugs: static analysis tools (pkgtools/pkglint),
build-time checks (portability of shell scripts), and post-installation checks (installed files, references
to shared libraries, script interpreters).

• “If it works, it should work everywhere” — Like NetBSD has been ported to many hardware
architectures, pkgsrc has been ported to many operating systems. Care is taken that packages behave
the same on all platforms.

1.1.2. Supported platforms

pkgsrc consists of both a source distribution and a binary distribution for these operating systems. After
retrieving the required source or binaries, you can be up and running with pkgsrc in just minutes!

pkgsrc was derived from FreeBSD’s ports system, and initially developed for NetBSD only. Since then,
pkgsrc has grown a lot, and now supports the following platforms:

Table 1-1. Platforms supported by pkgsrc

Platform Date Support Added Notes
NetBSD
(https://www.NetBSD.org/)

Aug 1997

Solaris
(http://wwws.sun.com/software/solaris/)

Mar 1999 README.Solaris
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.Solaris)

Linux (https://www.kernel.org/) Jun 1999 README.Linux
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.Linux)

Darwin / Mac OS X / OS X /
macOS
(https://developer.apple.com/macos/)

Oct 2001 README.macOS
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.macOS)

FreeBSD
(https://www.freebsd.org/)

Nov 2002 README.FreeBSD
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.FreeBSD)

OpenBSD
(https://www.openbsd.org/)

Nov 2002 README.OpenBSD
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.OpenBSD)
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Platform Date Support Added Notes
IRIX
(https://www.sgi.com/software/irix/)

Dec 2002 README.IRIX
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.IRIX)

BSD/OS Dec 2003 Removed from pkgsrc Mar 2025

AIX (https://www-
1.ibm.com/servers/aix/)

Dec 2003 README.AIX
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.AIX)

Interix
(https://www.microsoft.com/windows/sfu/)
(Microsoft Windows Services for
Unix)

Mar 2004 Removed from pkgsrc Apr 2025

DragonFlyBSD
(https://www.dragonflybsd.org/)

Oct 2004

OSF/1 (http://www.tru64.org/) Nov 2004 README.OSF1
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.OSF1)

HP-UX
(https://www.hp.com/products1/unix/)

Apr 2007 README.HPUX
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.HPUX)

Haiku
(https://www.haiku-os.org/)

Sep 2010 README.Haiku
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.Haiku)

MirBSD
(https://www.mirbsd.org/)

Jan 2011 Removed from pkgsrc Mar 2025

Minix3
(https://www.minix3.org/)

Nov 2011 README.Minix3
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.Minix3)

Cygwin (https://cygwin.com/) Mar 2013 README.Cygwin
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/bootstrap/README.Cygwin)

GNU/kFreeBSD
(https://www.debian.org/ports/kfreebsd-
gnu/)

Jul 2013 Removed from pkgsrc Mar 2025

Bitrig (https://www.bitrig.org/) Jun 2014 Removed from pkgsrc Sep 2022

1.2. Overview
This document is divided into three parts. The first, The pkgsrc user’s guide, describes how one can use
one of the packages in the Package Collection, either by installing a precompiled binary package, or by
building one’s own copy using the NetBSD package system. The second part, The pkgsrc developer’s
guide, explains how to prepare a package so it can be easily built by other NetBSD users without
knowing about the package’s building details. The third part, The pkgsrc infrastructure internals is
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intended for those who want to understand how pkgsrc is implemented.

This document is available in various formats: HTML (index.html), PDF (pkgsrc.pdf), PS (pkgsrc.ps),
TXT (pkgsrc.txt).

1.3. Terminology
There has been a lot of talk about “ports”, “packages”, etc. so far. Here is a description of all the
terminology used within this document.

Package

A set of files and building instructions that describe what’s necessary to build a certain piece of
software using pkgsrc. Packages are traditionally stored under /usr/pkgsrc, but may be stored in
any location, referred to as PKGSRCDIR.

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSD operating system and can be
bootstrapped to run on non-NetBSD operating systems as well. It handles building (compiling),
installing, and removing of packages.

Distfile

This term describes the file or files that are provided by the author of the piece of software to
distribute his work. All the changes necessary to build on NetBSD are reflected in the
corresponding package. Usually the distfile is in the form of a compressed tar-archive, but other
types are possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.

Port

This is the term used by FreeBSD and OpenBSD people for what we call a package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a distfile and stuffed together in a single .tgz file so it can
be installed on machines of the same machine architecture without the need to recompile. Packages
are usually generated in /usr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/packages/).

Sometimes, this is referred to by the term “package” too, especially in the context of precompiled
packages.

Program

The piece of software to be installed which will be constructed from all the files in the distfile by the
actions defined in the corresponding package.
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1.3.1. Roles involved in pkgsrc

pkgsrc users

The pkgsrc users are people who use the packages provided by pkgsrc. Typically they are system
administrators. The people using the software that is inside the packages (maybe called “end users”)
are not covered by the pkgsrc guide.

There are two kinds of pkgsrc users: Some only want to install pre-built binary packages. Others
build the pkgsrc packages from source, either for installing them directly or for building binary
packages themselves. For pkgsrc users Part I in The pkgsrc guide should provide all necessary
documentation.

package maintainers

A package maintainer creates packages as described in Part II in The pkgsrc guide.

infrastructure developers

These people are involved in all those files that live in the mk/ directory and below. Only these
people should need to read through Part III in The pkgsrc guide, though others might be curious, too.

1.4. Typography
When giving examples for commands, shell prompts are used to show if the command should/can be
issued as root, or if “normal” user privileges are sufficient. We use a # for root’s shell prompt, a % for
users’ shell prompt, assuming they use the C-shell or tcsh and a $ for Bourne shell and derivatives.
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Chapter 2.

Getting help

To get help when using pkgsrc, the definitive source is this document, the pkgsrc guide. If you don’t find
anything here, there are alternatives:

• The built-in pkgsrc help, which is available after bootstrapping pkgsrc. Run bmake help topic=. . . to
get help for any topic, such as a variable name like BUILD_DEFS, a make target like do-build, a
missing C or C++ function like strcasecmp or any other topic.

The available help topics are listed in Appendix E.

• To see the value of a single variable, run bmake show-var VARNAME=X .

• To see the values of the most common variables, run bmake show-all. These variables are grouped by
topic. To see the variables for a single topic, run bmake show-all-topic, for example bmake
show-all-fetch.

• The pkgsrc-users mailing list, to which you can subscribe
(https://www.NetBSD.org/mailinglists/#pkgsrc-users) and then ask your questions
(mailto:pkgsrc-users@NetBSD.org).

• The #pkgsrc IRC channel, which is accessible via a web browser (https://web.libera.chat/) or by using
a specialized chat program such as XChat (http://xchat.org/). Pick any user name and join the channel
#pkgsrc.
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Where to get pkgsrc and how to
keep it up-to-date

Before you download and extract the files, you need to decide where you want to extract them. When
using pkgsrc as root user, pkgsrc is usually installed in /usr/pkgsrc. You are though free to install the
sources and binary packages wherever you want in your filesystem, provided that the pathname does not
contain white-space or other characters that are interpreted specially by the shell and some other
programs. A safe bet is to use only letters, digits, underscores and dashes.

3.1. Getting pkgsrc for the first time
Before you download any pkgsrc files, you should decide whether you want the current branch or the
stable branch. The latter is forked on a quarterly basis from the current branch and only gets modified for
security updates. The names of the stable branches are built from the year and the quarter, for example
2024Q4.

The second step is to decide how you want to download pkgsrc. You can get it as a tar file or via CVS.
Both ways are described here.

Note that tar archive contains CVS working copy. Thus you can switch to using CVS at any later time.

3.1.1. As tar archive

The primary download location for all pkgsrc files is https://cdn.NetBSD.org/pub/pkgsrc/ or
ftp://ftp.NetBSD.org/pub/pkgsrc/ (it points to the same location). There are a number of subdirectories
for different purposes, which are described in detail in Appendix D.

The tar archive for the current branch is in the directory current and is called pkgsrc.tar.gz

(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz). It is autogenerated weekly.

To save download time we provide bzip2- and xz-compressed archives which are published at
pkgsrc.tar.bz2 (https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.bz2) and pkgsrc.tar.xz

(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.xz) respectively.

You can fetch the same files using FTP.

The tar file for the stable branch 2024Q4 is in the directory pkgsrc-2024Q4 and is also called
pkgsrc.tar.gz (https://cdn.NetBSD.org/pub/pkgsrc/pkgsrc-2024Q4/pkgsrc.tar.gz).

To download the latest pkgsrc stable tarball, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/pkgsrc-2024Q4/pkgsrc.tar.gz

If you prefer, you can also fetch it using "wget", "curl", or your web browser.
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Then, extract it with:

$ tar -xzf pkgsrc.tar.gz -C /usr

This will create the directory pkgsrc/ in /usr/ and all the package source will be stored under
/usr/pkgsrc/.

To download pkgsrc-current, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz

3.1.2. Via anonymous CVS

To fetch a specific pkgsrc stable branch, run:

$ cd /usr && cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -r pkgsrc-2024Q4 -P pkgsrc

This will create the directory pkgsrc/ in your /usr/ directory and all the package source will be stored
under /usr/pkgsrc/.

To fetch the pkgsrc current branch, run:

$ cd /usr && cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

Refer to the list of available mirrors (https://www.NetBSD.org/mirrors/#anoncvs) to choose a faster CVS
mirror, if needed.

If you get error messages from rsh, you need to set CVS_RSH variable. E.g.:

$ cd /usr && env CVS_RSH=ssh cvs -q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

Refer to documentation on your command shell how to set CVS_RSH=ssh permanently. For Bourne
shells, you can set it in your .profile or better globally in /etc/profile:

# set CVS remote shell command
CVS_RSH=ssh
export CVS_RSH

By default, CVS doesn’t do things like most people would expect it to do. But there is a way to convince
CVS, by creating a file called .cvsrc in your home directory and saving the following lines to it. This
file will save you lots of headache and some bug reports, so we strongly recommend it. You can find an
explanation of this file in the CVS documentation.

# recommended CVS configuration file from the pkgsrc guide
cvs -q
checkout -P
update -dP
diff -upN
rdiff -u
release -d
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3.2. Keeping pkgsrc up-to-date
The preferred way to keep pkgsrc up-to-date is via CVS (which also works if you have first installed it
via a tar file). It saves bandwidth and hard disk activity, compared to downloading the tar file again.

3.2.1. Via tar files

Warning
When updating from a tar file, you first need to completely remove the old pkgsrc
directory. Otherwise those files that have been removed from pkgsrc in the mean
time will not be removed on your local disk, resulting in inconsistencies. When
removing the old files, any changes that you have done to the pkgsrc files will be
lost after updating. Therefore updating via CVS is strongly recommended.

Note that by default the distfiles and the binary packages are saved in the pkgsrc tree, so don’t forget to
rescue them before updating. You can also configure pkgsrc to store distfiles and packages in directories
outside the pkgsrc tree by setting the DISTDIR and PACKAGES variables. See Chapter 6 for the details.

To update pkgsrc from a tar file, download the tar file as explained above. Then, make sure that you have
not made any changes to the files in the pkgsrc directory. Remove the pkgsrc directory and extract the
new tar file. Done.

3.2.2. Via CVS

To update pkgsrc via CVS, change to the pkgsrc directory and run cvs:

$ cd /usr/pkgsrc && cvs update -dP

If you get error messages from rsh, you need to set CVS_RSH variable as described above. E.g.:

$ cd /usr/pkgsrc && env CVS_RSH=ssh cvs up -dP

3.2.2.1. Switching between different pkgsrc branches

When updating pkgsrc, the CVS program keeps track of the branch you selected. But if you, for
whatever reason, want to switch from the stable branch to the current one, you can do it by adding the
option “-A” after the “update” keyword. To switch from the current branch back to the stable branch, add
the “-rpkgsrc-2024Q4” option.

3.2.2.2. What happens to my changes when updating?

When you update pkgsrc, the CVS program will only touch those files that are registered in the CVS
repository. That means that any packages that you created on your own will stay unmodified. If you
change files that are managed by CVS, later updates will try to merge your changes with those that have
been done by others. See the CVS manual, chapter “update” for details.
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Using pkgsrc on systems other
than NetBSD

4.1. Binary distribution
See Section 5.1.

4.2. Bootstrapping pkgsrc
pkgsrc can be bootstrapped for use in two different modes: privileged and unprivileged one. In
unprivileged mode in contrast to privileged one all programs are installed under one particular user and
cannot utilise privileged operations (packages don’t create special users and all special file permissions
like setuid are ignored).

Installing the bootstrap kit from source should be as simple as:

# env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

# cd pkgsrc/bootstrap

# ./bootstrap

To bootstrap in unprivileged mode pass “--unprivileged” flag to bootstrap

By default, in privileged mode pkgsrc uses /usr/pkg for prefix where programs will be installed in, and
/usr/pkg/pkgdb for the package database directory where pkgsrc will do its internal bookkeeping,
/var is used as varbase, where packages install their persistent data. In unprivileged mode pkgsrc uses
~/pkg for prefix, ~/pkg/pkgdb for the package database, and ~/pkg/var for varbase.

You can change default layout using command-line arguments. Run “./bootstrap --help” to get details.

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

Note: It is possible to bootstrap multiple instances of pkgsrc using non-intersecting directories. Use
bmake corresponding to the installation you’re working with to build and install packages.
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Using pkgsrc

Basically, there are two ways of using pkgsrc. The first is to only install the package tools and to use
binary packages that someone else has prepared. This is the “pkg” in pkgsrc. The second way is to install
the “src” of pkgsrc, too. Then you are able to build your own packages, and you can still use binary
packages from someone else.

5.1. Using binary packages
On the cdn.NetBSD.org (https://cdn.NetBSD.org/) site and mirrors, there are collections of binary
packages, ready to be installed. These binary packages have been built using the default settings for the
directories, that is:

• /usr/pkg for LOCALBASE, where most of the files are installed,

• /usr/pkg/etc for configuration files,

• /var for VARBASE, where those files are installed that may change after installation.

If you cannot use these directories for whatever reasons (maybe because you’re not root), you cannot use
these binary packages, but have to build the packages yourself, which is explained in Section 4.2.

5.1.1. Finding binary packages

To install binary packages, you first need to know from where to get them. The first place where you
should look is on the main pkgsrc CDN in the directory /pub/pkgsrc/packages

(https://cdn.NetBSD.org/pub/pkgsrc/packages/).

This directory contains binary packages for multiple platforms. First, select your operating system. Then,
select your hardware architecture, and in the third step, the OS version and the “version” of pkgsrc.

In this directory, you may find a file called bootstrap.tar.gz which contains the package
management tools. If the file is missing, it is likely that your operating system already provides those
tools. Download the file and extract it in the / directory. It will create the directories /usr/pkg
(containing the tools for managing binary packages and the database of installed packages).

5.1.2. Installing binary packages

In the directory from the last section, there is a subdirectory called All/, which contains all the binary
packages that are available for the platform, excluding those that may not be distributed via HTTP or
FTP.

To install packages directly from an FTP or HTTP server, run the following commands in a
Bourne-compatible shell (be sure to su to root first):
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# PATH="/usr/pkg/sbin:/usr/pkg/bin:$PATH"

# PKG_PATH="https://cdn.NetBSD.org/pub/pkgsrc/packages"

# PKG_PATH="$PKG_PATH/OPSYS/ARCH/VERSIONS/All/"

# export PATH PKG_PATH

# pkg_add pkgin

Instead of URLs, you can also use local paths, for example if you are installing from a set of CDROMs,
DVDs or an NFS-mounted repository. If you want to install packages from multiple sources, you can
separate them by a semicolon in PKG_PATH.

After these preparations, installing a package is very easy:

# pkgin search nginx

nginx-1.19.6 Lightweight HTTP server and mail proxy server
nginx-1.18.0nb8 Lightweight HTTP server and mail proxy server
# pkgin install zsh nginx-1.19.6 vim

Note that pkgin is a user-friendly frontend to the pkg_* tools.

Any prerequisite packages needed to run the package in question will be installed, too, assuming they are
present in the repository.

After you’ve installed packages, be sure to have /usr/pkg/bin and /usr/pkg/sbin in your PATH so
you can actually start the just installed program.

5.1.3. Updating packages

To update binary packages, it is recommended that you use pkgin upgrade. This will compare the
remote package repository to your locally installed packages and safely replace any older packages.

Note that pkgsrc is released as quarterly branches. If you are updating to a newer quarterly branch of
pkgsrc, you may need to adjust the repository in /usr/pkg/etc/pkgin/repositories.conf.

5.1.4. Deinstalling packages

To deinstall a package, it does not matter whether it was installed from source code or from a binary
package. Neither the pkgin or the pkg_delete command need to know.

To delete a package, you can just run pkgin remove package-name. The package name can be given
with or without version number.

5.1.5. Getting information about installed packages

The pkg_info shows information about installed packages or binary package files. As with other
management tools, it works with packages installed from source or binaries.
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5.1.6. Checking for security vulnerabilities in installed packages

The pkgsrc Security Team and Packages Groups maintain a list of known vulnerabilities to packages
which are (or have been) included in pkgsrc. The list is available from the NetBSD CDN at
https://cdn.NetBSD.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities.

Please note that not every "vulnerability" with a CVE assignment is exploitable in every configuration.
Some bugs are marked as active simply because an fix was not marked as such. Operating system
specific hardening and mitigation features may also reduce the impact of bugs.

Through pkg_admin fetch-pkg-vulnerabilities, this list can be downloaded automatically, and a
security audit of all packages installed on a system can take place.

There are two components to auditing. The first step, pkg_admin fetch-pkg-vulnerabilities, is for
downloading the list of vulnerabilities from the NetBSD FTP site. The second step, pkg_admin audit,
checks to see if any of your installed packages are vulnerable. If a package is vulnerable, you will see
output similar to the following:

Package samba-2.0.9 has a local-root-shell vulnerability, see
https://www.samba.org/samba/whatsnew/macroexploit.html

You may wish to have the vulnerabilities (https://cdn.NetBSD.org/pub/pkgsrc/distfiles/vulnerabilities)
file downloaded daily so that it remains current. This may be done by adding an appropriate entry to the
root users crontab(5) entry. For example the entry

# Download vulnerabilities file
0 3 * * * /usr/pkg/sbin/pkg_admin fetch-pkg-vulnerabilities >/dev/null 2>&1
# Audit the installed packages and email results to root
9 3 * * * /usr/pkg/sbin/pkg_admin audit |mail -s "Installed package audit result" \

root >/dev/null 2>&1

will update the vulnerability list every day at 3AM, followed by an audit at 3:09AM. The result of the
audit are then emailed to root. On NetBSD this may be accomplished instead by adding the following
line to /etc/daily.conf:

fetch_pkg_vulnerabilities=YES

to fetch the vulnerability list from the daily security script. The system is set to audit the packages by
default but can be set explicitly, if desired (not required), by adding the following line to
/etc/security.conf:

check_pkg_vulnerabilities=YES

see daily.conf(5) and security.conf(5) for more details.

5.1.7. Finding if newer versions of your installed packages are in pkgsrc

Install pkgtools/lintpkgsrc and run lintpkgsrc with the “-i” argument to check if any packages are
stale, e.g.
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% lintpkgsrc -i

...
Version mismatch: ’tcsh’ 6.09.00 vs 6.10.00

5.1.8. Other administrative functions

The pkg_admin executes various administrative functions on the package system.

5.2. Building packages from source
After obtaining pkgsrc, the pkgsrc directory now contains a set of packages, organized into categories.
You can browse the online index of packages, or run make readme from the pkgsrc directory to build
local README.html files for all packages, viewable with any web browser such as www/lynx or
www/firefox.

The default prefix for installed packages is /usr/pkg. If you wish to change this, you should do so by
setting LOCALBASE in mk.conf. You should not try to use multiple different LOCALBASE definitions on
the same system (inside a chroot is an exception).

The rest of this chapter assumes that the package is already in pkgsrc. If it is not, see Part II in The pkgsrc
guide for instructions how to create your own packages.

5.2.1. Requirements

To build packages from source, you need a working C compiler. On NetBSD, you need to install the
“comp” and the “text” distribution sets. If you want to build X11-related packages, the “xbase” and
“xcomp” distribution sets are required, too.

5.2.2. Fetching distfiles

The first step for building a package is downloading the distfiles (i.e. the unmodified source). If they have
not yet been downloaded, pkgsrc will fetch them automatically.

If you have all files that you need in the distfiles directory, you don’t need to connect. If the distfiles
are on CD-ROM, you can mount the CD-ROM on /cdrom and add:

DISTDIR=/cdrom/pkgsrc/distfiles

to your mk.conf.

By default a list of distribution sites will be randomly intermixed to prevent huge load on servers which
holding popular packages (for example, SourceForge.net mirrors). Thus, every time when you need to
fetch yet another distfile all the mirrors will be tried in new (random) order. You can turn this feature off
by setting MASTER_SORT_RANDOM=NO (for PKG_DEVELOPERs it’s already disabled).

You can overwrite some of the major distribution sites to fit to sites that are close to your own. By setting
one or two variables you can modify the order in which the master sites are accessed. MASTER_SORT
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contains a whitespace delimited list of domain suffixes. MASTER_SORT_REGEX is even more flexible, it
contains a whitespace delimited list of regular expressions. It has higher priority than MASTER_SORT.
Have a look at pkgsrc/mk/defaults/mk.conf to find some examples. This may save some of your
bandwidth and time.

You can change these settings either in your shell’s environment, or, if you want to keep the settings, by
editing the mk.conf file, and adding the definitions there.

If a package depends on many other packages (such as meta-pkgs/kde4), the build process may
alternate between periods of downloading source, and compiling. To ensure you have all the source
downloaded initially you can run the command:

% make fetch-list | sh

which will output and run a set of shell commands to fetch the necessary files into the distfiles
directory. You can also choose to download the files manually.

5.2.3. How to build and install

Once the software has downloaded, any patches will be applied, then it will be compiled for you. This
may take some time depending on your computer, and how many other packages the software depends
on and their compile time.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

For example, type

% cd misc/figlet

% make

at the shell prompt to build the various components of the package.

The next stage is to actually install the newly compiled program onto your system. Do this by entering:

% make install

while you are still in the directory for whatever package you are installing.

Installing the package on your system may require you to be root. However, pkgsrc has a just-in-time-su
feature, which allows you to only become root for the actual installation step.

That’s it, the software should now be installed and setup for use. You can now enter:

% make clean

to remove the compiled files in the work directory, as you shouldn’t need them any more. If other
packages were also added to your system (dependencies) to allow your program to compile, you can tidy
these up also with the command:
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% make clean-depends

Taking the figlet utility as an example, we can install it on our system by building as shown in Appendix
C.

The program is installed under the default root of the packages tree - /usr/pkg. Should this not
conform to your tastes, set the LOCALBASE variable in your environment, and it will use that value as the
root of your packages tree. So, to use /usr/local, set LOCALBASE=/usr/local in your environment.
Please note that you should use a directory which is dedicated to packages and not shared with other
programs (i.e., do not try and use LOCALBASE=/usr). Also, you should not try to add any of your own
files or directories (such as src/, obj/, or pkgsrc/) below the LOCALBASE tree. This is to prevent
possible conflicts between programs and other files installed by the package system and whatever else
may have been installed there.

Some packages look in mk.conf to alter some configuration options at build time. Have a look at
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Environment
variables such as LOCALBASE can be set in mk.conf to save having to remember to set them each time
you want to use pkgsrc.

Occasionally, people want to “look under the covers” to see what is going on when a package is building
or being installed. This may be for debugging purposes, or out of simple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge amount of
information will be displayed. For example,

make patch PKG_DEBUG_LEVEL=2

will show all the commands that are invoked, up to and including the “patch” stage.

2. If you want to know the value of a certain make(1) definition, then the VARNAME definition should be
used, in conjunction with the show-var target. e.g. to show the expansion of the make(1) variable
LOCALBASE:

% make show-var VARNAME=LOCALBASE

/usr/pkg
%

If you want to install a binary package that you’ve either created yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a remote FTP server, you can use the "bin-install"
target. This target will install a binary package - if available - via pkg_add(1), else do a make package.
The list of remote FTP sites searched is kept in the variable BINPKG_SITES, which defaults to
ftp.NetBSD.org. Any flags that should be added to pkg_add(1) can be put into BIN_INSTALL_FLAGS.
See pkgsrc/mk/defaults/mk.conf for more details.

A final word of warning: If you set up a system that has a non-standard setting for LOCALBASE, be sure
to set that before any packages are installed, as you cannot use several directories for the same purpose.
Doing so will result in pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with the default LOCALBASE of
/usr/pkg, and that you should not install any if you use a non-standard LOCALBASE.
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Configuring pkgsrc

The whole pkgsrc system is configured in a single file, usually called mk.conf. In which directory
pkgsrc looks for that file depends on the installation. On NetBSD, when you use make(1) from the base
system, it is in the directory /etc/. In all other cases the default location is ${PREFIX}/etc/,
depending on where you told the bootstrap program to install the binary packages.

The format of the configuration file is that of the usual BSD-style Makefiles. The whole pkgsrc
configuration is done by setting variables in this file. Note that you can define all kinds of variables, and
no special error checking (for example for spelling mistakes) takes place.

6.1. General configuration
The following variables apply to all pkgsrc packages. A complete list of the variables that can be
configured by the user is available in mk/defaults/mk.conf, together with some comments that
describe each variable’s intent.

• LOCALBASE: Where packages will be installed. The default is /usr/pkg. Do not mix binary packages
with different LOCALBASEs!

• CROSSBASE: Where “cross” category packages will be installed. The default is
${LOCALBASE}/cross.

• X11BASE: Where X11 is installed on the system. The default is /usr/X11R7.

• DISTDIR: Where to store the downloaded copies of the original source distributions used for building
pkgsrc packages. The default is ${PKGSRCDIR}/distfiles.

• PKG_DBDIR: Where the database about installed packages is stored. The default is /usr/pkg/pkgdb.

• MASTER_SITE_OVERRIDE: If set, override the packages’ MASTER_SITES with this value.

• MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch files if not found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults is
ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${DIST_SUBDIR}/.

• BINPKG_SITES: List of sites carrying binary pkgs. rel and arch are replaced with OS release (“2.0”,
etc.) and architecture (“mipsel”, etc.).

• ACCEPTABLE_LICENSES: List of acceptable licenses. License names are case-sensitive. Whenever
you try to build a package whose license is not in this list, you will get an error message. If the license
condition is simple enough, the error message will include specific instructions on how to change this
variable.
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6.2. Variables affecting the build process

• PACKAGES: The top level directory for the binary packages. The default is
${PKGSRCDIR}/packages.

• WRKOBJDIR: The top level directory where, if defined, the separate working directories will get
created, and symbolically linked to from ${WRKDIR} (see below). This is useful for building packages
on several architectures, then ${PKGSRCDIR} can be NFS-mounted while ${WRKOBJDIR} is local to
every architecture. (It should be noted that PKGSRCDIR should not be set by the user — it is an internal
definition which refers to the root of the pkgsrc tree. It is possible to have many pkgsrc tree instances.)

• LOCALPATCHES: Directory for local patches that aren’t part of pkgsrc. See Section 12.3 for more
information.

• PKGMAKECONF: Location of the mk.conf file used by a package’s BSD-style Makefile. If this is not
set, MAKECONF is set to /dev/null to avoid picking up settings used by builds in /usr/src.

6.3. Preferences for native or pkgsrc software
Whenever a package depends on a package that has a builtin.mk file, the dependent package can
either use the built-in (native) version from the base system or the pkgsrc-provided version. This only
affects dependencies, so it is still possible to build the pkgsrc package devel/pcre++ even when other
packages depend on the native pcre++ version instead.

To force using the pkgsrc-provided version for a particular package, define “PREFER_PKGSRC =
package-ID” in mk.conf. To force using the native package, define “PREFER_NATIVE =
package-ID”. In both cases, the package-ID is the one from the buildlink3.mk of the package. In
most cases, this ID is the same as the directory name of the package, but for example, devel/pcre++
has the package ID “pcrexx”.

For the packages that are not listed by their package ID, pkgsrc uses the pkgsrc-provided version if
PREFER_PKGSRC contains the word “yes”. Otherwise, if PREFER_NATIVE contains the word “yes”,
pkgsrc uses the native version. For example, to require using the pkgsrc-provided versions for all but the
most basic bits on a NetBSD system, you can set:

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A package must have a builtin.mk file to be listed in PREFER_NATIVE, otherwise it is simply ignored
in that list.

PREFER_PKGSRC and PREFER_NATIVE should be set during bootstrap to ensure that the bootstrap
process does not use inapropriate native tools as dependencies for core packages.

# ./bootstrap --prefer-pkgsrc yes --prefer-native openssl

Switching between settings globally at a later date can introduce complications with dependency
resolution. This is caused by packages built with the opposite preference being installed alongside each
other. Hence, when changing any of these variables after bootstrap, you need to rebuild all packages
depending on those whose preference has been changed. This is not trivial and should be avoided.
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When using pkgsrc on Linux systems, there is high risk of “leakage”, where programs installed by
pkgsrc may inadvertently use a command or library not installed by pkgsrc, e.g. those installed by yum
or apt. Such foreign dependencies may be installed, removed, or upgraded to a version incompatible with
the pkgsrc package at any time, causing pkgsrc packages to subsequently malfunction. Pkgsrc cannot
prevent this, as it has no control over other package managers. Another potential problem is that under
Redhat Enterprise and related Linux systems, yum packages are only patched and never upgraded, so
eventually they may become too outdated for use by pkgsrc. Even intentionally using foreign
dependencies, not considered leakage, can lead to these problems, so it is generally discouraged. In order
to minimize such problems, PREFER_PKGSRC defaults to “yes” on Linux systems. This ensures that
pkgsrc is aware of any changes to dependency packages and can rebuild or upgrade the entire
dependency tree as needed. This default can be overridden by setting --prefer-pkgsrc to a list of packages
and --prefer-native to “yes”.

6.4. Variables affecting the installation process

• PKGSRC_KEEP_BIN_PKGS: By default, binary packages of built packages are preserved in
${PACKAGES}/All. Setting this variable to "no" prevents this.

Packages have to support installation into a subdirectory of WRKDIR. This allows a package to be built,
before the actual filesystem is touched. DESTDIR support exists in two variations:

• Basic DESTDIR support means that the package installation and packaging is still run as root.

• Full DESTDIR support can run the complete build, installation and packaging as normal user. Root
privileges are only needed to add packages.

With basic DESTDIR support, make clean needs to be run as root.

Considering the foo/bar package, DESTDIR full support can be tested using the following commands

$ id
uid=1000(myusername) gid=100(users) groups=100(users),0(wheel)
$ mkdir $HOME/packages
$ cd $PKGSRCDIR/foo/bar

Verify DESTDIR full support, no root privileges should be needed

$ make stage-install

Create a package without root privileges

$ make PACKAGES=$HOME/packages package

For the following command, you must be able to gain root privileges using su(1)

$ make PACKAGES=$HOME/packages install

Then, as a simple user

$ make clean
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6.5. Selecting and configuring the compiler

6.5.1. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may be overridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER:

This is a list of values specifying the chain of compilers to invoke when building packages. Valid
values are:

• ccc: Compaq C Compilers (Tru64)

• ccache: compiler cache (chainable)

• clang: Clang C and Objective-C compiler

• distcc: distributed C/C++ (chainable)

• f2c: Fortran 77 to C compiler (chainable)

• icc: Intel C++ Compiler (Linux)

• ido: SGI IRIS Development Option cc (IRIX 5)

• gcc: GNU C/C++ Compiler

• hp: HP-UX C/aC++ compilers

• mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)

• mipspro-ucode: Silicon Graphics, Inc. MIPSpro (o32)

• sunpro: Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

• xlc: IBM’s XL C/C++ compiler suite

The default is “gcc”. You can use ccache and/or distcc with an appropriate PKGSRC_COMPILER
setting, e.g. “ccache gcc”. This variable should always be terminated with a value for a real
compiler. Note that only one real compiler should be listed (e.g. “sunpro gcc” is not allowed).

GCC_REQD:

This specifies the minimum version of GCC to use when building packages. If the system GCC
doesn’t satisfy this requirement, then pkgsrc will build and install one of the GCC packages to use
instead.

PYTHON_VERSION_DEFAULT:

Specifies which version of python to use when several options are available.

PKGSRC_FORTRAN:

Specifies the Fortran compiler to use. The default is gfortran.

GFORTRAN_VERSION:

If PKGSRC_FORTRAN= gfortran is used, this option specifies which version to use.
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6.5.2. Additional flags to the compiler (CFLAGS)

If you wish to set the CFLAGS variable, please make sure to use the += operator instead of the = operator:

CFLAGS+= -your -flags

Using CFLAGS= (i.e. without the “+”) may lead to problems with packages that need to add their own
flags. You may want to take a look at the devel/cpuflags package if you’re interested in optimization
specifically for the current CPU.

6.5.3. Additional flags to the linker (LDFLAGS)

If you want to pass flags to the linker, both in the configure step and the build step, you can do this in two
ways. Either set LDFLAGS or LIBS. The difference between the two is that LIBS will be appended to the
command line, while LDFLAGS come earlier. LDFLAGS is pre-loaded with rpath settings for ELF
machines depending on the setting of USE_IMAKE or the inclusion of mk/x11.buildlink3.mk. As
with CFLAGS, if you do not wish to override these settings, use the += operator:

LDFLAGS+= -your -linkerflags

6.6. Developer/advanced settings

• PKG_DEVELOPER: Run some sanity checks that package developers want:

• make sure patches apply with zero fuzz

• run check-shlibs to see that all binaries will find their shared libs.

• CHECK_FILES_STRICT: Also check VARBASE and PKG_SYSCONFDIR values in PLIST entries.

• PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst making and installing
the package. The default value for this is 0, which will not display the commands as they are executed
(normal, default, quiet operation); the value 1 will display all shell commands before their invocation,
and the value 2 will display both the shell commands before their invocation, as well as their actual
execution progress with set -x.

6.7. Selecting Build Options
Some packages have build time options, usually to select between different dependencies, enable
optional support for big dependencies or enable experimental features.

To see which options, if any, a package supports, and which options are mutually exclusive, run make
show-options, for example:

The following options are supported by this package:
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ssl Enable SSL support.
Exactly one of the following gecko options is required:

firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.

At most one of the following database options may be selected:
mysql Enable support for MySQL database.
pgsql Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

The following variables can be defined in mk.conf to select which options to enable for a package:
PKG_DEFAULT_OPTIONS, which can be used to select or disable options for all packages that support
them, and PKG_OPTIONS.pkgbase, which can be used to select or disable options specifically for
package pkgbase. Options listed in these variables are selected, options preceded by “-” are disabled. A
few examples:

$ grep "PKG.*OPTION" mk.conf

PKG_DEFAULT_OPTIONS= -arts -dvdread -esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS.apache= suexec

It is important to note that options that were specifically suggested by the package maintainer must be
explicitly removed if you do not wish to include the option. If you are unsure you can view the current
state with make show-options.

The following settings are consulted in the order given, and the last setting that selects or disables an
option is used:

1. the default options as suggested by the package maintainer

2. the options implied by the settings of legacy variables (see below)

3. PKG_DEFAULT_OPTIONS

4. PKG_OPTIONS.pkgbase

For groups of mutually exclusive options, the last option selected is used, all others are automatically
disabled. If an option of the group is explicitly disabled, the previously selected option, if any, is used. It
is an error if no option from a required group of options is selected, and building the package will fail.

Before the options framework was introduced, build options were selected by setting a variable (often
named USE_FOO) in mk.conf for each option. To ease transition to the options framework for the user,
these legacy variables are converted to the appropriate options setting (PKG_OPTIONS.pkgbase)
automatically. A warning is issued to prompt the user to update mk.conf to use the options framework
directly. Support for the legacy variables will be removed eventually.
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Creating binary packages

7.1. Building a single binary package
Once you have built and installed a package, you can create a binary package which can be installed on
another system with pkg_add(1). This saves having to build the same package on a group of hosts and
wasting CPU time. It also provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc, and run make package:

$ cd misc/figlet

$ make package

This will build your package (if not already done) and package it into a binary package. You can then use
the pkg_* tools to manipulate it. Binary packages are created in PACKAGES, which defaults to
/usr/pkgsrc/packages, in the form of a compressed tar file. See Section C.2 for a continuation of the
above misc/figlet example.

See Chapter 23 for information on how to submit such a binary package.

7.2. Settings for creation of binary packages
See Section 13.17.
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Creating binary packages for
everything in pkgsrc (bulk
builds)

For a number of reasons, you may want to build binary packages for a large selected set of packages in
pkgsrc, or even for all pkgsrc packages. For instance, when you have multiple machines that should run
the same software, it is wasted time if they all build their packages themselves from source. Or you may
want to build a list of packages you want and check them before deploying onto production systems.
There is a way of getting a set of binary packages: the bulk build system, or pbulk ("p" stands for
"parallel"). This chapter describes how to set it up.

8.1. Preparations
First of all, you have to decide whether you build all packages or a limited set of them. Full bulk builds
usually consume a lot more resources, both space and time, than builds for some practical sets of
packages. A number of particularly heavy packages exist that are not actually interesting to a wide
audience. (The approximate resource consumption for a full bulk build is given in section Section 8.3.)
For limited bulk builds you need to make a list of packages you want to build. Note that all their
dependencies will be built, so you don’t need to track them manually.

During bulk builds various packages are installed and deinstalled in /usr/pkg (or whatever LOCALBASE
is), so make sure that you don’t need any package during the builds. Essentially, you should provide a
fresh system, either a chroot environment or something even more restrictive, depending on what the
operating system provides, or dedicate the whole physical machine. As a useful side effect this makes
sure that bulk builds cannot break anything in your system. There have been numerous cases where
certain packages tried to install files outside the LOCALBASE or wanted to edit some files in /etc.

8.2. Running a bulk build
Running a bulk build works roughly as follows:

• First, build the pbulk infrastructure in a fresh pkgsrc location.

• Then, build each of the packages from a clean installation directory using the infrastructure.
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8.2.1. Configuration

To simplify configuration, we provide the helper script mk/pbulk/pbulk.sh.

In order to use it, prepare a clear system (real one, chroot environment, jail, zone, virtual machine).
Configure network access to fetch distribution files. Create a user with name "pbulk".

Fetch and extract pkgsrc. Use a command like one of these:

# (cd /usr && ftp -o - https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz | tar -zxf-)

# (cd /usr && fetch -o - https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz | tar -zxf-)

# (cd /usr && cvs -Q -z3 -d anoncvs@anoncvs.NetBSD.org:/cvsroot get -P pkgsrc)

Or any other way that fits (e.g., curl, wget).

Deploy and configure pbulk tools, e.g.:

# sh pbulk.sh -n # use native make, no bootstrap kit needed (for use on NetBSD)

# sh pbulk.sh -n -c mk.conf.frag # native, apply settings from given mk.conf fragment

# sh pbulk.sh -nlc mk.conf.frag # native, apply settings, configure for limited build

Note: mk.conf.frag is a fragment of mk.conf that contains settings you want to apply to packages
you build. For instance,

PKG_DEVELOPER= yes # perform more checks
X11_TYPE= modular # use pkgsrc X11
SKIP_LICENSE_CHECK= yes # accept all licences (useful

# when building all packages)

If configured for limited list, replace the list in /usr/pbulk/etc/pbulk.list with your list of
packages, one per line without empty lines or comments. E.g.:

www/firefox
mail/thunderbird
misc/libreoffice4

At this point you can also review configuration in /usr/pbulk/etc and make final amendments, if
wanted.

Start it:

# /usr/pbulk/bin/bulkbuild

After it finishes, you’ll have /mnt filled with distribution files, binary packages, and reports, plain text
summary in /mnt/bulklog/meta/report.txt

Note: The pbulk.sh script does not cover all possible use cases. While being ready to run, it serves
as a good starting point to understand and build more complex setups. The script is kept small
enough for better understanding.

Note: The pbulk.sh script supports running unprivileged bulk build and helps configuring distributed
bulk builds. Distributed bulk builds support either building in worker chroots (each node is a path to a
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different chroot) that replicate the target system, including the pbulk prefix, or remote machines
(each node is an IP address that must be accessible over SSH without a password).

8.3. Requirements of a full bulk build
A complete bulk build requires lots of disk space. Some of the disk space can be read-only, some other
must be writable. Some can be on remote filesystems (such as NFS) and some should be local. Some can
be temporary filesystems, others must survive a sudden reboot.

• 70 GB for the distfiles (read-write, remote, temporary)

• 60 GB for the binary packages (read-write, remote, permanent)

• 1 GB for the pkgsrc tree (read-only, remote, permanent)

• 5 GB for LOCALBASE (read-write, local, temporary)

• 10 GB for the log files (read-write, remote, permanent)

• 5 GB for temporary files (read-write, local, temporary)

8.4. Bulk build variants
To ensure that pkgsrc packages work in different configurations, it makes sense to run non-default bulk
builds from time to time. This section lists some ideas for bulk builds that intentionally let packages fail
if they don’t follow the pkgsrc style.

8.4.1. Detect unknown configure options

Add the following line to mk.conf.

GNU_CONFIGURE_STRICT= yes

When a package fails this additional check, the most common cause is that the configure option was
valid for an older version of the package but does not apply anymore. In that case, just remove it.

8.4.2. Detect classes of bugs by forcing compiler warnings

The job of a compiler is not restricted to producing executable code, most compilers also detect typical
programming mistakes. The pkgsrc compiler wrappers make it easy to force compiler options when the
package is built. This can be used to find typical bugs across all packages that are in pkgsrc. By reporting
these bugs upstream, the packages will be more reliable with the next updates.

Add some of the following lines to mk.conf:

CFLAGS+= -Werror=char-subscripts
CFLAGS+= -Werror=implicit-function-declaration
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When a package fails to build using these stricter compiler options, document the circumstances in
which the compiler produced the error message. This includes:

• The platform (MACHINE_PLATFORM)

• The source file

• An excerpt of the code. GCC and Clang already do this as part of the diagnostic.

• The exact error message from the compiler.

If a package produces these error messages, but the package is fine, record this in your local mk.conf,
like this, to skip this check in the next builds:

.if ${PKGPATH} == category/package
# Version ${VERSION} failed on ${MACHINE_PLATFORM}:
# error message
# code
# Reason why the code does not need to be fixed.
BUILDLINK_TRANSFORM+= rm:-Werror=char-subscripts
.endif

If the error messages from the compiler are valid and the code needs to be fixed, prepare a local patch
(see LOCALPATCHES) and report the bug to the upstream authors of the package, providing them with the
information you collected above.

Patches that are not essential for the package to work should only be reported upstream but not
committed to pkgsrc, to make future updates easier.

8.4.3. Force compiler options only in the build phase

When adding custom compiler flags via CFLAGS, these apply to all phases of the package build process.
Especially in the configure phase, adding -Werror leads to wrong decisions. The GNU configure scripts
feed many small test programs to the C compiler to see whether certain headers are available, functions
are defined in a library and programs can be run. In many cases these programs would not survive a strict
compiler run with -Wall -Wextra -Werror.

The pkgsrc infrastructure is flexible enough to support compiler options being added between the
configure and build phases. It’s a little more complicated than the other examples in this section but
still easy enough.

The basic idea is to use the pkgsrc compiler wrapper to inject the desired compiler options. The compiler
wrapper’s original task is to hide unwanted directories of include files and to normalize compiler options.
It does this by wrapping the compiler command and rewriting the command line. To see this in action,
run bmake patch in a package directory and examine the work/.cwrappers/config directory. It
contains individual configurations for the C compiler and the related tools. The plan is to find a hook
between the configure and build phases, and to modify these configuration files at that point.

To find this hook, have a look at mk/build/build.mk, which contains among others the
pre-build-checks-hook. The word checks doesn’t quite fit, but the pre-build-hook sounds good
enough.

The code to be included in mk.conf is:
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# Just a few example options.
BUILD_ONLY_CFLAGS= -Wall -Werror -O2 -DTEMPDIR=’"/tmp"’

.if ${BUILD_ONLY_CFLAGS:U:M*}
pre-build-checks-hook: add-build-only-cflags

add-build-only-cflags: .PHONY
${RUN} cd ${CWRAPPERS_CONFIG_DIR}; \
${TEST} ! -f ${.TARGET} || exit 0; \
for flag in ${BUILD_ONLY_CFLAGS}; do \

${ECHO} "append=$$flag" >> cc; \
done; \
> ${.TARGET}

.endif

(When editing the mk.conf, make sure that the commands of the add-build-only-cflags target are
indented with a tab, not with spaces.)

The condition in the .if statement contains the :U modifier to prevent parse errors if the variable should
be undefined, possibly because it is only defined for a subset of the packages. The :M* modifier ensures
that there is at least one compiler option, to prevent a syntax error in the shell parser.

The code around the ${.TARGET} variable ensures that the additional compiler options are only
appended once, even if bmake build is run multiple times. To do this, it creates a marker file.

To verify that this setup works, run bmake configure in a package directory. Up to now, everything
works as usual. Examine the directory work/.cwrappers/config to see that the compiler options
from BUILD_ONLY_CFLAGS are not yet added to the file cc. Examine the tail of the work/.work.log
file to see that the normal compiler options are used.

Now run bmake build. This will append the options to the file cc and will create the marker file in the
same directory. After that, the build starts as usual, but with the added compiler options. Examine the tail
of the file work/.work.log to see that the lines starting with [*] don’t contain the compiler options,
but the corresponding lines starting with <.> do end with these options.

Building packages using this setup variant and fixing the resulting bugs is the same as in Section 8.4.2.

8.4.4. Use custom directories

Some directories like PREFIX, VARBASE, PKG_SYSCONFDIR, PKGMANDIR, PKG_INFODIR can be
configured in pkgsrc. Set these to arbitrary paths during bootstrap or afterwards in mk.conf.

PREFIX= /a-random-uuid
PKG_SYSCONFDIR= /a-random-uuid
VARBASE= /a-random-uuid
PKGMANDIR= a-random-uuid
PKG_INFODIR= a-random-uuid

8.4.5. Turn warnings into errors

When building a package, warnings are typically ignored since they just flow by and do not cause the
build to fail immediately. To find these warnings, redefine them to errors in mk.conf.
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DELAYED_WARNING_MSG= ${DELAYED_ERROR_MSG} "(was warning)"
WARNING_MSG= ${FAIL_MSG} "(was warning)"

(There are many more classes of warnings in pkgsrc, and most of them can be redefined with a simple
definition like above.

If a package suggests to add USE_TOOLS+=perl to the package Makefile, research whether the package
actually needs Perl. If it does, add USE_TOOLS+=perl to the package Makefile, and if it doesn’t, add
TOOLS_BROKEN+=perl.

8.4.6. Reject packages for which pkglint reports errors

Using pkglint as part of the regular build process is mostly a waste of time. If you want to fix some of the
warnings, just run pkglint recursively on the whole pkgsrc tree. This will take a few minutes (up to 10),
which is much faster than a complete bulk build.

8.4.7. Reject packages that contain forbidden strings

To ensure that the binary packages don’t contain references to the build directory, there is already
CHECK_WRKREF. If that variable includes the item extra, it is possible to define additional patterns that
must not appear in any installed file. This is specified in mk.conf.

CHECK_WRKREF= extra
CHECK_WRKREF_EXTRA_DIRS+= /usr/local
CHECK_WRKREF_EXTRA_DIRS+= /usr/pkg
CHECK_WRKREF_EXTRA_DIRS+= @[A-Z][A-Z]*@

The above patterns will probably generate many false positives, therefore the results need to be taken
with a grain of salt.

8.4.8. Reject packages whose self-test fails

To run the test suites that come with each package, add this line to mk.conf.

PKGSRC_RUN_TEST= yes

Be prepared that even the most basic packages fail this test. When doing a bulk build with this, it will
often abort in the early phase where the packages are scanned for their dependencies since there are
cyclic dependencies. There is still a lot to do in this area.

8.4.9. Reject packages that use undefined shell variables

To catch typos in the shell snippets from the Makefile fragments, add the -u flag to most of the
commands by adding this line to mk.conf.

RUN= @set -eu;
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After that, ensure that none of the bulk build log files (even those for successfully built packages)
contains the string parameter not set or whatever error message the command sh -ceu ’$undefined’
outputs.

See mk/misc/common.mk for the existing definition.

8.4.10. Turn off verbose logging

The build logs of a package are often quite long. This allows error messages or other interesting details
to hide between the noise. To make the actual error message stand out more, add these lines to mk.conf.

GNU_CONFIGURE_QUIET= yes
MAKE_FLAGS+= -s

The -s option works for both GNU Make and BSD Make. On exotic platforms with their own make, it
may be a little different.

8.5. Creating a multiple CD-ROM packages collection
After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set of the resulting
binary packages to assist in installing packages on other machines. The pkgtools/cdpack package
provides a simple tool for creating the ISO 9660 images. cdpack arranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a given package on the same CD as that package.

8.5.1. Example of cdpack

Complete documentation for cdpack is found in the cdpack(1) man page. The following short example
assumes that the binary packages are left in /usr/pkgsrc/packages/All and that sufficient disk
space exists in /u2 to hold the ISO 9660 images.

# mkdir /u2/images

# pkg_add /usr/pkgsrc/packages/All/cdpack

# cdpack /usr/pkgsrc/packages/All /u2/images

If you wish to include a common set of files (COPYRIGHT, README, etc.) on each CD in the collection,
then you need to create a directory which contains these files, e.g.:

# mkdir /tmp/common

# echo "This is a README" > /tmp/common/README

# echo "Another file" > /tmp/common/COPYING

# mkdir /tmp/common/bin

# echo "#!/bin/sh" > /tmp/common/bin/myscript

# echo "echo Hello world" >> /tmp/common/bin/myscript

# chmod 755 /tmp/common/bin/myscript

Now create the images:
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# cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images

Each image will contain README, COPYING, and bin/myscript in their root directories.
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Directory layout of the installed
files

The files that are installed by pkgsrc are organized in a way that is similar to what you find in the /usr
directory of the base system. But some details are different. This is because pkgsrc initially came from
FreeBSD and had adopted its file system hierarchy. Later it was largely influenced by NetBSD. But no
matter which operating system you are using pkgsrc with, you can expect the same layout for pkgsrc.

There are mainly four root directories for pkgsrc, which are all configurable in the
bootstrap/bootstrap script. When pkgsrc has been installed as root, the default locations are:

LOCALBASE= /usr/pkg
PKG_SYSCONFBASE= /usr/pkg/etc
VARBASE= /var
PKG_DBDIR= /usr/pkg/pkgdb

In unprivileged mode (when pkgsrc has been installed as any other user), the default locations are:

LOCALBASE= ${HOME}/pkg
PKG_SYSCONFBASE= ${HOME}/pkg/etc
VARBASE= ${HOME}/pkg/var
PKG_DBDIR= ${HOME}/pkg/pkgdb

What these four directories are for, and what they look like is explained below.

• LOCALBASE corresponds to the /usr directory in the base system. It is the “main” directory where the
files are installed and contains the well-known subdirectories like bin, include, lib, share and
sbin.

• VARBASE corresponds to /var in the base system. Some programs (especially games, network
daemons) need write access to it during normal operation.

• PKG_SYSCONFDIR corresponds to /etc in the base system. It contains configuration files of the
packages, as well as pkgsrc’s mk.conf itself.

9.1. File system layout in ${LOCALBASE}

The following directories exist in a typical pkgsrc installation in ${LOCALBASE}.

bin

Contains executable programs that are intended to be directly used by the end user.
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emul

Contains files for the emulation layers of various other operating systems, especially for NetBSD.

etc (the usual location of ${PKG_SYSCONFDIR})

Contains the configuration files.

include

Contains headers for the C and C++ programming languages.

info

Contains GNU info files of various packages.

lib

Contains shared and static libraries.

libdata

Contains data files that don’t change after installation. Other data files belong into ${VARBASE}.

libexec

Contains programs that are not intended to be used by end users, such as helper programs or
network daemons.

libexec/cgi-bin

Contains programs that are intended to be executed as CGI scripts by a web server.

man (the usual value of ${PKGMANDIR})

Contains brief documentation in form of manual pages.

sbin

Contains programs that are intended to be used only by the super-user.

share

Contains platform-independent data files that don’t change after installation.

share/doc

Contains documentation files provided by the packages.

share/examples

Contains example files provided by the packages. Among others, the original configuration files are
saved here and copied to ${PKG_SYSCONFDIR} during installation.

share/examples/rc.d

Contains the original files for rc.d scripts.
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var (the usual location of ${VARBASE})

Contains files that may be modified after installation.

9.2. File system layout in ${VARBASE}

db/pkg (the usual location of ${PKG_DBDIR})

Contains information about the currently installed packages.

games

Contains highscore files.

log

Contains log files.

run

Contains informational files about daemons that are currently running.
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Frequently Asked Questions

This section contains hints, tips & tricks on special things in pkgsrc that we didn’t find a better place for
in the previous chapters, and it contains items for both pkgsrc users and developers.

10.1. Are there any mailing lists for pkg-related discussion?
The following mailing lists may be of interest to pkgsrc users:

• pkgsrc-users (http://www.NetBSD.org/mailinglists/index.html#pkgsrc-users): This is a general
purpose list for most issues regarding pkgsrc, regardless of platform, e.g. soliciting user help for
pkgsrc configuration, unexpected build failures, using particular packages, upgrading pkgsrc
installations, questions regarding the pkgsrc release branches, etc. General announcements or
proposals for changes that impact the pkgsrc user community, e.g. major infrastructure changes, new
features, package removals, etc., may also be posted.

• pkgsrc-bulk (https://www.NetBSD.org/mailinglists/index.html#pkgsrc-bulk): A list where the results
of pkgsrc bulk builds are sent and discussed.

• pkgsrc-changes (https://www.NetBSD.org/mailinglists/index.html#pkgsrc-changes): This list is for
those who are interested in getting a commit message for every change committed to pkgsrc. It is also
available in digest form, meaning one daily message containing all commit messages for changes to
the package source tree in that 24 hour period.

To subscribe, do:

% echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from https://mail-index.NetBSD.org/.

10.2. Utilities for package management (pkgtools)
The directory pkgsrc/pkgtools contains a number of useful utilities for both users and developers of
pkgsrc. This section attempts only to make the reader aware of some of the utilities and when they might
be useful, and not to duplicate the documentation that comes with each package.

Utilities used by pkgsrc (automatically installed when needed):

• pkgtools/x11-links: Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

• pkgtools/digest: Calculates various kinds of checksums (including SHA3).
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• pkgtools/libnbcompat: Compatibility library for pkgsrc tools.

• pkgtools/mtree: Installed on non-BSD systems due to lack of native mtree.

• pkgtools/pkg_install: Up-to-date replacement for /usr/sbin/pkg_install, or for use on
operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

• pkgtools/pkg_tarup: Create a binary package from an already-installed package. Used by make
replace to save the old package.

• pkgtools/dfdisk: Adds extra functionality to pkgsrc, allowing it to fetch distfiles from multiple
locations. It currently supports the following methods: multiple CD-ROMs and network FTP/HTTP
connections.

• devel/cpuflags: Determine the best compiler flags to optimise code for your current CPU and
compiler.

Utilities for keeping track of installed packages, being up to date, etc:

• pkgtools/pkgin: A package update tool similar to apt(1). Download, install, and upgrade binary
packages easily.

• pkgtools/pkg_chk: Reports on packages whose installed versions do not match the latest pkgsrc
entries.

• pkgtools/pkgdep: Makes dependency graphs of packages, to aid in choosing a strategy for
updating.

• pkgtools/pkgdepgraph: Makes graphs from the output of pkgtools/pkgdep (uses graphviz).

• pkgtools/pkglint: The pkglint(1) program checks a pkgsrc entry for errors.

• pkgtools/lintpkgsrc: The lintpkgsrc(1) program does various checks on the complete pkgsrc
system.

• pkgtools/pkgsurvey: Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

• pkgtools/pkgdiff: Automate making and maintaining patches for a package (includes pkgdiff,
pkgvi, mkpatches, etc.).

• pkgtools/url2pkg: Aids in converting to pkgsrc.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

• pkgtools/pkg_comp: Build packages in a chrooted area.

• pkgtools/libkver: Spoof kernel version for chrooted cross builds.

10.3. How to use pkgsrc as non-root
To install packages from source as a non-root user, download pkgsrc as described in Chapter 3, cd into
that directory and run the command ./bootstrap/bootstrap --unprivileged.
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This will install the binary part of pkgsrc to ~/pkg and put the pkgsrc configuration mk.conf into
~/pkg/etc.

For more details, see mk/unprivileged.mk.

10.4. How to resume transfers when fetching distfiles?
By default, resuming transfers in pkgsrc is disabled, but you can enable this feature by adding the option
PKG_RESUME_TRANSFERS=YES into mk.conf. If, during a fetch step, an incomplete distfile is found,
pkgsrc will try to resume it.

You can also use a different program than the platform default program by changing the FETCH_USING
variable. You can specify the program by using of ftp, fetch, wget or curl. Alternatively, fetching can be
disabled by using the value manual. A value of custom disables the system defaults and dependency
tracking for the fetch program. In that case you have to provide FETCH_CMD, FETCH_BEFORE_ARGS,
FETCH_RESUME_ARGS, FETCH_OUTPUT_ARGS, FETCH_AFTER_ARGS.

For example, if you want to use wget to download, you’ll have to use something like:

FETCH_USING= wget

10.5. How can I install/use modular X.org from pkgsrc?
If you want to use modular X.org from pkgsrc instead of your system’s own X11 (/usr/X11R6,
/usr/openwin, ...) you will have to add the following line into mk.conf:

X11_TYPE=modular

10.6. How to fetch files from behind a firewall
If you are sitting behind a firewall which does not allow direct connections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. This is done using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdahl.com” is one of the firewalls, and it uses
port 80 as the proxy port number. So the proxy environment variables are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

10.7. How to fetch files from HTTPS sites
Some fetch tools are not prepared to support HTTPS by default (for example, the one in NetBSD 6.0), or
the one installed by the pkgsrc bootstrap (to avoid an openssl dependency that low in the dependency
graph).

Usually you won’t notice, because distribution files are mirrored weekly to “ftp.NetBSD.org”, but that
might not be often enough if you are following pkgsrc-current. In that case, set FETCH_USING in your
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mk.conf file to “curl” or “wget”, which are both compiled with HTTPS support by default. Of course,
these tools need to be installed before you can use them this way.

10.8. How do I tell make fetch to do passive FTP?
This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk, FETCH_CMD is assigned
the first available command from the following list:

• ${LOCALBASE}/bin/ftp

• /usr/bin/ftp

On a default NetBSD installation, this will be /usr/bin/ftp, which automatically tries passive
connections first, and falls back to active connections if the server refuses to do passive. For the other
tools, add the following to your mk.conf file: PASSIVE_FETCH=1.

Having that option present will prevent /usr/bin/ftp from falling back to active transfers.

10.9. How to fetch all distfiles at once
You would like to download all the distfiles in a single batch from work or university, where you can’t
run a make fetch. There is an archive of distfiles on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/), but downloading the entire directory may not be appropriate.

The answer here is to do a make fetch-list in /usr/pkgsrc or one of its subdirectories, carry the
resulting list to your machine at work/school and use it there. If you don’t have a NetBSD-compatible
ftp(1) (like tnftp) at work, don’t forget to set FETCH_CMD to something that fetches a URL:

At home:

% cd /usr/pkgsrc

% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh

% scp /tmp/fetch.sh work:/tmp

At work:

% sh /tmp/fetch.sh

then tar up /tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to get all distfiles (even ones that aren’t for your
machine architecture), you can do so by using the above-mentioned make fetch-list approach, or fetch
the distfiles directly by running:

% make mirror-distfiles

If you even decide to ignore NO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get everything by
running:

% make fetch NO_SKIP=yes
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10.10. What does “Don’t know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling the pkgtools/pkg_install package, you get the error from make that it doesn’t
know how to make /usr/share/tmac/tmac.andoc? This indicates that you don’t have installed the
“text” set (nroff, ...) from the NetBSD base distribution on your machine. It is recommended to do that to
format man pages.

In the case of the pkgtools/pkg_install package, you can get away with setting NOMAN=YES either
in the environment or in mk.conf.

10.11. What does “Could not find bsd.own.mk” mean?
You didn’t install the compiler set, comp.tgz, when you installed your NetBSD machine. Please get and
install it, by extracting it in /:

# cd /

# tar --unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that corresponds to your release (determine via
uname -r).

10.12. Using ’sudo’ or ‘priv‘ with pkgsrc
When installing packages as non-root user and using the just-in-time su(1) feature of pkgsrc, it can
become annoying to type in the root password for each required package installed. To avoid this, the
sudo package can be used, which does password caching over a limited time. To use it, install sudo or
priv (either as binary package, from security/priv, or security/sudo) and then put the following
into your mk.conf, somewhere after the definition of the LOCALBASE variable:

.if exists(${LOCALBASE}/bin/sudo)
SU_CMD= ${LOCALBASE}/bin/sudo -E /bin/sh -c
.endif

Note the -E flag; that tells sudo to preserve the environment. Without this, the bin-install target will fail
when building a package with a non-default python version.

10.13. How do I change the location of configuration files?
As the system administrator, you can choose where configuration files are installed. The default settings
make all these files go into ${PREFIX}/etc or some of its subdirectories; this may be suboptimal
depending on your expectations (e.g., a read-only, NFS-exported PREFIX with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modify the PKG_SYSCONFBASE variable (in mk.conf) to point
to your preferred configuration directory; some common examples include /etc or /etc/pkg.
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Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR.${PKG_SYSCONFVAR} variable. PKG_SYSCONFVAR’s value usually matches the
name of the package you would like to modify, that is, the contents of PKGBASE.

Note that after changing these settings, you must rebuild and reinstall any affected packages.

10.14. Automated security checks
Please be aware that there can often be bugs in third-party software, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In an effort to lessen the exposure, the NetBSD
packages team maintains a database of known-exploits to packages which have at one time been
included in pkgsrc. The database can be downloaded automatically, and a security audit of all packages
installed on a system can take place. To do this, refer to the following two tools (installed as part of the
pkgtools/pkg_install package):

1. pkg_admin fetch-pkg-vulnerabilities, an easy way to download a list of the security vulnerabilities
information. This list is kept up to date by the pkgsrc security team, and is distributed from the
NetBSD ftp server:

https://ftp.NetBSD.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities

2. pkg_admin audit, an easy way to audit the current machine, checking each known vulnerability. If
a vulnerable package is installed, it will be shown by output to stdout, including a description of the
type of vulnerability, and a URL containing more information.

Use of these tools is strongly recommended! See Section 5.1.6 for instructions on how to automate
checking and reporting.

If this database is installed, pkgsrc builds will use it to perform a security check before building any
package.

10.15. Why do some packages ignore my CFLAGS?
When you add your own preferences to the CFLAGS variable in your mk.conf, these flags are passed in
environment variables to the ./configure scripts and to make(1). Some package authors ignore the
CFLAGS from the environment variable by overriding them in the Makefiles of their package.

Currently there is no solution to this problem. If you really need the package to use your CFLAGS you
should run make patch in the package directory and then inspect any Makefile and Makefile.in for
whether they define CFLAGS explicitly. Usually you can remove these lines. But be aware that some
“smart” programmers write so bad code that it only works for the specific combination of CFLAGS they
have chosen.

To find out where the CFLAGS are ignored, add the following lines to mk.conf:

CPPFLAGS+= -Dpkgsrc___CPPFLAGS
CFLAGS+= -Dpkgsrc___CFLAGS
CXXFLAGS+= -Dpkgsrc___CXXFLAGS

Then run bmake show-all-configure show-all-build to see whether the above flags are passed to the
actual build commands in general.
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To find out whether the flags are passed to individual compiler commands, have a look at the file
work/.work.log. In most cases, the flags from the original command lines (the lines starting with [*])
are passed unmodified to the actual compiler (the lines starting with <.>). If the flag is missing from the
actual compiler command, it must have been removed by the pkgsrc compiler wrappers.

10.16. A package does not build. What shall I do?

1. Make sure that your copy of pkgsrc is consistent. A case that occurs often is that people only update
pkgsrc in parts, because of performance reasons. Since pkgsrc is one large system, not a collection
of many small systems, there are sometimes changes that only work when the whole pkgsrc tree is
updated.

2. Make sure that you don’t have any CVS conflicts. Search for “<<<<<<” or “>>>>>>” in all your
pkgsrc files.

3. Make sure that you don’t have old copies of the packages extracted. Run make clean clean-depends
to verify this.

4. If you are a package developer who wants to invest some work, have a look at Chapter 21.

5. If the problem still exists, write a mail to the pkgsrc-users mailing list.

10.17. What does “Makefile appears to contain unresolved
cvs/rcs/??? merge conflicts” mean?

You have modified a file from pkgsrc, and someone else has modified that same file afterwards in the
CVS repository. Both changes are in the same region of the file, so when you updated pkgsrc, the cvs
command marked the conflicting changes in the file. Because of these markers, the file is no longer a
valid Makefile.

Have a look at that file, and if you don’t need your local changes anymore, you can remove that file and
run cvs -q update -dP in that directory to download the current version.
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II. The pkgsrc developer’s guide
This part of the book deals with creating and modifying packages. It starts with a “HOWTO”-like guide
on creating a new package. The remaining chapters are more like a reference manual for pkgsrc.



Chapter 11.

Getting help

To get help when developing pkgsrc, the definitive source is this document, the pkgsrc guide. If you
don’t find anything here, there are alternatives:

• The built-in pkgsrc help, which is available after bootstrapping pkgsrc. Run bmake help topic=. . . to
get help for any topic, such as a variable name like BUILD_DEFS, a make target like do-build, a
missing C or C++ function like strcasecmp or any other topic.

The available help topics are listed in Appendix E.

• To see the value of a single variable, run bmake show-var VARNAME=X .

• To see the values of the most common variables, run bmake show-all. These variables are grouped by
topic. To see the variables for a single topic, run bmake show-all-topic, for example bmake
show-all-fetch.

• The tech-pkg mailing list, to which you can subscribe
(https://www.NetBSD.org/mailinglists/#tech-pkg) and then ask your questions
(mailto:tech-pkg@NetBSD.org).

• The #pkgsrc IRC channel, which is accessible via a web browser (https://web.libera.chat/) or by using
a specialized chat program such as XChat (http://xchat.org/). Pick any user name and join the channel
#pkgsrc.
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Package components - files,
directories and contents

Whenever you’re preparing a package, there are a number of files involved which are described in the
following sections.

12.1. Makefile
Building, installation and creation of a binary package are all controlled by the package’s Makefile.
The Makefile describes various things about a package, for example from where to get it, how to
configure, build, and install it.

A package Makefile contains several sections that describe the package.

In the first section there are the following variables, which should appear exactly in the order given here.
The order and grouping of the variables is mostly historical and has no further meaning.

• DISTNAME is the basename of the distribution file to be downloaded from the package’s website.

• PKGNAME is the name of the package, as used by pkgsrc. You need to provide it if DISTNAME (which is
the default) is not a good name for the package in pkgsrc or DISTNAME is not provided (no distribution
file is required). Usually it is the pkgsrc directory name together with the version number. It must
match the regular expression ^[A-Za-z0-9][A-Za-z0-9-_.+]*$, that is, it starts with a letter or
digit, and contains only letters, digits, dashes, underscores, dots and plus signs. New packages should
have entirely lower-case names, with the exception of some that must follow pre-existing conventions
(e.g. R packages begin with R-). You can use the :tl variable modifier to lower-case the package
name.

• CATEGORIES is a list of categories which the package fits in. You can choose any of the top-level
directories of pkgsrc for it.

Currently the following values are available for CATEGORIES. If more than one is used, they need to
be separated by spaces:

archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm
comms fonts math pkgtools www
converters games mbone print x11
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• MASTER_SITES, DYNAMIC_MASTER_SITES, DIST_SUBDIR, EXTRACT_SUFX and DISTFILES are
discussed in detail in Section 13.5.

The second section contains information about separately downloaded patches, if any.

• PATCHFILES: Name(s) of additional files that contain distribution patches. There is no default. pkgsrc
will look for them at PATCH_SITES. They will automatically be uncompressed before patching if the
names end with .gz or .Z.

• PATCH_SITES: Primary location(s) for distribution patch files (see PATCHFILES above) if not found
locally.

• PATCH_DIST_STRIP: an argument to patch(1) that sets the pathname strip count to help find the
correct files to patch. It defaults to -p0.

The third section contains the following variables.

• MAINTAINER is the email address of the person who is currently responsible for this package. In
theory, the maintainer will be aware of upstream release, keep it updated, and generally resolve
problems. Others contemplating significant changes should ask the maintainer for advice or review of
a proposed change. This is not necessary for micro updates, bug fixes, pkgsrc-wide changes affecting
many packages, and other things expected to be uncontroversial. It goes with this "should ask" that the
maintainer should respond to inquiries reasonably promptly (most of the time), and either approve
changes or provide reasons why not. Typically, when packaging a new program, set MAINTAINER to
yourself. If you don’t intend to maintain the package (especially if you feel you have no special
insight), set it to <pkgsrc-users@NetBSD.org>. This special value is a code point indicating that
there is no maintainer, but the variable is mandatory, absent OWNER.

• OWNER can be used instead of MAINTAINER in relatively rare circumstances when the package is such
that modifying it is riskier than normal. This is a stronger form of being the maintainer, with an
expectation that others will ask for almost all changes, except revbumps and accommodating structural
changes. Someone who becomes OWNER has a strong obligation to keep the package very well
maintained, to answer queries promptly and to be a steward of the package on behalf of users. In this
case, MAINTAINER should be omitted.

Because of the friction that OWNER adds, PMC may downgrade it to MAINTAINER at any time.

• HOMEPAGE is a URL where users can find more information about the package.

• COMMENT is a one-line description of the package (should not include the package name).

• LICENSE indicates the license(s) applicable for the package. See Section 21.1.3 for further details.

Other variables that affect the build:

• WRKSRC: The directory where the interesting distribution files of the package are found. The default is
${WRKDIR}/${DISTNAME}, which works for most packages.

If a package doesn’t create a subdirectory for itself (most GNU software does, for instance), but
extracts itself in the current directory, you should set WRKSRC=${WRKDIR}.

If a package doesn’t create a subdirectory with the name of DISTNAME but some different name, set
WRKSRC to point to the proper name in ${WRKDIR}, for example
WRKSRC=${WRKDIR}/${DISTNAME}/unix. See lang/tcl and x11/tk for other examples.

41



Chapter 12. Package components - files, directories and contents

The name of the working directory created by pkgsrc is taken from the WRKDIR_BASENAME variable.
By default, its value is work. If you want to use the same pkgsrc tree for building different kinds of
binary packages, you can change the variable according to your needs. Two other variables handle
common cases of setting WRKDIR_BASENAME individually. If OBJHOSTNAME is defined in mk.conf,
the first component of the host’s name is attached to the directory name. If OBJMACHINE is defined,
the platform name is attached, which might look like work.i386 or work.sparc.

Please pay attention to the following gotchas:

• Add MANCOMPRESSED if man pages are installed in compressed form by the package. For packages
using BSD-style makefiles which honor MANZ, there is MANCOMPRESSED_IF_MANZ.

• Replace /usr/local with “${PREFIX}” in all files (see patches, below).

• If the package installs any info files, see Section 21.6.8.

12.2. distinfo
The distinfo file contains the message digest, or checksum, of each distfile needed for the package.
This ensures that the distfiles retrieved from the Internet have not been corrupted during transfer or
altered by a malign force to introduce a security hole. To provide maximum security, all distfiles are
protected using two different message digest algorithms (BLAKE2s and SHA512), as well as the file
size.

The distinfo file also contains the checksums for all the patches found in the patches directory (see
Section 12.3). These checksums ensure that patches are only applied intentionally and that they don’t
accidentally change, e.g. when merging different changes together. They also make sure that new patches
are actually added to CVS and old ones are removed. Too see whether the patches and the distinfo file
match, run pkglint after changing the patches.

To regenerate the distinfo file, use the make distinfo command.

Some packages have different sets of distfiles depending on the platform, for example lang/openjdk8.
These are kept in the same distinfo file and care should be taken when upgrading such a package to
ensure distfile information is not lost.

12.3. patches/*
Some packages don’t work out-of-the box on the various platforms that are supported by pkgsrc. These
packages need to be patched to make them work. The patch files can be found in the patches/ directory.

In the patch phase, these patches are applied to the files in WRKSRC directory after extracting them, in
alphabetic order.

12.3.1. Structure of a single patch file

The patch-* files should be in diff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can set PATCH_FUZZ_FACTOR=-F2). Furthermore, each patch should
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contain only changes for a single file, and no file should be patched by more than one patch file. This
helps to keep future modifications simple.

Each patch file is structured as follows: In the first line, there is the RCS Id of the patch itself. The
second line should be empty for aesthetic reasons. After that, there should be a comment for each change
that the patch does. There are a number of standard cases:

• Patches for commonly known vulnerabilities should mention the vulnerability ID (CAN, CVE).

• Patches that change source code should mention the platform and other environment (for example, the
compiler) that the patch is needed for.

The patch should be commented so that any developer who knows the code of the application can make
some use of the patch. Special care should be taken for the upstream developers, since we generally want
that they accept our patches, so we have less work in the future.

12.3.2. Creating patch files

One important thing to mention is to pay attention that no RCS IDs get stored in the patch files, as these
will cause problems when later checked into the NetBSD CVS tree. Use the pkgdiff command from the
pkgtools/pkgdiff package to avoid these problems.

For even more automation, we recommend using mkpatches from the same package to make a whole set
of patches. You just have to back up files before you edit them to filename.orig, e.g., with cp -p
filename filename.orig or, easier, by using pkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of patches with the previously existing one with
patchdiff. The files in patches are replaced by new files, so carefully check if you want to take all the
changes.

When you have finished a package, remember to generate the checksums for the patch files by using the
make makepatchsum command, see Section 12.2.

When adding a patch that corrects a problem in the distfile (rather than e.g. enforcing pkgsrc’s view of
where man pages should go), send the patch as a bug report to the maintainer. This benefits non-pkgsrc
users of the package, and usually makes it possible to remove the patch in future version.

The file names of the patch files are usually of the form patch-path_to_file__with__underscores.c.
Many packages still use the previous convention patch-[a-z][a-z], but new patches should be of the
form containing the filename. mkpatches included in pkgtools/pkgdiff takes care of the name
automatically.

When updating pre-existing patch files, if a file uses the old patch-[a-z][a-z] convention, it’s best not
to change it to the new form, as that will just cause churn that makes it harder to track changes to
patching over time. Similarly, if a patch now applies at different line offsets, but still applies cleanly
as-is, there’s no need to update it, as that also unnecessarily complicates the patch history.

12.3.3. Sources where the patch files come from

If you want to share patches between multiple packages in pkgsrc, e.g. because they use the same
distfiles, set PATCHDIR to the path where the patch files can be found, e.g.:

PATCHDIR= ../../editors/xemacs/patches
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Patch files that are distributed by the author or other maintainers can be listed in PATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc, they can be kept outside the
pkgsrc tree in the $LOCALPATCHES directory. The directory tree there is expected to have the same
“category/package” structure as pkgsrc, and patches are expected to be stored inside these dirs (also
known as $LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch for
pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All files in the
named directory are expected to be patch files, and they are applied after pkgsrc patches are applied.

12.3.4. Patching guidelines

When fixing a portability issue in the code do not use preprocessor magic to check for the current
operating system nor platform. Doing so hurts portability to other platforms because the OS-specific
details are not abstracted appropriately.

The general rule to follow is: instead of checking for the operating system the application is being built
on, check for the specific features you need. For example, instead of assuming that kqueue is available
under NetBSD and using the __NetBSD__ macro to conditionalize kqueue support, add a check that
detects kqueue itself — yes, this generally involves patching the configure script. There is absolutely
nothing that prevents some OSes from adopting interfaces from other OSes (e.g. Linux implementing
kqueue), something that the above checks cannot take into account.

Of course, checking for features generally involves more work on the developer’s side, but the resulting
changes are cleaner and there are chances they will work on many other platforms. Not to mention that
there are higher chances of being later integrated into the mainstream sources. Remember: It doesn’t
work unless it is right!

Some typical examples:

Table 12-1. Patching examples

Where Incorrect Correct
configure script case ${target_os} in

netbsd*) have_kvm=yes ;;

*) have_kvm=no ;;

esac

AC_CHECK_LIB(kvm, kvm_open, have_kvm=yes, have_kvm=no)

C source file #if defined(__NetBSD__)

# include <sys/event.h>

#endif

#if defined(HAVE_SYS_EVENT_H)

# include <sys/event.h>

#endif

C source file int monitor_file(...) {

#if defined(__NetBSD__)

int fd = kqueue();

... #else ...

#endif }

int monitor_file(...) {

#if defined(HAVE_KQUEUE)

int fd = kqueue();

... #else ...

#endif }
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12.3.5. Feedback to the author

Always, always, always feed back any portability fixes or improvements you do to a package to the
mainstream developers. This is the only way to get their attention on portability issues and to ensure that
future versions can be built out-of-the box on NetBSD. Furthermore, any user that gets newer distfiles
will get the fixes straight from the packaged code.

This generally involves cleaning up the patches (because sometimes the patches that are added to pkgsrc
are quick hacks), filing bug reports in the appropriate trackers for the projects and working with the
mainstream authors to accept your changes. It is extremely important that you do it so that the packages
in pkgsrc are kept simple and thus further changes can be done without much hassle.

When you have done this, please add a URL to the upstream bug report to the patch comment.

Support the idea of free software!

12.4. Other mandatory files

DESCR

A multi-line description of the piece of software. This should include any credits where they are
due. Please bear in mind that others do not share your sense of humour (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This file governs the files that are installed on your system: all the binaries, manual pages, etc.
There are other directives which may be entered in this file, to control the creation and deletion of
directories, and the location of inserted files. See Chapter 19 for more information.

12.5. Optional files

12.5.1. Files affecting the binary package

INSTALL

This shell script is invoked twice by pkg_add(1). First time after package extraction and before files
are moved in place, the second time after the files to install are moved in place. This can be used to
do any custom procedures not possible with @exec commands in PLIST. See pkg_add(1) and
pkg_create(1) for more information. See also Section 20.1. Please note that you can modify
variables in it easily by using FILES_SUBST in the package’s Makefile:

FILES_SUBST+= SOMEVAR="somevalue"

replaces "@SOMEVAR@" with “somevalue” in the INSTALL. By default, substitution is performed
for PREFIX, LOCALBASE, X11BASE, VARBASE, and a few others, type make help
topic=FILES_SUBST for a complete list.
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DEINSTALL

This script is executed before and after any files are removed. It is this script’s responsibility to
clean up any additional messy details around the package’s installation, since all pkg_delete knows
is how to delete the files created in the original distribution. See pkg_delete(1) and pkg_create(1)
for more information. The same methods to replace variables can be used as for the INSTALL file.

MESSAGE

This file is displayed after installation of the package. While this was used often in the past, it has
two problems: the display will be missed if many packages are installed at once, and the person
installing the package and the one using or configuring it may be different. It should therefore be
used only in exceptional circumstances where lasting negative consequences would result from
someone not reading it.

MESSAGE should not be used for:

• exhortations to read the documentation

• reminders to install rc.d files and set variables

• anything that should be explained in the installation/configuration documentation that should
come with the package

If the documentation provided by upstream needs enhancing, create e.g. files/README.pkgsrc and
install it in the package’s documentation directory.

Note that MESSAGE is shown for all operating systems and all init systems. If a MESSAGE is
necessary, it should be narrowed to only those operating systems and init systems to which it
applies.

Note that you can modify variables in it easily by using MESSAGE_SUBST in the package’s
Makefile:

MESSAGE_SUBST+= SOMEVAR="somevalue"

replaces "${SOMEVAR}" with “somevalue” in MESSAGE. By default, substitution is performed for
PKGNAME, PKGBASE, PREFIX, LOCALBASE, X11BASE, PKG_SYSCONFDIR, ROOT_GROUP, and
ROOT_USER.

You can display a different or additional files by setting the MESSAGE_SRC variable. Its default is
MESSAGE, if the file exists.

ALTERNATIVES

This file is used by the alternatives framework. It creates, configures, and destroys generic wrappers
used to run programs with similar interfaces. See pkg_alternatives(8) from
pkgtools/pkg_alternatives for more information.

Each line of the file contains two filenames, first the wrapper and then the alternative provided by
the package. Both paths are relative to PREFIX.
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12.5.2. Files affecting the build process

Makefile.common

This file contains arbitrary things that could also go into a Makefile, but its purpose is to be used
by more than one package. This file should only be used when the packages that will use the file are
known in advance. For other purposes it is often better to write a *.mk file and give it a good name
that describes what it does.

buildlink3.mk

This file contains the dependency information for the buildlink3 framework (see Chapter 18).

hacks.mk

This file contains workarounds for compiler bugs and similar things. It is included automatically by
the pkgsrc infrastructure, so you don’t need an extra .include line for it.

options.mk

This file contains the code for the package-specific options (see Chapter 16) that can be selected by
the user. If a package has only one or two options, it is equally acceptable to put the code directly
into the Makefile.

12.5.3. Files affecting nothing at all

README*

These files do not take place in the creation of a package and thus are purely informative to the
package developer.

TODO

This file contains things that need to be done to make the package even better.

12.6. work*
When you type make, the distribution files are unpacked into the directory denoted by WRKDIR. It can be
removed by running make clean. Besides the sources, this directory is also used to keep various
timestamp files. The directory gets removed completely on clean. The default is ${.CURDIR}/work or
${.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINE is set.

12.7. files/*
If you have any files that you wish to be placed in the package prior to configuration or building, you can
place these files here and use a ${CP} command in the “post-extract” target to achieve this.

If you want to share files in this way with other packages, set the FILESDIR variable to point to the other
package’s files directory, e.g.:
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FILESDIR= ../../editors/xemacs/files
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The build process

13.1. Introduction
This chapter gives a detailed description on how a package is built. Building a package is separated into
different phases (for example fetch, build, install), all of which are described in the following
sections. Each phase is split into so-called stages, which take the name of the containing phase, prefixed
by one of pre-, do- or post-. (Examples are pre-configure, post-build.) Most of the actual work
is done in the do-* stages.

Never override the regular targets (like fetch), if you have to, override the do-* ones instead.

The basic steps for building a program are always the same. First the program’s source (distfile) must be
brought to the local system and then extracted. After any pkgsrc-specific patches to compile properly are
applied, the software can be configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system.

To get more details about what is happening at each step, you can set the PKG_VERBOSE variable, or the
PATCH_DEBUG variable if you are just interested in more details about the patch step.

13.2. Program location
Before outlining the process performed by the NetBSD package system in the next section, here’s a brief
discussion on where programs are installed, and which variables influence this.

The automatic variable PREFIX indicates where all files of the final program shall be installed. It is
usually set to LOCALBASE (/usr/pkg), or CROSSBASE for pkgs in the cross category. The value of
PREFIX needs to be put into the various places in the program’s source where paths to these files are
encoded. See Section 12.3 and Section 21.3.1 for more details.

When choosing which of these variables to use, follow the following rules:

• PREFIX always points to the location where the current pkg will be installed. When referring to a
pkg’s own installation path, use “${PREFIX}”.

• LOCALBASE is where all pkgs are installed. If you need to construct a -I or -L argument to the compiler
to find includes and libraries installed by another pkg, use “${LOCALBASE}”. The name
LOCALBASE stems from FreeBSD, which installed all packages in /usr/local. As pkgsrc leaves
/usr/local for the system administrator, this variable is a misnomer.

• X11BASE is where the actual X11 distribution (from xsrc, etc.) is installed. When looking for standard
X11 includes (not those installed by a package), use “${X11BASE}”.

• X11-based packages using imake must set USE_IMAKE to be installed correctly under LOCALBASE.
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• Within ${PREFIX}, packages should install files according to hier(7), with the exception that manual
pages go into ${PREFIX}/man, not ${PREFIX}/share/man.

13.3. Directories used during the build process
When building a package, various directories are used to store source files, temporary files,
pkgsrc-internal files, and so on. These directories are explained here.

Some of the directory variables contain relative pathnames. There are two common base directories for
these relative directories: PKGSRCDIR/PKGPATH is used for directories that are pkgsrc-specific. WRKSRC
is used for directories inside the package itself.

PKGSRCDIR

This is an absolute pathname that points to the pkgsrc root directory. Generally, you don’t need it.

PKGDIR

This is an absolute pathname that points to the current package.

PKGPATH

This is a pathname relative to PKGSRCDIR that points to the current package. It is defined after
including bsd.prefs.mk and can be used in makefile fragments that are used by several packages
to distinguish between these packages. Other variables that would serve the same purpose are
PKGBASE and PKGNAME, but these are only defined after including bsd.pkg.mk, which is too late.

In mk.conf, the pkgsrc user can use PKGPATH to tweak variables like MAKE_JOBS and CFLAGS.

WRKDIR

This is an absolute pathname pointing to the directory where all work takes place. The distfiles are
extracted to this directory. It also contains temporary directories and log files used by the various
pkgsrc frameworks, like buildlink or the wrappers.

WRKSRC

This is an absolute pathname pointing to the directory where the distfiles are extracted. It is usually
a direct subdirectory of WRKDIR, and often it’s the only directory entry that isn’t hidden. This
variable may be changed by a package Makefile.

The CREATE_WRKDIR_SYMLINK definition takes either the value yes or no and defaults to no. It indicates
whether a symbolic link to the WRKDIR is to be created in the pkgsrc entry’s directory. If users would like
to have their pkgsrc trees behave in a read-only manner, then the value of CREATE_WRKDIR_SYMLINK
should be set to no.

13.4. Running a phase
You can run a particular phase by typing make phase, where phase is the name of the phase. This will
automatically run all phases that are required for this phase. The default phase is build, that is, when
you run make without parameters in a package directory, the package will be built, but not installed.
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13.5. The fetch phase
The first step in building a package is to fetch the distribution files (distfiles) from the sites that are
providing them. This is the task of the fetch phase.

13.5.1. What to fetch and where to get it from

In simple cases, MASTER_SITES defines all URLs from where the distfile, whose name is derived from
the DISTNAME variable, is fetched. The more complicated cases are described below.

The variable DISTFILES specifies the list of distfiles that have to be fetched. Its value defaults to
${DEFAULT_DISTFILES} and its value is ${DISTNAME}${EXTRACT_SUFX}, so that most packages
don’t need to define it at all. EXTRACT_SUFX is .tar.gz by default, but can be changed freely. Note that
if your package requires additional distfiles to the default one, you cannot just append the additional
filenames using the += operator, but you have write for example:

DISTFILES= ${DEFAULT_DISTFILES} additional-files.tar.gz

Each distfile is fetched from a list of sites, usually MASTER_SITES. If the package has multiple
DISTFILES or multiple PATCHFILES from different sites, you can set SITES.distfile to the list of
URLs where the file distfile (including the suffix) can be found.

DISTFILES= ${DISTNAME}${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES.foo-file.tar.gz= \
https://www.somewhere.com/somehow/ \
https://www.somewhereelse.com/mirror/somehow/

When actually fetching the distfiles, each item from MASTER_SITES or SITES.* gets the name of each
distfile appended to it, without an intermediate slash. Therefore, all site values have to end with a slash or
other separator character. This allows for example to set MASTER_SITES to a URL of a CGI script that
gets the name of the distfile as a parameter. In this case, the definition would look like:

MASTER_SITES= https://www.example.com/download.cgi?file=

The exception to this rule are URLs starting with a dash. In that case the URL is taken as is, fetched and
the result stored under the name of the distfile. You can use this style for the case when the download
URL style does not match the above common case. For example, if permanent download URL is a
redirector to the real download URL, or the download file name is offered by an HTTP
Content-Disposition header. In the following example, foo-1.0.0.tar.gz will be created instead of
the default v1.0.0.tar.gz.

DISTNAME= foo-1.0.0
MASTER_SITES= -https://www.example.com/archive/v1.0.0.tar.gz

There are some predefined values for MASTER_SITES, which can be used in packages. The names of the
variables should speak for themselves.

MASTER_SITE_APACHE MASTER_SITE_BACKUP
MASTER_SITE_CRATESIO MASTER_SITE_CYGWIN
MASTER_SITE_DEBIAN MASTER_SITE_FREEBSD
MASTER_SITE_FREEBSD_LOCAL MASTER_SITE_GENTOO
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MASTER_SITE_GITHUB MASTER_SITE_GITLAB
MASTER_SITE_GNOME MASTER_SITE_GNU
MASTER_SITE_GNUPG MASTER_SITE_GNUSTEP
MASTER_SITE_HASKELL_HACKAGE MASTER_SITE_IFARCHIVE
MASTER_SITE_KDE MASTER_SITE_MOZILLA
MASTER_SITE_MOZILLA_ALL MASTER_SITE_MYSQL
MASTER_SITE_NETLIB MASTER_SITE_OPENBSD
MASTER_SITE_OPENOFFICE MASTER_SITE_OSDN
MASTER_SITE_PERL_CPAN MASTER_SITE_PGSQL
MASTER_SITE_PYPI MASTER_SITE_RUBYGEMS
MASTER_SITE_R_CRAN MASTER_SITE_SOURCEFORGE
MASTER_SITE_SUNSITE MASTER_SITE_SUSE
MASTER_SITE_TEX_CTAN MASTER_SITE_XCONTRIB
MASTER_SITE_XEMACS MASTER_SITE_XORG

Some explanations for the less self-explaining ones: MASTER_SITE_BACKUP contains backup sites for
packages that are maintained in ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${DIST_SUBDIR}.
MASTER_SITE_LOCAL contains local package source distributions that are maintained in
ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/LOCAL_PORTS/.

If you choose one of these predefined sites, you may want to specify a subdirectory of that site. Since
these macros may expand to more than one actual site, you must use the following construct to specify a
subdirectory:

MASTER_SITES= ${MASTER_SITE_GNU:=subdirectory/name/}
MASTER_SITES= ${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

13.5.2. How are the files fetched?

The fetch phase makes sure that all the distfiles exist in a local directory (DISTDIR, which can be set by
the pkgsrc user). If the files do not exist, they are fetched using commands of the form

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}

where ${site} varies through several possibilities in turn: first, MASTER_SITE_OVERRIDE is tried, then
the sites specified in either SITES.file if defined, else MASTER_SITES or PATCH_SITES, as applies,
then finally the value of MASTER_SITE_BACKUP. The order of all except the first and the last can be
optionally sorted by the user, via setting either MASTER_SORT_RANDOM, and MASTER_SORT_AWK or
MASTER_SORT_REGEX.

The specific command and arguments used depend on the FETCH_USING parameter. The example above
is for FETCH_USING=custom.

The distfiles mirror run by the NetBSD Foundation uses the mirror-distfiles target to mirror the distfiles,
if they are freely distributable. Packages setting NO_SRC_ON_FTP (usually to “${RESTRICTED}”) will
not have their distfiles mirrored.
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13.6. The checksum phase
After the distfile(s) are fetched, their checksum is generated and compared with the checksums stored in
the distinfo file. If the checksums don’t match, the build is aborted. This is to ensure the same distfile is
used for building, and that the distfile wasn’t changed, e.g. by some malign force, deliberately changed
distfiles on the master distribution site or network lossage.

13.7. The extract phase
When the distfiles are present on the local system, they need to be extracted, as they usually come in the
form of some compressed archive format.

By default, all DISTFILES are extracted. If you only need some of them, you can set the EXTRACT_ONLY
variable to the list of those files.

Extracting the files is usually done by a little program, mk/extract/extract, which already knows
how to extract various archive formats, so most likely you will not need to change anything here. But if
you need, the following variables may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}

Use these variables to override the default options for an extract command, which are defined in
mk/extract/extract.

EXTRACT_USING

This variable can be set to bsdtar, gtar, nbtar (which is the default value), pax, or an absolute
pathname pointing to the command with which tar archives should be extracted. It is preferred to
choose bsdtar over gtar if NetBSD’s pax-as-tar is not good enough.

If the extract program doesn’t serve your needs, you can also override the EXTRACT_CMD variable,
which holds the command used for extracting the files. This command is executed in the ${WRKSRC}
directory. During execution of this command, the shell variable extract_file holds the absolute
pathname of the file that is going to be extracted.

And if that still does not suffice, you can override the do-extract target in the package Makefile.

13.8. The patch phase
After extraction, all the patches named by the PATCHFILES, those present in the patches subdirectory of
the package as well as in $LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in .Z or .gz are uncompressed
before they are applied, files ending in .orig or .rej are ignored. Any special options to patch(1) can
be handed in PATCH_DIST_ARGS. See Section 12.3 for more details.

By default patch(1) is given special arguments to make it fail if the expected text from the patch context
is not found in the patched file. If that happens, fix the patch file by comparing it with the actual text in
the file to be patched.
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13.9. The tools phase
This is covered in Chapter 17.

13.10. The wrapper phase
This phase creates wrapper programs for the compilers and linkers. The following variables can be used
to tweak the wrappers.

ECHO_WRAPPER_MSG

The command used to print progress messages. Does nothing by default. Set to ${ECHO} to see the
progress messages.

WRAPPER_DEBUG

This variable can be set to yes (default) or no, depending on whether you want additional
information in the wrapper log file.

WRAPPER_UPDATE_CACHE

This variable can be set to yes or no, depending on whether the wrapper should use its cache,
which will improve the speed. The default value is yes, but is forced to no if the platform does not
support it.

WRAPPER_REORDER_CMDS

A list of reordering commands. A reordering command has the form reorder:l:lib1:lib2. It
ensures that that -llib1 occurs before -llib2.

13.11. The configure phase
Most pieces of software need information on the header files, system calls, and library routines which are
available on the platform they run on. The process of determining this information is known as
configuration, and is usually automated. In most cases, a script is supplied with the distfiles, and its
invocation results in generation of header files, Makefiles, etc.

If the package contains a configure script, this can be invoked by setting HAS_CONFIGURE to “yes”. If
the configure script is a GNU autoconf script, you should set GNU_CONFIGURE to “yes” instead.

In the do-configure stage, a rough equivalent of the following command is run. See
mk/configure/configure.mk, target do-configure-script for the exact definition.

.for dir in ${CONFIGURE_DIRS}
cd ${WRKSRC} && cd ${dir} \
&& env ${CONFIGURE_ENV} \

${CONFIG_SHELL} ${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
.endfor

CONFIGURE_DIRS (default: “.”) is a list of pathnames relative to WRKSRC. In each of these directories,
the configure script is run with the environment CONFIGURE_ENV and arguments CONFIGURE_ARGS.
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The variables CONFIGURE_ENV, CONFIGURE_SCRIPT (default: “./configure”) and CONFIGURE_ARGS

may all be changed by the package.

If the program uses the Perl way of configuration (mainly Perl modules, but not only), i.e. a file called
Makefile.PL, it should include ../../lang/perl5/module.mk. To set any parameter for
Makefile.PL use the MAKE_PARAMS variable (e.g., MAKE_PARAMS+=foo=bar

If the program uses an Imakefile for configuration, the appropriate steps can be invoked by setting
USE_IMAKE to “yes”. If you only need xmkmf, add it to USE_TOOLS. You can add variables to xmkmf’s
environment by adding them to the SCRIPTS_ENV variable.

If the program uses cmake for configuration, the appropriate steps can be invoked by including
../../devel/cmake/build.mk. You can add variables to cmake’s environment by adding them to the
CONFIGURE_ENV variable and arguments to cmake by adding them to the CMAKE_CONFIGURE_ARGS
variable. If you want to add arguments only for particular stages, you can use the
CMAKE_CONFIGURE_ARGS, CMAKE_BUILD_ARGS, and CMAKE_INSTALL_ARGS variables. You can set
the CONFIGURE_DIRS variable to the directories in which CMake should be run, relative to WRKSRC.
This defaults to to “.”.

Any package using the now-deprecated USE_CMAKE=yes should be converted. Essentially, replace with
an include of ../../devel/cmake/build.mk, prune creation of a build directory and settings to use
it, and check/fix settings that intend to perform the build in a subdirectory.

If there is no configure step at all, set NO_CONFIGURE to “yes”.

13.12. The build phase
For building a package, a rough equivalent of the following code is executed; see mk/build/build.mk,
target do-build for the exact definition.

.for dir in ${BUILD_DIRS}
cd ${WRKSRC} && cd ${dir} \
&& env ${MAKE_ENV} \

${MAKE_PROGRAM} ${MAKE_FLAGS} ${BUILD_MAKE_FLAGS} \
-f ${MAKE_FILE} \
${BUILD_TARGET}

.endfor

BUILD_DIRS (default: “.”) is a list of pathnames relative to WRKSRC. In each of these directories,
MAKE_PROGRAM is run with the environment MAKE_ENV and arguments BUILD_MAKE_FLAGS. The
variables MAKE_ENV, BUILD_MAKE_FLAGS, MAKE_FILE and BUILD_TARGET may all be changed by the
package.

The default value of MAKE_PROGRAM is “gmake” if USE_TOOLS contains “gmake”, “make” otherwise.
The default value of MAKE_FILE is “Makefile”, and BUILD_TARGET defaults to “all”.

If there is no build step at all, set NO_BUILD to “yes”.

13.13. The test phase
[TODO]
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13.14. The install phase
Once the build stage has completed, the final step is to install the software in public directories, so users
can access the programs and files.

In the install phase, a rough equivalent of the following code is executed; see
mk/install/install.mk, target do-install for the exact definition. Additionally, before and after
this code, several consistency checks are run against the files-to-be-installed, see mk/check/*.mk for
details.

.for dir in ${INSTALL_DIRS}
cd ${WRKSRC} && cd ${dir} \
&& env ${INSTALL_ENV} ${MAKE_ENV} \

${MAKE_PROGRAM} ${MAKE_FLAGS} ${INSTALL_MAKE_FLAGS} \
-f ${MAKE_FILE} ${INSTALL_TARGET}

.endfor

The variable’s meanings are analogous to the ones in the build phase. INSTALL_DIRS defaults to
BUILD_DIRS. INSTALL_TARGET is “install” by default, plus “install.man” if USE_IMAKE is defined and
NO_INSTALL_MANPAGES is not defined.

In the install phase, the following variables are useful. They are all variations of the install(1) command
that have the owner, group and permissions preset. INSTALL is the plain install command. The
specialized variants, together with their intended use, are:

INSTALL_PROGRAM_DIR

directories that contain binaries

INSTALL_SCRIPT_DIR

directories that contain scripts

INSTALL_LIB_DIR

directories that contain shared and static libraries

INSTALL_DATA_DIR

directories that contain data files

INSTALL_MAN_DIR

directories that contain man pages

INSTALL_GAME_DIR

directories that contain data files for games

INSTALL_PROGRAM

binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

binaries that cannot be stripped
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INSTALL_GAME

game binaries

INSTALL_LIB

shared and static libraries

INSTALL_DATA

data files

INSTALL_GAME_DATA

data files for games

INSTALL_MAN

man pages

Some other variables are:

INSTALL_UNSTRIPPED

If set to yes, do not run strip(1) when installing binaries. Any debugging sections and symbols
present in binaries will be preserved.

INSTALLATION_DIRS

A list of directories relative to PREFIX that are created by pkgsrc at the beginning of the install
phase. The package is supposed to create all needed directories itself before installing files to it and
list all other directories here.

In the rare cases that a package shouldn’t install anything, set NO_INSTALL to “yes”. This is mostly
relevant for packages in the regress category.

13.15. The package phase
Once the install stage has completed, a binary package of the installed files can be built. These binary
packages can be used for quick installation without previous compilation, e.g. by the make bin-install or
by using pkg_add.

By default, the binary packages are created in ${PACKAGES}/All and symlinks are created in
${PACKAGES}/category, one for each category in the CATEGORIES variable. PACKAGES defaults to
pkgsrc/packages.

13.16. Cleaning up
Once you’re finished with a package, you can clean the work directory by running make clean. If you
want to clean the work directories of all dependencies too, use make clean-depends.
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13.17. Other helpful targets

pre/post-*

For any of the main targets described in the previous section (configure, build, install, etc.), two
auxiliary targets exist with “pre-” and “post-” used as a prefix for the main target’s name. These
targets are invoked before and after the main target is called, allowing extra configuration or
installation steps be performed from a package’s Makefile, for example, which a program’s
configure script or install target omitted.

About 5% of the pkgsrc packages define their custom post-extract target, another 5% define
pre-configure, and 10% define post-install. The other pre/post-* targets are defined even less often.

do-*

Should one of the main targets do the wrong thing, and should there be no variable to fix this, you
can redefine it with the do-* target. (Note that redefining the target itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won’t be called anymore, etc.)

About 15% of the pkgsrc packages override the default do-install, the other do-* targets are
overridden even less often.

reinstall

If you did a make install and you noticed some file was not installed properly, you can repeat the
installation with this target, which will ignore the “already installed” flag.

This is the default value of DEPENDS_TARGET except in the case of make update and make
package, where the defaults are “package” and “update”, respectively.

deinstall

This target does a pkg_delete(1) in the current directory, effectively de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE

Add a "-v" to the pkg_delete(1) command.

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given package. This can be used to remove
any packages that may have been pulled in by a given package, e.g. if make deinstall
DEINSTALLDEPENDS=1 is done in pkgsrc/x11/kde, this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

bin-install

Install a binary package from local disk and via FTP from a list of sites (see the BINPKG_SITES
variable), and do a make package if no binary package is available anywhere. The arguments given
to pkg_add can be set via BIN_INSTALL_FLAGS e.g., to do verbose operation, etc.
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install-clean

This target removes the state files for the "install" and later phases so that the "install" target may be
re-invoked. This can be used after editing the PLIST to install the package without rebuilding it.

build-clean

This target removes the state files for the "build" and later phases so that the "build" target may be
re-invoked.

update

This target causes the current package to be updated to the latest version. The package and all
depending packages first get de-installed, then current versions of the corresponding packages get
compiled and installed. This is similar to manually noting which packages are currently installed,
then performing a series of make deinstall and make install (or whatever UPDATE_TARGET is set
to) for these packages.

You can use the “update” target to resume package updating in case a previous make update was
interrupted for some reason. However, in this case, make sure you don’t call make clean or
otherwise remove the list of dependent packages in WRKDIR. Otherwise, you lose the ability to
automatically update the current package along with the dependent packages you have installed.

Resuming an interrupted make update will only work as long as the package tree remains
unchanged. If the source code for one of the packages to be updated has been changed, resuming
make update will most certainly fail!

The following variables can be used either on the command line or in mk.conf to alter the
behaviour of make update:

UPDATE_TARGET

Install target to recursively use for the updated package and the dependent packages. Defaults
to DEPENDS_TARGET if set, “install” otherwise for make update. Other good targets are
“package” or “bin-install”. Do not set this to “update” or you will get stuck in an endless loop!

NOCLEAN

Don’t clean up after updating. Useful if you want to leave the work sources of the updated
packages around for inspection or other purposes. Be sure you eventually clean up the source
tree (see the “clean-update” target below) or you may run into troubles with old source code
still lying around on your next make or make update.

REINSTALL

Deinstall each package before installing (making DEPENDS_TARGET). This may be necessary
if the “clean-update” target (see below) was called after interrupting a running make update.

DEPENDS_TARGET

Allows you to disable recursion and hardcode the target for packages. The default is “update”
for the update target, facilitating a recursive update of prerequisite packages. Only set
DEPENDS_TARGET if you want to disable recursive updates. Use UPDATE_TARGET instead to
just set a specific target for each package to be installed during make update (see above).
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clean-update

Clean the source tree for all packages that would get updated if make update was called from the
current directory. This target should not be used if the current package (or any of its depending
packages) have already been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this target before the first time you
run make update and only if you have a dirty package tree (e.g., if you used NOCLEAN).

If you are unsure about whether your tree is clean, you can either perform a make clean at the top
of the tree, or use the following sequence of commands from the directory of the package you want
to update (before running make update for the first time, otherwise you lose all the packages you
wanted to update!):

# make clean-update

# make clean CLEANDEPENDS=YES

# make update

The following variables can be used either on the command line or in mk.conf to alter the
behaviour of make clean-update:

CLEAR_DIRLIST

After make clean, do not reconstruct the list of directories to update for this package. Only use
this if make update successfully installed all packages you wanted to update. Normally, this is
done automatically on make update, but may have been suppressed by the NOCLEAN variable
(see above).

replace

Update the installation of the current package. This differs from update in that it does not replace
dependent packages. You will need to install pkgtools/pkg_tarup for this target to work.

Be careful when using this target! There are no guarantees that dependent packages will still work,
in particular they will most certainly break if you make replace a library package whose shared
library major version changed between your installed version and the new one. For this reason, this
target is not officially supported and only recommended for advanced users.

info

This target invokes pkg_info(1) for the current package. You can use this to check which version of
a package is installed.

index

This is a top-level command, i.e. it should be used in the pkgsrc directory. It creates a database of
all packages in the local pkgsrc tree, including dependencies, comment, maintainer, and some other
useful information. Individual entries are created by running make describe in the packages’
directories. This index file is saved as pkgsrc/INDEX. It can be displayed in verbose format by
running make print-index. You can search in it with make search key=something. You can
extract a list of all packages that depend on a particular one by running make show-deps
PKG=somepackage.

Running this command takes a very long time, some hours even on fast machines!
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readme

This target generates a index.html file, which can be viewed using a browser such as
www/firefox or www/links. The generated files contain references to any packages which are in
the PACKAGES directory on the local host. The generated files can be made to refer to URLs based
on FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if I wanted to generate
index.html files which pointed to binary packages on the local machine, in the directory
/usr/packages, set FTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages. The ${PACKAGES} directory and its subdirectories will be
searched for all the binary packages.

The target can be run at the toplevel or in category directories, in which case it descends recursively.

readme-all

This is a top-level command, run it in pkgsrc. Use this target to create a file README-all.html
which contains a list of all packages currently available in the NetBSD Packages Collection,
together with the category they belong to and a short description. This file is compiled from the
pkgsrc/*/index.html files, so be sure to run this after a make readme.

cdrom-readme

This is very much the same as the “readme” target (see above), but is to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also produces index.html files, and can be
made to refer to URLs based on CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.

show-distfiles

This target shows which distfiles and patchfiles are needed to build the package (ALLFILES, which
contains all DISTFILES and PATCHFILES, but not patches/*).

show-downlevel

This target shows nothing if the package is not installed. If a version of this package is installed, but
is not the version provided in this version of pkgsrc, then a warning message is displayed. This
target can be used to show which of your installed packages are downlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir

This target shows the directory in the pkgsrc hierarchy from which the package can be built and
installed. This may not be the same directory as the one from which the package was installed. This
target is intended to be used by people who may wish to upgrade many packages on a single host,
and can be invoked from the top-level pkgsrc Makefile by using the “show-host-specific-pkgs”
target.

show-installed-depends

This target shows which installed packages match the current package’s DEPENDS. Useful if out of
date dependencies are causing build problems.

print-build-depends-list

This target shows the list of packages that the current package depends on for building.
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print-run-depends-list

This target shows the list of packages that the current package depends on for running.

check-shlibs

After a package is installed, check all its binaries and (on ELF platforms) shared libraries to see if
they find the shared libs they need. Run by default if PKG_DEVELOPER is set in mk.conf.

print-PLIST

After a “make install” from a new or upgraded pkg, this prints out an attempt to generate a new
PLIST from a find -newer work/.extract_done. An attempt is made to care for shared libs etc., but
it is strongly recommended to review the result before putting it into PLIST. On upgrades, it’s
useful to diff the output of this command against an already existing PLIST file.

If the package installs files via tar(1) or other methods that don’t update file access times, be sure to
add these files manually to your PLIST, as the “find -newer” command used by this target won’t
catch them!

See Section 19.3 for more information on this target.

rebuild

If you did a make build and you noticed some further modifications of sources are needed, you can
repeat the build with this target, which will ignore the “already built” flag. This target is helpful
while working with patches.

repackage

If you did a make package and you noticed some further modifications of sources are needed, you
can repeat the package with this target, which will ignore the “already packaged” flag. This target is
helpful while working with patches, PLIST* files etc.

retest

If you did a make test and you noticed some further modifications of sources are needed, you can
repeat the test with this target, which will ignore the “already tested” flag. This target is helpful
while working with patches.
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Creating a new pkgsrc package
from scratch

When you find a package that is not yet in pkgsrc, you most likely have a URL from where you can
download the source code. Starting with this URL, creating a package involves only a few steps.

1. In your mk.conf, set PKG_DEVELOPER=yes to enable the basic quality checks.

2. Install the package meta-pkgs/pkg_developer, which among others will install the utilities
url2pkg, pkglint, pkgvi and mkpatches:

$ cd /usr/pkgsrc

$ (cd meta-pkgs/pkg_developer && bmake update)

3. Choose one of the top-level directories as the category in which you want to place your package. You
can also create a directory of your own (maybe called local). Change into that category directory:

$ cd category

4. Run the program url2pkg, passing as argument the URL of the distribution file (in most cases a
.tar.gz file). This will download the distribution file and create the necessary files of the package,
based on what’s in the distribution file:

$ url2pkg https://www.example.org/packages/package-1.0.tar.gz

5. Examine the extracted files to determine the dependencies of your package. Ideally, this is
mentioned in some README file, but things may differ. For each of these dependencies, look where it
exists in pkgsrc, and if there is a file called buildlink3.mk in that directory, add a line to your
package Makefile which includes that file just before the last line. If the buildlink3.mk file does
not exist, it must be created first. The buildlink3.mk file makes sure that the package’s include
files and libraries are provided.

If you just need binaries from a dependent package, add a DEPENDS line to the Makefile, which
specifies the version of the dependency and where it can be found in pkgsrc. This line should be
placed in the third paragraph. If the dependency is only needed for building the package, but not
when using it, use TOOL_DEPENDS or BUILD_DEPENDS instead of DEPENDS. The difference
between TOOL_DEPENDS and BUILD_DEPENDS occurs when cross-compiling: TOOL_DEPENDS are
native packages, i.e. packages for the platform where the package is built; BUILD_DEPENDS are
target packages, i.e. packages for the platform for which the package is built. There is also
TEST_DEPENDS, which specifies a dependency used only for testing the resulting package built,
using the upstream project’s included test suite, on the native platform. Your package may then look
like this:

[...]

TOOL_DEPENDS+= libxslt-[0-9]*:../../textproc/libxslt
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DEPENDS+= screen-[0-9]*:../../misc/screen
DEPENDS+= screen>=4.0:../../misc/screen

[...]

.include "../../category/package/buildlink3.mk"

.include "../../devel/glib2/buildlink3.mk"

.include "../../mk/bsd.pkg.mk"

6. Run pkglint to see what things still need to be done to make your package a “good” one. If you
don’t know what pkglint’s warnings want to tell you, try pkglint --explain or pkglint -e, which
outputs additional explanations.

7. In many cases the package is not yet ready to build. You can find instructions for the most common
cases in the next section, Section 14.1. After you have followed the instructions over there, you can
hopefully continue here.

8. Run bmake clean to clean the working directory from the extracted files. Besides these files, a lot of
cache files and other system information have been saved in the working directory, which may have
become outdated after you edited the Makefile.

9. Now, run bmake to build the package. For the various things that can go wrong in this phase,
consult Chapter 21.

If the extracted files from the package need to be fixed, run multiple rounds of these commands:

$ bmake

$ pkgvi ${WRKSRC}/some/file/that/does/not/compile

$ mkpatches

$ bmake mps

$ bmake clean

10. When the package builds fine, the next step is to install the package. Run bmake install and hope
that everything works.

11. Up to now, the file PLIST, which contains a list of the files that are installed by the package, is
nearly empty. Run bmake print-PLIST >PLIST to generate a probably correct list. Check the file
using your preferred text editor to see if the list of files looks plausible.

12. Run pkglint again to see if the generated PLIST contains garbage or not.

13. When you ran bmake install, the package had been registered in the database of installed files, but
with an empty list of files. To fix this, run bmake deinstall and bmake install again. Now the
package is registered with the list of files from PLIST.

14. Run bmake clean update to run everything from above again in a single step, making sure that the
PLIST is correct and the whole package is created as intended.

15. Run pkglint to see if there’s anything left to do.

16. Commit the package to pkgsrc-wip or main pkgsrc; see Chapter 23.
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14.1. Common types of packages

14.1.1. Python modules and programs

Python modules and programs packages are easily created using a set of predefined variables.

If some Python versions are not supported by the software, set the PYTHON_VERSIONS_INCOMPATIBLE
variable to the Python versions that are not supported, e.g.

PYTHON_VERSIONS_INCOMPATIBLE= 27

If the packaged software is a Python module, include ../../lang/python/wheel.mk. Note per
PEP-518, the minimum and default requirement to create .whl files is devel/py-setuptools;
however, there are various other possible tools that projects can use. Thus inclusion of wheel.mk does
not imply these defaults are defined as TOOL_DEPENDS. Whatever the project specifically requires as
packaging tools must be defined in the package Makefile.

The package directory should be called “py-software” and PKGNAME should be set to
“${PYPKGPREFIX}-${DISTNAME}”, e.g.

DISTNAME= foopymodule-1.2.10
PKGNAME= ${PYPKGPREFIX}-${DISTNAME}

For software in PyPi, the name should match what PyPi specifies for "pip install software".

If it is an application, include “../../lang/python/application.mk”. In order to correctly set the
path to the Python interpreter, use the REPLACE_PYTHON variable and set it to the list of files (paths
relative to WRKSRC) that must be corrected. For example:

REPLACE_PYTHON= *.py

14.1.2. R packages

Simple R packages from CRAN
(https://cran.r-project.org/web/packages/available_packages_by_name.html) are handled automatically
by R2pkg, which is available in pkgtools/R2pkg. Individual packages (and optionally their
dependencies) may be created and updated. R packages generally follow the same form, and most of the
relevant information needed is contained in a DESCRIPTION file as part of each R package on CRAN
(https://cran.r-project.org/web/packages/available_packages_by_name.html). Consequently, R2pkg
downloads that information and creates or updates a package in the canonical form. The resulting
package should be reviewed for correctness.

14.1.3. TeXlive packages

TeXlive packages from CTAN (https://www.ctan.org/) are handled automatically by texlive2pkg, which
is available in pkgtools/texlive2pkg.
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If the TeXlive package name is not known, it may be useful to search CTAN (https://www.ctan.org/). A
“Contained in” field on the package page typically identifies the basename of the package file in the
TeXlive archive (https://www.ctan.org/tex-archive/systems/texlive/tlnet/archive).

If the TeXlive package name is known, download the files from the TeXlive archive
(https://www.ctan.org/tex-archive/systems/texlive/tlnet/archive). For package foo, you will need to
download foo.tar.xz. Most TeXlive packages also have associated documentation packages, so
download foo.doc.tar.xz at the same time. These files should be placed in the appropriate category
directory, which is often but not always print. Then run the following command in the category
directory.

texlive2pkg foo.tar.xz foo.doc.tar.xz

This will create two packages, tex-foo and tex-foo-doc. Be sure to check that both packages are
correct.

Finally, CTAN (https://www.ctan.org/) currently does not include version information in package
filenames and changes their contents periodically when updates occur. Consequently, pkgsrc avoids
downloading distfiles directly from CTAN (https://www.ctan.org/) and instead relies on the pkgsrc
archives. For each new or updated TeXlive package, e.g., the main one and the corresponding
documentation, upload the distfiles with the following command in each package directory.

make upload-distfiles

14.2. Examples

14.2.1. How the www/nvu package came into pkgsrc

14.2.1.1. The initial package

Looking at the file pkgsrc/doc/TODO, I saw that the “nvu” package has not yet been imported into
pkgsrc. As the description says it has to do with the web, the obvious choice for the category is “www”.

$ mkdir www/nvu
$ cd www/nvu

The web site says that the sources are available as a tar file, so I fed that URL to the url2pkg program:

$ url2pkg http://cvs.nvu.com/download/nvu-1.0-sources.tar.bz2

My editor popped up, and I added a PKGNAME line below the DISTNAME line, as the package name should
not have the word “sources” in it. I also filled in the MAINTAINER, HOMEPAGE and COMMENT fields. Then
the package Makefile looked like that:

# $NetBSD $
#

DISTNAME= nvu-1.0-sources
PKGNAME= nvu-1.0
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CATEGORIES= www
MASTER_SITES= http://cvs.nvu.com/download/
EXTRACT_SUFX= .tar.bz2

MAINTAINER= rillig@NetBSD.org
HOMEPAGE= http://cvs.nvu.com/
COMMENT= Web Authoring System

# url2pkg-marker (please do not remove this line.)
.include "../../mk/bsd.pkg.mk"

On the first line of output above, an artificial space has been added between NetBSD and $, this is a
workaround to prevent CVS expanding to the filename of the guide.

Then, I quit the editor and watched pkgsrc downloading a large source archive:

url2pkg> Running "make makesum" ...
=> Required installed package digest>=20010302: digest-20060826 found
=> Fetching nvu-1.0-sources.tar.bz2
Requesting http://cvs.nvu.com/download/nvu-1.0-sources.tar.bz2
100% |*************************************| 28992 KB 150.77 KB/s00:00 ETA
29687976 bytes retrieved in 03:12 (150.77 KB/s)
url2pkg> Running "make extract" ...
=> Required installed package digest>=20010302: digest-20060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2
=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2
work.bacc -> /tmp/roland/pkgsrc/www/nvu/work.bacc
===> Installing dependencies for nvu-1.0
===> Overriding tools for nvu-1.0
===> Extracting for nvu-1.0
url2pkg> Adjusting the Makefile.

Remember to correct CATEGORIES, HOMEPAGE, COMMENT, and DESCR when you’re done!

Good luck! (See pkgsrc/doc/pkgsrc.txt for some more help :-)

14.2.1.2. Fixing all kinds of problems to make the package work

Now that the package has been extracted, let’s see what’s inside it. The package has a README.txt, but
that only says something about mozilla, so it’s probably useless for seeing what dependencies this
package has. But since there is a GNU configure script in the package, let’s hope that it will complain
about everything it needs.

$ bmake
=> Required installed package digest>=20010302: digest-20060826 found
=> Checksum SHA1 OK for nvu-1.0-sources.tar.bz2
=> Checksum RMD160 OK for nvu-1.0-sources.tar.bz2
===> Patching for nvu-1.0
===> Creating toolchain wrappers for nvu-1.0
===> Configuring for nvu-1.0
[...]
configure: error: Perl 5.004 or higher is required.
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[...]
WARNING: Please add USE_TOOLS+=perl to the package Makefile.
[...]

That worked quite well. So I opened the package Makefile in my editor, and since it already has a
USE_TOOLS line, I just appended “perl” to it. Since the dependencies of the package have changed now,
and since a perl wrapper is automatically installed in the “tools” phase, I need to build the package from
scratch.

$ bmake clean
===> Cleaning for nvu-1.0
$ bmake
[...]

*** /tmp/roland/pkgsrc/www/nvu/work.bacc/.tools/bin/make is not \
GNU Make. You will not be able to build Mozilla without GNU Make.
[...]

So I added “gmake” to the USE_TOOLS line and tried again (from scratch).

[...]
checking for GTK - version >= 1.2.0... no

*** Could not run GTK test program, checking why...
[...]

Now to the other dependencies. The first question is: Where is the GTK package hidden in pkgsrc?

$ echo ../../*/gtk*
[many packages ...]
$ echo ../../*/gtk
../../x11/gtk
$ echo ../../*/gtk2
../../x11/gtk2
$ echo ../../*/gtk2/bui*
../../x11/gtk2/buildlink3.mk

The first try was definitely too broad. The second one had exactly one result, which is very good. But
there is one pitfall with GNOME packages. Before GNOME 2 had been released, there were already
many GNOME 1 packages in pkgsrc. To be able to continue to use these packages, the GNOME 2
packages were imported as separate packages, and their names usually have a “2” appended. So I
checked whether this was the case here, and indeed it was.

Since the GTK2 package has a buildlink3.mk file, adding the dependency is very easy. I just inserted
an .include line before the last line of the package Makefile, so that it now looks like this:

[...]
.include "../../x11/gtk2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk

After another bmake clean && bmake, the answer was:

[...]
checking for gtk-config... /home/roland/pkg/bin/gtk-config
checking for GTK - version >= 1.2.0... no

68



Chapter 14. Creating a new pkgsrc package from scratch

*** Could not run GTK test program, checking why...

*** The test program failed to compile or link. See the file config.log for the

*** exact error that occured. This usually means GTK was incorrectly installed

*** or that you have moved GTK since it was installed. In the latter case, you

*** may want to edit the gtk-config script: /home/roland/pkg/bin/gtk-config
configure: error: Test for GTK failed.
[...]

In this particular case, the assumption that “every package prefers GNOME 2” had been wrong. The first
of the lines above told me that this package really wanted to have the GNOME 1 version of GTK. If the
package had looked for GTK2, it would have looked for pkg-config instead of gtk-config. So I changed
the x11/gtk2 to x11/gtk in the package Makefile, and tried again.

[...]
cc -o xpidl.o -c -DOSTYPE=\"NetBSD3\" -DOSARCH=\"NetBSD\" [...]
In file included from xpidl.c:42:
xpidl.h:53:24: libIDL/IDL.h: No such file or directory
In file included from xpidl.c:42:
xpidl.h:132: error: parse error before "IDL_ns"
[...]

The package still does not find all of its dependencies. Now the question is: Which package provides the
libIDL/IDL.h header file?

$ echo ../../*/*idl*
../../devel/py-idle ../../wip/idled ../../x11/acidlaunch
$ echo ../../*/*IDL*
../../net/libIDL

Let’s take the one from the second try. So I included the ../../net/libIDL/buildlink3.mk file and
tried again. But the error didn’t change. After digging through some of the code, I concluded that the
build process of the package was broken and couldn’t have ever worked, but since the Mozilla source tree
is quite large, I didn’t want to fix it. So I added the following to the package Makefile and tried again:

CPPFLAGS+= -I${BUILDLINK_PREFIX.libIDL}/include/libIDL-2.0
BUILDLINK_TRANSFORM+= l:IDL:IDL-2

The latter line is needed because the package expects the library libIDL.so, but only libIDL-2.so is
available. So I told the compiler wrapper to rewrite that on the fly.

The next problem was related to a recent change of the FreeType interface. I looked up in
www/seamonkey which patch files were relevant for this issue and copied them to the patches
directory. Then I retried, fixed the patches so that they applied cleanly and retried again. This time,
everything worked.

14.2.1.3. Installing the package

$ bmake CHECK_FILES=no install
[...]
$ bmake print-PLIST >PLIST
$ bmake deinstall
$ bmake install
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Programming in Makefiles

Pkgsrc consists of many Makefile fragments, each of which forms a well-defined part of the pkgsrc
system. Using the make(1) system as a programming language for a big system like pkgsrc requires
some discipline to keep the code correct and understandable.

The basic ingredients for Makefile programming are variables and shell commands. Among these shell
commands may even be more complex ones like awk(1) programs. To make sure that every shell
command runs as intended it is necessary to quote all variables correctly when they are used.

This chapter describes some patterns that appear quite often in Makefiles, including the pitfalls that
come along with them.

15.1. Caveats

• When you are creating a file as a target of a rule, always write the data to a temporary file first and
finally rename that file. Otherwise there might occur an error in the middle of generating the file, and
when the user runs make(1) for the second time, the file exists and will not be regenerated properly.
Example:

wrong:
@echo "line 1" > ${.TARGET}
@echo "line 2" >> ${.TARGET}
@false

correct:
@echo "line 1" > ${.TARGET}.tmp
@echo "line 2" >> ${.TARGET}.tmp
@false
@mv ${.TARGET}.tmp ${.TARGET}

When you run make wrong twice, the file wrong will exist, although there was an error message in
the first run. On the other hand, running make correct gives an error message twice, as expected.

You might remember that make(1) sometimes removes ${.TARGET} in case of error, but this only
happens when it is interrupted, for example by pressing Ctrl+C. This does not happen when one of
the commands fails (like false(1) above).

15.2. Makefile variables
Makefile variables contain strings that can be processed using the five operators =, +=, ?=, := and !=,
which are described in the make(1) man page.
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When a variable’s value is parsed from a Makefile, the hash character # and the backslash character \
are handled specially. If a backslash is the last character in a line, that backslash is removed from the line
and the line continues with the next line of the file.

The # character starts a comment that reaches until the end of the line. To get an actual # character, such
as in a URL, write \# instead.

The evaluation of variables either happens immediately or lazy. It happens immediately when the
variable occurs on the right-hand side of the := or the != operator, in a .if condition or a .for loop. In
the other cases, it is evaluated lazily.

Some of the modifiers split the string into words and then operate on the words, others operate on the
string as a whole. When a string is split into words, double quotes and single quotes are interpreted as
delimiters, just like in sh(1).

15.2.1. Naming conventions

• All variable names starting with an underscore are reserved for use by the pkgsrc infrastructure. They
shall not be used by packages.

• In .for loops you should use lowercase variable names for the iteration variables.

• All list variables should have a plural name, such as PKG_OPTIONS or DISTFILES.

15.3. Code snippets

15.3.1. Adding things to a list

When adding a string that possibly contains whitespace or quotes to a list (example 1), it must be quoted
using the :Q modifier.

When adding another list to a list (example 2), it must not be quoted, since its elements are already
quoted.

STRING= foo * bar ‘date‘
LIST= # empty
ANOTHER_LIST= a=b c=d

LIST+= ${STRING:Q} # 1
LIST+= ${ANOTHER_LIST} # 2

15.3.2. Echoing a string exactly as-is

Echoing a string containing special characters needs special work.

STRING= foo bar < > * ‘date‘ $$HOME ’ "
EXAMPLE_ENV= string=${STRING:Q} x=multiple\ quoted\ words

all:
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echo ${STRING} # 1
echo ${STRING:Q} # 2
printf ’%s\n’ ${STRING:Q}” # 3
env ${EXAMPLE_ENV} sh -c ’echo "$$string"; echo "$$x"’ # 4

Example 1 leads to a syntax error in the shell, as the characters are just copied.

Example 2 quotes the string so that the shell interprets it correctly. But the echo command may
additionally interpret strings with a leading dash or those containing backslashes.

Example 3 can handle arbitrary strings, since printf(1) only interprets the format string, but not the next
argument. The trailing single quotes handle the case when the string is empty. In that case, the :Q
modifier would result in an empty string too, which would then be skipped by the shell. For printf(1) this
doesn’t make a difference, but other programs may care.

In example 4, the EXAMPLE_ENV does not need to be quoted because the quoting has already been done
when adding elements to the list.

15.3.3. Passing CFLAGS to GNU configure scripts

When passing CFLAGS or similar variables to a GNU-style configure script (especially those that call
other configure scripts), it must not have leading or trailing whitespace, since otherwise the configure
script gets confused. To trim leading and trailing whitespace, use the :M modifier, as in the following
example:

CPPFLAGS= # empty
CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX}\"
CPPFLAGS+= ${MY_CPPFLAGS}

CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:M*:Q}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS:Q}x # properly trimmed

In this example, CPPFLAGS has both leading and trailing whitespace because the += operator always
adds a space.

15.3.4. Handling possibly empty variables

When a possibly empty variable is used in a shell program, it may lead to a syntax error.

EGFILES= # empty

install-examples: # produces a syntax error in the shell
for egfile in ${EGFILES}; do \

echo "Installing $$egfile"; \
done

The shell only sees the text for egfile in ; do, since ${EGFILES} is replaced with an empty string
by make(1). To fix this syntax error, use one of the snippets below.
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EGFILES= # empty

install-examples:
for egfile in ${EGFILES} ""; do \

[ -n "$$egfile" ] || continue; \
echo "Installing $$egfile"; \

done

In this case, an empty string is appended to the iteration list (to prevent the syntax error) and filtered out
later.

EGFILES= # empty

install-examples:
.for egfile in ${EGFILES}

echo "Installing ${egfile}"
.endfor

If one of the filenames contains special characters, it should be enclosed in single or double quotes.

To have a shell command test whether a make variable is empty, use the following code: ${TEST} -z

${POSSIBLY_EMPTY:Q}"".

15.3.5. Testing yes/no variables in conditions

When a variable can have the values yes or no, use the following pattern to test the variable:

.if ${VAR:U:tl} == "yes"
# do something
.endif

The :U modifier is only necessary if the variable can be undefined. If the variable is guaranteed to be
defined, the :U can be omitted.

The :tl modifier converts the variable value to lowercase, allowing for the values yes, Yes, YES.
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Options handling

Many packages have the ability to be built to support different sets of features. bsd.options.mk is a
framework in pkgsrc that provides generic handling of those options that determine different ways in
which the packages can be built. It’s possible for the user to specify exactly which sets of options will be
built into a package or to allow a set of global default options apply.

There are two broad classes of behaviors that one might want to control via options. One is whether
some particular feature is enabled in a program that will be built anyway, often by including or not
including a dependency on some other package. The other is whether or not an additional program will
be built as part of the package. Generally, it is better to make a split package for such additional
programs instead of using options, because it enables binary packages to be built which can then be
added separately. For example, the foo package might have minimal dependencies (those packages
without which foo doesn’t make sense), and then the foo-gfoo package might include the GTK frontend
program gfoo. This is better than including a gtk option to foo that adds gfoo, because either that option
is default, in which case binary users can’t get foo without gfoo, or not default, in which case they can’t
get gfoo. With split packages, they can install foo without having GTK, and later decide to install gfoo
(pulling in GTK at that time). This is an advantage to source users too, avoiding the need for rebuilds.

Plugins with widely varying dependencies should usually be split instead of options.

It is often more work to maintain split packages, especially if the upstream package does not support
this. The decision of split vs. option should be made based on the likelihood that users will want or
object to the various pieces, the size of the dependencies that are included, and the amount of work.

A further consideration is licensing. Non-free parts, or parts that depend on non-free dependencies
(especially plugins) should almost always be split if feasible.

16.1. Global default options
Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of the options that should be
built into every package if that option is supported. This variable should be set in mk.conf.

16.2. Converting packages to use bsd.options.mk

The following example shows how bsd.options.mk should be used by the hypothetical “wibble”
package, either in the package Makefile, or in a file, e.g. options.mk, that is included by the main
package Makefile.

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql
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PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP:ldap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

# this package was previously named wibble2
.if defined(PKG_OPTIONS.wibble2)
PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \

"Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG_OPTIONS_VAR} instead."
.endif

.include "../../mk/bsd.options.mk"

# Package-specific option-handling

###
### FOO support
###
.if !empty(PKG_OPTIONS:Mwibble-foo)
CONFIGURE_ARGS+= --enable-foo
.endif

###
### LDAP support
###
.if !empty(PKG_OPTIONS:Mldap)
. include "../../databases/openldap-client/buildlink3.mk"
CONFIGURE_ARGS+= --enable-ldap=${BUILDLINK_PREFIX.openldap-client}
.endif

###
### database support
###
.if !empty(PKG_OPTIONS:Mmysql)
. include "../../mk/mysql.buildlink3.mk"
.endif
.if !empty(PKG_OPTIONS:Mpgsql)
. include "../../mk/pgsql.buildlink3.mk"
.endif

The first section contains the information about which build options are supported by the package, and
any default options settings if needed.

1. PKG_OPTIONS_VAR is the name of the make(1) variable that the user can set to override the default
options. It should be set to PKG_OPTIONS.pkgbase. Do not set it to
PKG_OPTIONS.${PKGBASE}, since PKGBASE is not defined at the point where the options are
processed.

2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.
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3. PKG_OPTIONS_OPTIONAL_GROUPS is a list of names of groups of mutually exclusive options. The
options in each group are listed in PKG_OPTIONS_GROUP.groupname. The most specific setting of
any option from the group takes precedence over all other options in the group. Options from the
groups will be automatically added to PKG_SUPPORTED_OPTIONS.

4. PKG_OPTIONS_REQUIRED_GROUPS is like PKG_OPTIONS_OPTIONAL_GROUPS, but building the
packages will fail if no option from the group is selected.

5. PKG_OPTIONS_NONEMPTY_SETS is a list of names of sets of options. At least one option from each
set must be selected. The options in each set are listed in PKG_OPTIONS_SET.setname. Options
from the sets will be automatically added to PKG_SUPPORTED_OPTIONS. Building the package will
fail if no option from the set is selected.

6. PKG_SUGGESTED_OPTIONS is a list of build options which are enabled by default.

7. PKG_OPTIONS_LEGACY_VARS is a list of “USE_VARIABLE:option” pairs that map legacy
mk.conf variables to their option counterparts. Pairs should be added with “+=” to keep the listing
of global legacy variables. A warning will be issued if the user uses a legacy variable.

8. PKG_OPTIONS_LEGACY_OPTS is a list of “old-option:new-option” pairs that map options that
have been renamed to their new counterparts. Pairs should be added with “+=” to keep the listing of
global legacy options. A warning will be issued if the user uses a legacy option.

9. PKG_LEGACY_OPTIONS is a list of options implied by deprecated variables used. This can be used
for cases that neither PKG_OPTIONS_LEGACY_VARS nor PKG_OPTIONS_LEGACY_OPTS can handle,
e. g. when PKG_OPTIONS_VAR is renamed.

10. PKG_OPTIONS_DEPRECATED_WARNINGS is a list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modify PKG_DEFAULT_OPTIONS or the variable named in PKG_OPTIONS_VAR.
These are strictly user-settable. To suggest a default set of options, use PKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VAR must be defined before including bsd.options.mk. If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPS are defined (as can happen with platform-specific options if none of
them is supported on the current platform), PKG_OPTIONS is set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion of bsd.options.mk, the variable PKG_OPTIONS contains the list of selected build
options, properly filtered to remove unsupported and duplicate options.

The remaining sections contain the logic that is specific to each option. The correct way to check for an
option is to check whether it is listed in PKG_OPTIONS:

.if !empty(PKG_OPTIONS:Moption)

16.3. Option Names
Options that enable similar features in different packages (like optional support for a library) should use
a common name in all packages that support it (like the name of the library). If another package already
has an option with the same meaning, use the same name.

76



Chapter 16. Options handling

Options that enable features specific to one package, where it’s unlikely that another (unrelated) package
has the same (or a similar) optional feature, should use a name prefixed with pkgname-.

If a group of related packages share an optional feature specific to that group, prefix it with the name of
the “main” package (e. g. djbware-errno-hack).

For new options, add a line to mk/defaults/options.description. Lines have two fields,
separated by tab. The first field is the option name, the second its description. The description should be a
whole sentence (starting with an uppercase letter and ending with a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The file is sorted by option names.

16.4. Determining the options of dependencies
When writing buildlink3.mk files, it is often necessary to list different dependencies based on the
options with which the package was built. For querying these options, the file
pkgsrc/mk/pkg-build-options.mk should be used. A typical example looks like this:

pkgbase := libpurple
.include "../../mk/pkg-build-options.mk"

.if !empty(PKG_BUILD_OPTIONS.libpurple:Mdbus)

...

.endif

Including pkg-build-options.mk here will set the variable PKG_BUILD_OPTIONS.libpurple to
the build options of the libpurple package, which can then be queried like PKG_OPTIONS in the
options.mk file. See the file pkg-build-options.mk for more details.
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Tools needed for building or
running

The USE_TOOLS definition is used both internally by pkgsrc and also for individual packages to define
what commands are needed for building a package (like TOOL_DEPENDS) or for later run-time of an
installed packaged (such as DEPENDS). If the native system provides an adequate tool, then in many
cases, a pkgsrc package will not be used.

When building a package, the replacement tools are made available in a directory (as symlinks or
wrapper scripts) that is early in the executable search path. Just like the buildlink system, this helps with
consistent builds.

A tool may be needed to help build a specific package. For example, perl, GNU make (gmake) or yacc
may be needed.

Also a tool may be needed, for example, because the native system’s supplied tool may be inefficient for
building a package with pkgsrc. For example, a package may need GNU awk, bison (instead of yacc) or
a better sed.

The tools used by a package can be listed by running make show-tools.

17.1. Tools for pkgsrc builds
The default set of tools used by pkgsrc is defined in bsd.pkg.mk. This includes standard Unix tools,
such as: cat, awk, chmod, test, and so on. These can be seen by running: make show-var
VARNAME=USE_TOOLS.

If a package needs a specific program to build then the USE_TOOLS variable can be used to define the
tools needed.

17.2. Tools needed by packages
In the following examples, the :run means that it is needed at run-time (and becomes a DEPENDS). The
default is a build dependency which can be set with :build. (So in this example, it is the same as
gmake:build and pkg-config:build.)

USE_TOOLS+= gmake perl:run pkg-config

When using the tools framework, a TOOLS_PATH.foo variable is defined which contains the full path to
the appropriate tool. For example, TOOLS_PATH.bash could be “/bin/bash” on Linux systems.

If you always need a pkgsrc version of the tool at run-time, then just use DEPENDS instead.
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17.3. Tools provided by platforms
When improving or porting pkgsrc to a new platform, have a look at (or create) the corresponding
platform specific make file fragment under pkgsrc/mk/tools/tools.${OPSYS}.mk which defines
the name of the common tools. For example:

.if exists(/usr/bin/bzcat)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzcat
.elif exists(/usr/bin/bzip2)
TOOLS_PLATFORM.bzcat?= /usr/bin/bzip2 -cd
.endif

TOOLS_PLATFORM.true?= true # shell builtin

79



Chapter 18.

Buildlink methodology

Buildlink is a framework in pkgsrc that controls what headers and libraries are seen by a package’s
configure and build processes. This is implemented in a two step process:

1. Symlink headers and libraries for dependencies into BUILDLINK_DIR, which by default is a
subdirectory of WRKDIR.

2. Create wrapper scripts that are used in place of the normal compiler tools that translate
-I${LOCALBASE}/include and -L${LOCALBASE}/lib into references to BUILDLINK_DIR. The
wrapper scripts also make native compiler on some operating systems look like GCC, so that
packages that expect GCC won’t require modifications to build with those native compilers.

This normalizes the environment in which a package is built so that the package may be built
consistently despite what other software may be installed. Please note that the normal system header and
library paths, e.g. /usr/include, /usr/lib, etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied software.

18.1. Converting packages to use buildlink3
The process of converting packages to use the buildlink3 framework (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripts instead of the actual toolchain. Some packages
are tricky, and the only way to know for sure is the check ${WRKDIR}/.work.log to see if the
wrappers are being invoked.

2. Don’t override PREFIX from within the package Makefile, e.g. Java VMs, standalone shells, etc.,
because the code to symlink files into ${BUILDLINK_DIR} looks for files relative to “pkg_info -qp
pkgname”.

3. Remember that only the buildlink3.mk files that you list in a package’s Makefile are added as
dependencies for that package.

If a dependency on a particular package is required for its libraries and headers, then we replace:

DEPENDS+= foo>=1.1.0:../../category/foo

with

.include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required dependencies. If you need a newer version of the
dependency when using buildlink3.mk files, then you can define it in your Makefile; for example:
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BUILDLINK_API_DEPENDS.foo+= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are several buildlink3.mk files in pkgsrc/mk that handle special package issues:

• bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB implementation based on
the values of BDB_ACCEPTED and BDB_DEFAULT.

• curses.buildlink3.mk: If the system comes with neither Curses nor NCurses, this will take care
to install the devel/ncurses package.

• krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberos 5 implementation.

• motif.buildlink3.mk checks for a system-provided Motif installation or adds a dependency on
x11/lesstif or x11/motif. The user can set MOTIF_TYPE to “dt”, “lesstif” or “motif” to choose
which Motif version will be used.

• readline.buildlink3.mk checks for a system-provided GNU readline or editline (libedit)
installation, or adds a dependency on devel/readline, devel/editline. The user can set
READLINE_DEFAULT to choose readline implementation. If your package really needs GNU readline
library, its Makefile should include devel/readline/buildlink3.mk instead of
readline.buildlink3.mk.

• oss.buildlink3.mk defines several variables that may be used by packages that use the Open
Sound System (OSS) API.

• pgsql.buildlink3.mk will accept any of the Postgres versions in the variable
PGSQL_VERSIONS_ACCEPTED and default to the version PGSQL_VERSION_DEFAULT. See the file for
more information.

• pthread.buildlink3.mk uses the value of PTHREAD_OPTS and checks for native pthreads or adds
a dependency on devel/pth as needed.

• xaw.buildlink3.mk uses the value of XAW_TYPE to choose a particular Athena widgets library.

The comments in those buildlink3.mk files provide a more complete description of how to use them
properly.

18.2. Writing buildlink3.mk files
A package’s buildlink3.mk file is included by Makefiles to indicate the need to compile and link
against header files and libraries provided by the package. A buildlink3.mk file should always
provide enough information to add the correct type of dependency relationship and include any other
buildlink3.mk files that it needs to find headers and libraries that it needs in turn.

To generate an initial buildlink3.mk file for further editing, Rene Hexel’s
pkgtools/createbuildlink package is highly recommended. For most packages, the following
command will generate a good starting point for buildlink3.mk files:

% cd pkgsrc/category/pkgdir

% createbuildlink >buildlink3.mk
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18.2.1. Anatomy of a buildlink3.mk file

The following real-life example buildlink3.mk is taken from pkgsrc/graphics/tiff:

BUILDLINK_TREE+= tiff

.if !defined(TIFF_BUILDLINK3_MK)
TIFF_BUILDLINK3_MK:=

BUILDLINK_API_DEPENDS.tiff+= tiff>=3.6.1
BUILDLINK_ABI_DEPENDS.tiff+= tiff>=3.7.2nb1
BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff

.include "../../devel/zlib/buildlink3.mk"

.include "../../graphics/jpeg/buildlink3.mk"

.endif # TIFF_BUILDLINK3_MK

BUILDLINK_TREE+= -tiff

The header and footer manipulate BUILDLINK_TREE, which is common across all buildlink3.mk files
and is used to track the dependency tree.

The main section is protected from multiple inclusion and controls how the dependency on pkg is added.
Several important variables are set in the section:

• BUILDLINK_API_DEPENDS.pkg is the dependency version recorded in the installed package; this
should always be set using += to ensure that we’re appending to any pre-existing list of values. This
variable should be set to the last version of the package that had an backwards-incompatible API
change.

• BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory.

• BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use BUILD_DEPENDS or
DEPENDS to add the dependency on pkg. The build dependency is selected by setting
BUILDLINK_DEPMETHOD.pkg to “build”. By default, the full dependency is used.

• BUILDLINK_INCDIRS.pkg and BUILDLINK_LIBDIRS.pkg (not shown above) are lists of
subdirectories of ${BUILDLINK_PREFIX.pkg} to add to the header and library search paths. These
default to “include” and “lib” respectively.

• BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags to add to CPPFLAGS,
which are passed on to the configure and build phases. The “-I” option should be avoided and instead
be handled using BUILDLINK_INCDIRS.pkg as above.

The following variables are all optionally defined within this second section (protected against multiple
inclusion) and control which package files are symlinked into ${BUILDLINK_DIR} and how their names
are transformed during the symlinking:

• BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX.pkg} to be symlinked into ${BUILDLINK_DIR}, e.g. include/*.h.

• BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs to stdout a list of files
relative to ${BUILDLINK_PREFIX.pkg}. The resulting files are to be symlinked into
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${BUILDLINK_DIR}. By default, this takes the +CONTENTS of a pkg and filters it through
${BUILDLINK_CONTENTS_FILTER.pkg}.

• BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that filters +CONTENTS
input into a list of files relative to ${BUILDLINK_PREFIX.pkg} on stdout. By default,
BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of the include and lib directories in the
package +CONTENTS.

• BUILDLINK_FNAME_TRANSFORM.pkg (not shown above) is a list of sed arguments used to transform
the name of the source filename into a destination filename, e.g. -e "s|/curses.h|/ncurses.h|g".

This section can additionally include any buildlink3.mk needed for pkg’s library dependencies.
Including these buildlink3.mk files means that the headers and libraries for these dependencies are
also symlinked into ${BUILDLINK_DIR} whenever the pkg buildlink3.mk file is included.
Dependencies are only added for directly include buildlink3.mk files.

When providing a buildlink3.mk and including other buildlink3.mk files in it, please only add
necessary ones, i.e., those whose libraries or header files are automatically exposed when the package is
use.

In particular, if only an executable (bin/foo) is linked against a library, that library does not need to be
propagated in the buildlink3.mk file.

The following steps should help you decide if a buildlink3.mk file needs to be included:

• Look at the installed header files: What headers do they include? The packages providing these files
must be buildlinked.

• Run ldd on all installed libraries and look against what other libraries they link. Some of the packages
providing these probably need to be buildlinked; however, it’s not automatic, since e.g. GTK on some
systems pulls in the X libraries, so they will show up in the ldd output, while on others (like OS X) it
won’t. ldd output can thus only be used as a hint.

18.2.2. Updating BUILDLINK_API_DEPENDS.pkg and
BUILDLINK_ABI_DEPENDS.pkg in buildlink3.mk files

Both variables set lower bounds for a version of this package. The two variables differ in that one
describes source compatibility (API) and the other binary compatibility (ABI). The difference is that a
change in the API breaks compilation of programs while changes in the ABI stop compiled programs
from running.

The BUILDLINK_API_DEPENDS.pkg variable in a buildlink3.mk should be changed very rarely.
(One possible scenario: If all packages using this package need a higher version than defined in the
buildlink3.mk, BUILDLINK_API_DEPENDS.pkg could be updated to that higher version.)

On the other hand, changes to BUILDLINK_ABI_DEPENDS.pkg are more common. The variable will
need to be updated every time the major version of one of its shared libraries is changed, or any other
change where a binary built against the previous version of the package will not run against the new
version any longer.

In such a case, the package’s BUILDLINK_ABI_DEPENDS.pkg must be increased to require the new
package version. Then the PKGREVISION of all packages foo that depend on this package need to be
increased, and if they have buildlink3.mk files, BUILDLINK_ABI_DEPENDS.foo in their
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buildlink3.mk files must be increased to the new version as well. This is required so that a package
will pull in the versions of the packages that use the new ABI and that the packages’ PKGREVISIONs
uniquely identify the packages built against the new ABI. The pkgtools/revbump package can help
with these updates.

See Section 21.1.5 for more information about dependencies on other packages, including the
BUILDLINK_API_DEPENDS definitions.

Please take careful consideration before adjusting BUILDLINK_API_DEPENDS.pkg or
BUILDLINK_ABI_DEPENDS.pkg in a buildlink3.mk file as we don’t want to cause unneeded package
deletions and rebuilds. In many cases, new versions of packages work just fine with older dependencies.

Also, it is not needed to set BUILDLINK_ABI_DEPENDS.pkg when it is identical to
BUILDLINK_API_DEPENDS.pkg.

Note there is also the distinction that users are able to disable enforcement of ABI dependencies using
the USE_ABI_DEPENDS variable, but there is no equivalent option for API dependencies.

18.3. Writing builtin.mk files
Some packages in pkgsrc install headers and libraries that coincide with headers and libraries present in
the base system. Aside from a buildlink3.mk file, these packages should also include a builtin.mk
file that includes the necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file for pkg are:

1. It should set USE_BUILTIN.pkg to either “yes” or “no” after it is included.

2. It should not override any USE_BUILTIN.pkg which is already set before the builtin.mk file is
included.

3. It should be written to allow multiple inclusion. This is very important and takes careful attention to
Makefile coding.

18.3.1. Anatomy of a builtin.mk file

The following is the recommended template for builtin.mk files:

.if !defined(IS_BUILTIN.foo)
#
# IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
# genuinely exists in the system or not.
#
IS_BUILTIN.foo?= no

# BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
# version can be determined.
#
. if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0
. endif
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.endif # IS_BUILTIN.foo

.if !defined(USE_BUILTIN.foo)
USE_BUILTIN.foo?= ${IS_BUILTIN.foo}
. if defined(BUILTIN_PKG.foo)
. for _depend_ in ${BUILDLINK_API_DEPENDS.foo}
. if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!= \

${PKG_ADMIN} pmatch ’${_depend_}’ ${BUILTIN_PKG.foo} \
&& ${ECHO} "yes" || ${ECHO} "no"

. endif

. endfor

. endif

.endif # USE_BUILTIN.foo

CHECK_BUILTIN.foo?= no
.if !empty(CHECK_BUILTIN.foo:M[nN][oO])
#
# Here we place code that depends on whether USE_BUILTIN.foo is set to
# "yes" or "no".
#
.endif # CHECK_BUILTIN.foo

The first section sets IS_BUILTIN.pkg depending on if pkg really exists in the base system. This should
not be a base system software with similar functionality to pkg; it should only be “yes” if the actual
package is included as part of the base system. This variable is only used internally within the
builtin.mk file.

The second section sets BUILTIN_PKG.pkg to the version of pkg in the base system if it exists (if
IS_BUILTIN.pkg is “yes”). This variable is only used internally within the builtin.mk file.

The third section sets USE_BUILTIN.pkg and is required in all builtin.mk files. The code in this
section must make the determination whether the built-in software is adequate to satisfy the
dependencies listed in BUILDLINK_API_DEPENDS.pkg. This is typically done by comparing
BUILTIN_PKG.pkg against each of the dependencies in BUILDLINK_API_DEPENDS.pkg.
USE_BUILTIN.pkg must be set to the correct value by the end of the builtin.mk file. Note that
USE_BUILTIN.pkg may be “yes” even if IS_BUILTIN.pkg is “no” because we may make the
determination that the built-in version of the software is similar enough to be used as a replacement.

The last section is guarded by CHECK_BUILTIN.pkg, and includes code that uses the value of
USE_BUILTIN.pkg set in the previous section. This typically includes, e.g., adding additional
dependency restrictions and listing additional files to symlink into ${BUILDLINK_DIR} (via
BUILDLINK_FILES.pkg).
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PLIST issues

The PLIST file contains a package’s “packing list”, i.e. a list of files that belong to the package (relative
to the ${PREFIX} directory it’s been installed in) plus some additional statements - see the
pkg_create(1) man page for a full list. This chapter addresses some issues that need attention when
dealing with the PLIST file (or files, see below!).

19.1. RCS ID
Be sure to add a RCS ID line as the first thing in any PLIST file you write:

@comment $NetBSD $

An artificial space has been added between NetBSD and $, this is a workaround here to prevent CVS
expanding to the filename of the guide. When adding the RCS ID the space should be omitted.

19.2. Semi-automatic PLIST generation
You can use the make print-PLIST command to output a PLIST that matches any new files since the
package was extracted. See Section 13.17 for more information on this target.

19.3. Tweaking output of make print-PLIST
The PRINT_PLIST_AWK variable takes a set of AWK patterns and actions that are used to filter the output
of print-PLIST. You can append any chunk of AWK scripting you like to it, but be careful with quoting.

For example, to get all files inside the libdata/foo directory removed from the resulting PLIST:

PRINT_PLIST_AWK+= /^libdata\/foo/ { next; }

The PRINT_PLIST_AWK transformations are evaluated after the file list and directory list are sorted.
EARLY_PRINT_PLIST_AWK is like PRINT_PLIST_AWK except it operates before the file list and
directory list are sorted.

19.4. Variable substitution in PLIST
A number of variables are substituted automatically in PLISTs when a package is installed on a system.
This includes the following variables:
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${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}

Some packages like emacs and perl embed information about which architecture they were built on
into the pathnames where they install their files. To handle this case, PLIST will be preprocessed
before actually used, and the symbol “${MACHINE_ARCH}” will be replaced by what uname -p
gives. The same is done if the string ${MACHINE_GNU_ARCH} is embedded in PLIST somewhere -
use this on packages that have GNU autoconf-created configure scripts.

Legacy note: There used to be a symbol “$ARCH” that was replaced by the output of uname
-m, but that’s no longer supported and has been removed.

${OPSYS}, ${LOWER_OPSYS}, ${OS_VERSION}

Some packages want to embed the OS name and version into some paths. To do this, use these
variables in the PLIST:

• ${OPSYS} - output of “uname -s”

• ${LOWER_OPSYS} - lowercase common name (eg. “solaris”)

• ${OS_VERSION} - “uname -r”

For a list of values which are replaced by default, the output of make help topic=PLIST_SUBST as
well as searching the pkgsrc/mk directory with grep for PLIST_SUBST should help.

If you want to change other variables not listed above, you can add variables and their expansions to this
variable in the following way, similar to MESSAGE_SUBST (see Section 12.5):

PLIST_SUBST+= SOMEVAR="somevalue"

This replaces all occurrences of “${SOMEVAR}” in the PLIST with “somevalue”.

The PLIST_VARS variable can be used to simplify the common case of conditionally including some
PLIST entries. It can be done by adding PLIST_VARS+=foo and setting the corresponding PLIST.foo

variable to yes if the entry should be included. This will substitute “${PLIST.foo}” in the PLIST with
either “""” or “"@comment "”. For example, in Makefile:

PLIST_VARS+= foo
.if condition

PLIST.foo= yes
.else

And then in PLIST:

@comment $NetBSD $
bin/bar
man/man1/bar.1
${PLIST.foo}bin/foo
${PLIST.foo}man/man1/foo.1
${PLIST.foo}share/bar/foo.data

An artificial space has been added between NetBSD and $, this is a workaround here to prevent CVS
expanding to the filename of the guide. When adding the RCS ID the space should be omitted.
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19.5. Man page compression
Man pages should be installed in compressed form if MANZ is set (in bsd.own.mk), and uncompressed
otherwise. To handle this in the PLIST file, the suffix “.gz” is appended/removed automatically for man
pages according to MANZ and MANCOMPRESSED being set or not, see above for details. This modification
of the PLIST file is done on a copy of it, not PLIST itself.

19.6. Changing PLIST source with PLIST_SRC

To use one or more files as source for the PLIST used in generating the binary package, set the variable
PLIST_SRC to the names of that file(s). The files are later concatenated using cat(1), and the order of
things is important. The default for PLIST_SRC is ${PKGDIR}/PLIST.

19.7. Platform-specific and differing PLISTs
Some packages decide to install a different set of files based on the operating system being used. These
differences can be automatically handled by using the following files:

• PLIST.common

• PLIST.${OPSYS}

• PLIST.${MACHINE_ARCH}

• PLIST.${OPSYS}-${MACHINE_ARCH}

• PLIST.common_end

19.8. Build-specific PLISTs
Some packages decide to generate hard-to-guess file names during installation that are hard to wire down.

In such cases, you can set the GENERATE_PLIST variable to shell code terminated (with a semicolon)
that will output PLIST entries which will be appended to the PLIST

You can find one example in editors/xemacs:

GENERATE_PLIST+= ${ECHO} bin/${DISTNAME}-‘${WRKSRC}/src/xemacs -sd‘.dmp ;

which will append something like bin/xemacs-21.4.23-54e8ea71.dmp to the PLIST.

19.9. Sharing directories between packages
A “shared directory” is a directory where multiple (and unrelated) packages install files. These
directories were problematic because you had to add special tricks in the PLIST to conditionally remove
them, or have some centralized package handle them.

In pkgsrc, it is now easy: Each package should create directories and install files as needed; pkg_delete
will remove any directories left empty after uninstalling a package.
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If a package needs an empty directory to work, create the directory during installation as usual, and also
add an entry to the PLIST:

@pkgdir path/to/empty/directory

or take a look at MAKE_DIRS and OWN_DIRS.
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The pkginstall framework

This chapter describes the framework known as pkginstall, whose key features are:

• Generic installation and manipulation of directories and files outside the pkgsrc-handled tree,
LOCALBASE.

• Automatic handling of configuration files during installation, provided that packages are correctly
designed.

• Generation and installation of system startup scripts.

• Registration of system users and groups.

• Registration of system shells.

• Automatic updating of fonts databases.

The following sections inspect each of the above points in detail.

You may be thinking that many of the things described here could be easily done with simple code in the
package’s post-installation target (post-install). This is incorrect, as the code in them is only
executed when building from source. Machines using binary packages could not benefit from it at all (as
the code itself could be unavailable). Therefore, the only way to achieve any of the items described above
is by means of the installation scripts, which are automatically generated by pkginstall.

20.1. Files and directories outside the installation prefix
As you already know, the PLIST file holds a list of files and directories that belong to a package. The
names used in it are relative to the installation prefix (${PREFIX}), which means that it cannot register
files outside this directory (absolute path names are not allowed). Despite this restriction, some packages
need to install files outside this location; e.g., under ${VARBASE} or ${PKG_SYSCONFDIR}. The only
way to achieve this is to create such files during installation time by using installation scripts.

The generic installation scripts are shell scripts that can contain arbitrary code. The list of scripts to
execute is taken from the INSTALL_FILE variable, which defaults to INSTALL. A similar variable exists
for package removal (DEINSTALL_FILE, whose default is DEINSTALL). These scripts can run arbitrary
commands, so they have the potential to create and manage files anywhere in the file system.

Using these general installation files is not recommended, but may be needed in some special cases. One
reason for avoiding them is that the user has to trust the packager that there is no unwanted or simply
erroneous code included in the installation script. Also, previously there were many similar scripts for
the same functionality, and fixing a common error involved finding and changing all of them.

The pkginstall framework offers another, standardized way. It provides generic scripts to abstract the
manipulation of such files and directories based on variables set in the package’s Makefile. The rest of
this section describes these variables.
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20.1.1. Directory manipulation

The following variables can be set to request the creation of directories anywhere in the file system:

• MAKE_DIRS and OWN_DIRS contain a list of directories that should be created and should attempt to be
destroyed by the installation scripts. The difference between the two is that the latter prompts the
administrator to remove any directories that may be left after deinstallation (because they were not
empty), while the former does not. Example:

MAKE_DIRS+= ${VARBASE}/foo/private

• MAKE_DIRS_PERMS and OWN_DIRS_PERMS contain a list of tuples describing which directories
should be created and should attempt to be destroyed by the installation scripts. Each tuple holds the
following values, separated by spaces: the directory name, its owner, its group and its numerical mode.
For example:

MAKE_DIRS_PERMS+= ${VARBASE}/foo/private \
${REAL_ROOT_USER} ${REAL_ROOT_GROUP} 0700

The difference between the two is exactly the same as their non-PERMS counterparts.

20.1.2. File manipulation

Creating non-empty files outside the installation prefix is tricky because the PLIST forces all files to be
inside it. To overcome this problem, the only solution is to extract the file in a known place (i.e., inside
the installation prefix) and copy it to the appropriate location during installation (done by the installation
scripts generated by pkginstall). We will call the former the reference file in the following paragraphs,
which describe the variables that can be used to automatically and consistently handle files outside the
installation prefix:

• REQD_FILES is a list of pairs of reference and target files. At installation time, the reference file is
copied to the target if and only if the latter does not exist. Upon deinstallation, the reference file is
removed provided that it was not modified by the installation.

• REQD_FILES_PERMS contains tuples describing reference files and targets, including owner, group,
and numeric permissions that should be set. For example:

REQD_FILES_PERMS+= ${PREFIX}/share/somefile ${VARBASE}/somefile \
${REAL_ROOT_USER} ${REAL_ROOT_GROUP} 0700

• CONF_FILES and CONF_FILES_PERMS have the same syntax as REQD_FILES and
REQD_FILES_PERMS respectively. The difference is that these variables are specifically intended for
handling configuration files, for which additional conventions and constraints apply. See Section 20.2
for further discussion. Note in particular that while handling of configuration files can be disabled by
the user (see Section 20.2.5), this setting does not affect REQD_FILES and REQD_FILES_PERMS.

To install an empty file, one can use these macros and /dev/null as the reference file.
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20.2. Configuration files
There are two principles that govern the handling of configuration files in pkgsrc: first, the user’s
configuration must not be lost or overwritten by upgrades or reinstallations; and second, the default
configuration should always be available for reference. To that end, pkgsrc has a framework specifically
for handling configuration files. In general, configuration files are installed into
${PREFIX}/share/examples, and copied from there to the pertinent etc directory as a separate step
and only as needed.

To make this work, there are three things that need to happen, any of which may require patching. First,
the package must be told to read its configuration from the correct place at runtime; this place is
${PKG_SYSCONFDIR} (or possibly a subdirectory of it) which is often but not always ${PREFIX}/etc.
Second, the package must be taught to install its default configuration files in
${PREFIX}/share/examples/${PKGBASE}; this is the point at which patching often becomes
required because it is not the same place as the runtime location. Third, the configuration files need to be
declared in the package makefile; this is the easy part.

With those elements in place, the right things will happen: the package install phase and resulting binary
package will not touch ${PKG_SYSCONFDIR}, and the default configuration will be copied into place by
the pkgsrc framework only if not already present. Similarly, upon deinstall the configuration will not be
removed if it has been modified. (This means that in the case of reinstallation and upgrades, unmodified
configuration files are updated but modifications are never discarded.)

The following sections describe how to make these things happen and document other relevant knobs
available in the pkgsrc infrastructure.

20.2.1. How PKG_SYSCONFDIR is set

As said before, the PKG_SYSCONFDIR variable specifies where configuration files shall be installed. Its
contents are set based upon the following variables:

• PKG_SYSCONFBASE: The configuration’s root directory. Defaults to ${PREFIX}/etc although it may
be overridden by the user to point to their preferred location (e.g., /etc, /etc/pkg, etc.). Packages
must not use it directly.

• PKG_SYSCONFSUBDIR: A subdirectory of PKG_SYSCONFBASE under which the configuration files for
the package being built shall be installed. The definition of this variable only makes sense in the
package’s Makefile (i.e., it is not user-customizable).

As an example, consider the Apache package, www/apache24, which places its configuration files
under the httpd/ subdirectory of PKG_SYSCONFBASE. This should be set in the package Makefile.

• PKG_SYSCONFVAR: Specifies the name of the variable that holds this package’s configuration directory
(if different from PKG_SYSCONFBASE). It defaults to PKGBASE’s value, and is always prefixed with
PKG_SYSCONFDIR.

• PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the configuration files for the
package identified by PKG_SYSCONFVAR’s shall be placed.

Based on the above variables, pkginstall determines the value of PKG_SYSCONFDIR, which is the only
variable that may be used within a package to refer to its configuration directory. The algorithm used to
set its value is basically the following:
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1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR} is set, its value is used.

2. If the previous variable is not defined but PKG_SYSCONFSUBDIR is set in the package’s Makefile,
the resulting value is ${PKG_SYSCONFBASE}/${PKG_SYSCONFSUBDIR}.

3. Otherwise, it is set to ${PKG_SYSCONFBASE}.

It is worth mentioning that ${PKG_SYSCONFDIR} is automatically added to OWN_DIRS. This causes it to
be automatically created if needed. See Section 20.1.1 for further details. This does not apply to
subdirectories of ${PKG_SYSCONFDIR}; they must be manually created with OWN_DIRS or MAKE_DIRS.

20.2.2. Telling the software where configuration files are

Given that pkgsrc (and users!) expect configuration files to be in a known place, you need to teach each
package where to install its files. In some cases you will have to patch the package Makefiles to achieve
it. If you are lucky, though, it may be as easy as passing an extra flag to the configuration script. This is
the case for packages using GNU autoconf:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

Note that this specifies where the package has to look for its configuration files, not where they will be
installed. Fortunately, there is a different way to specify the latter, as seen in the next section, although
the combination is rather confusing at first glance.

20.2.3. Patching installation

As discussed above, packages themselves must not touch the contents of ${PKG_SYSCONFDIR}
directly. Bad news is that many software installation scripts will, out of the box, mess with the contents
of that directory. So what is the correct procedure to fix this issue?

You must teach the package (usually by manually patching it) to install any configuration files under the
examples hierarchy, share/examples/${PKGBASE}/. This way, the PLIST registers them and the
administrator always has the original copies available.

It turns out that for packages using GNU autoconf it is possible to create the desired effect by setting
sysconfdir on the make command line at install time. Consider this example taken from mail/mutt:

EGDIR= ${PREFIX}/share/examples/mutt
INSTALL_MAKE_FLAGS= ${MAKE_FLAGS} sysconfdir=${EGDIR}

Note that the EGDIR variable, though commonly used for this purpose, is local to that package and has no
meaning outside it.

20.2.4. Declaring configuration files

Once the required configuration files are in place (i.e., under the examples hierarchy), the pkginstall
framework can use them as reference copies during the package installation to update what is in
${PKG_SYSCONFDIR}. To achieve this, the variables CONF_FILES and CONF_FILES_PERMS are used.
Check out Section 20.1.2 for further information about their syntax and their purpose. Here is an
example, taken from the mail/mutt package:
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EGDIR= ${PREFIX}/share/examples/mutt
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that (as in the previous section’s example) the EGDIR variable is specific to the package and has no
meaning outside it.

For reference, the complete example from Mutt is as follows:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}
EGDIR= ${PREFIX}/share/examples/mutt
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc
INSTALLATION_DIRS+= ${EGDIR}
INSTALL_MAKE_FLAGS= ${MAKE_FLAGS} sysconfdir=${EGDIR}

20.2.5. Disabling handling of configuration files

The automatic copying of config files can be toggled by setting the environment variable PKG_CONFIG
prior to package installation.

20.3. System startup scripts
System startup scripts are special files because they must be installed in a place known by the underlying
OS, usually outside the installation prefix. Therefore, the same rules described in Section 20.1 apply, and
the same solutions can be used. However, pkginstall provides a special mechanism to handle these files.

In order to provide system startup scripts, the package has to:

1. Store the script inside ${FILESDIR}, with the .sh suffix appended. Considering the
print/cups-base package as an example, it has a cupsd.sh in its files directory.

2. Tell pkginstall to handle it, appending the name of the script, without its extension, to the
RCD_SCRIPTS variable. Continuing the previous example:

RCD_SCRIPTS+= cupsd

Once this is done, pkginstall will do the following steps for each script in an automated fashion:

1. Process the file found in the files directory applying all the substitutions described in the
FILES_SUBST variable.

2. Copy the script from the files directory to the examples hierarchy,
${PREFIX}/share/examples/rc.d/. Note that this reference file must be explicitly registered in
the PLIST.

3. Add code to the installation scripts to copy the startup script from the examples hierarchy into the
system-wide startup scripts directory.
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20.3.1. Disabling handling of system startup scripts

The automatic copying of config files can be toggled by setting the environment variable
PKG_RCD_SCRIPTS prior to package installation. Note that the scripts will be always copied inside the
examples hierarchy, ${PREFIX}/share/examples/rc.d/, no matter what the value of this variable is.

20.4. System users and groups
If a package needs to create special users and/or groups during installation, it can do so by using the
pkginstall framework.

Users can be created by adding entries to the PKG_USERS variable. Each entry has the following syntax:

user:group

Further specification of user details may be done by setting per-user variables. PKG_UID.user is the
numeric UID for the user. PKG_GECOS.user is the user’s description or comment. PKG_HOME.user is
the user’s home directory, and defaults to /nonexistent if not specified. PKG_SHELL.user is the
user’s shell, and defaults to /sbin/nologin if not specified.

Similarly, groups can be created by adding entries to the PKG_GROUPS variable, whose syntax is:

group

The numeric GID of the group may be set by defining PKG_GID.group.

If a package needs to create the users and groups at an earlier stage, then it can set USERGROUP_PHASE
to either configure,build, or pre-install to indicate the phase before which the users and groups
are created. In this case, the numeric UIDs and GIDs of the created users and groups are automatically
hardcoded into the final installation scripts.

20.5. System shells
Packages that install system shells should register them in the shell database, /etc/shells, to make
things easier to the administrator. This must be done from the installation scripts to keep binary packages
working on any system. pkginstall provides an easy way to accomplish this task.

When a package provides a shell interpreter, it has to set the PKG_SHELL variable to its absolute file
name. This will add some hooks to the installation scripts to handle it. Consider the following example,
taken from shells/zsh:

PKG_SHELL= ${PREFIX}/bin/zsh

20.5.1. Disabling shell registration

The automatic registration of shell interpreters can be disabled by the administrator by setting the
PKG_REGISTER_SHELLS environment variable to NO.
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20.6. Fonts
Packages that install X11 fonts should update the database files that index the fonts within each fonts
directory. This can easily be accomplished within the pkginstall framework.

When a package installs X11 fonts, it must list the directories in which fonts are installed in the
FONTS_DIRS.type variables, where type can be one of “ttf”, “type1” or “x11”. This will add hooks to
the installation scripts to run the appropriate commands to update the fonts database files within each of
those directories. For convenience, if the directory path is relative, it is taken to be relative to the
package’s installation prefix. Consider the following example, taken from fonts/dbz-ttf:

FONTS_DIRS.ttf= ${PREFIX}/share/fonts/X11/TTF

20.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disabled by the administrator by setting the
PKG_UPDATE_FONTS_DB environment variable to NO.
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Making your package work

21.1. General operation
One appealing feature of pkgsrc is that it runs on many different platforms. As a result, it is important to
ensure, where possible, that packages in pkgsrc are portable. This chapter mentions some particular
details you should pay attention to while working on pkgsrc.

21.1.1. How to pull in user-settable variables from mk.conf

The pkgsrc user can configure pkgsrc by overriding several variables in the file pointed to by MAKECONF,
which is mk.conf by default. When you want to use those variables in the preprocessor directives of
make(1) (for example .if or .for), you need to include the file ../../mk/bsd.prefs.mk before,
which in turn loads the user preferences.

But note that some variables may not be completely defined after ../../mk/bsd.prefs.mk has been
included, as they may contain references to variables that are not yet defined. In shell commands (the
lines in Makefile that are indented with a tab) this is no problem, since variables are only expanded
when they are used. But in the preprocessor directives mentioned above and in dependency lines (of the
form target: dependencies) the variables are expanded at load time.

Note: To check whether a variable can be used at load time, run pkglint -Wall on your package.

21.1.2. User interaction

Occasionally, packages require interaction from the user, and this can be in a number of ways:

• When fetching the distfiles, some packages require user interaction such as entering
username/password or accepting a license on a web page.

• When extracting the distfiles, some packages may ask for passwords.

• help to configure the package before it is built

• help during the build process

• help during the installation of a package

A package can set the INTERACTIVE_STAGE variable to define which stages need interaction. This
should be done in the package’s Makefile, e.g.:

INTERACTIVE_STAGE= configure install
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The user can then decide to skip this package by setting the BATCH variable. Packages that require
interaction are also excluded from bulk builds.

21.1.3. Handling licenses

Authors of software can choose the licence under which software can be copied. The Free Software
Foundation has declared some licenses "Free", and the Open Source Initiative has a definition of "Open
Source".

By default, pkgsrc allows packages with Free or Open Source licenses to be built. To allow packages
with other licenses to be built as well, the pkgsrc user needs to add these licenses to the
ACCEPTABLE_LICENSES variable in mk.conf. Note that this variable only affects which packages may
be built, while the license terms often also restrict the actual use of the package and its redistribution.

One might want to only install packages with a BSD license, or the GPL, and not the other. The free
licenses are added to the default ACCEPTABLE_LICENSES variable. The pkgsrc user can override the
default by setting the ACCEPTABLE_LICENSES variable with "=" instead of "+=". The licenses accepted
by default are defined in the DEFAULT_ACCEPTABLE_LICENSES variable in the file
pkgsrc/mk/license.mk.

The license tag mechanism is intended to address copyright-related issues surrounding building,
installing and using a package, and not to address redistribution issues (see RESTRICTED and
NO_SRC_ON_FTP, etc.). Packages with redistribution restrictions should set these tags.

Denoting that a package may be copied according to a particular license is done by placing the license in
pkgsrc/licenses and setting the LICENSE variable to a string identifying the license, e.g. in
graphics/xv:

LICENSE= xv-license

When trying to build, the user will get a notice that the package is covered by a license which has not
been placed in the ACCEPTABLE_LICENSES variable:

% make

===> xv-3.10anb9 has an unacceptable license: xv-license.
===> To view the license, enter "/usr/bin/make show-license".
===> To indicate acceptance, add this line to your /etc/mk.conf:
===> ACCEPTABLE_LICENSES+=xv-license

*** Error code 1

In case a package requires multiple licenses, you can add all of them to the LICENSE variable,
connected with the upper-case keyword AND. If the user has a choice between multiple licenses, you can
add them connected with the upper-case keyword OR, for example:

LICENSE= isc AND apache-2.0
LICENSE= 2-clause-bsd OR ruby-license

The license can be viewed with make show-license, and if the user so chooses, the line printed above
can be added to mk.conf to convey to pkgsrc that it should not in the future fail because of that license:

ACCEPTABLE_LICENSES+=xv-license
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The use of LICENSE=shareware, LICENSE=no-commercial-use, and similar language is deprecated
because it does not crisply refer to a particular license text. Another problem with such usage is that it
does not enable a user to tell pkgsrc to proceed for a single package without also telling pkgsrc to
proceed for all packages with that tag.

21.1.3.1. Adding a package with a new license

When adding a package with a new license, the following steps are required:

1. Check whether the license qualifies as Free or Open Source by referencing Various Licenses and
Comments about Them (https://www.gnu.org/licenses/license-list.en.html) and Licenses by Name |
Open Source Initiative (https://opensource.org/licenses/alphabetical). If this is the case, the filename
in pkgsrc/licenses/ does not need the -license suffix, and the license name should be added
to:

• DEFAULT_ACCEPTABLE_LICENSES in pkgsrc/mk/license.mk

• default_acceptable_licenses in pkgsrc/pkgtools/pkg_install/files/lib/license.c

2. The license text should be added to pkgsrc/licenses for displaying. A list of known licenses can
be seen in this directory.

21.1.3.2. Change to the license

When the license changes (in a way other than formatting), make sure that the new license has a different
name (e.g., append the version number if it exists, or the date). Just because a user told pkgsrc to build
programs under a previous version of a license does not mean that pkgsrc should build programs under
the new licenses. The higher-level point is that pkgsrc does not evaluate licenses for reasonableness; the
only test is a mechanistic test of whether a particular text has been approved by either of two bodies (FSF
or OSI).

21.1.4. Restricted packages

Some licenses restrict how software may be re-distributed. By declaring the restrictions, package tools
can automatically refrain from e.g. placing binary packages on FTP sites.

There are four possible restrictions, which are the cross product of sources (distfiles) and binaries not
being placed on FTP sites and CD-ROMs. Because this is rarely the exact language in any license, and
because non-Free licenses tend to be different from each other, pkgsrc adopts a definition of FTP and
CD-ROM. "FTP" means making the source or binary file available over the Internet at no charge.
"CD-ROM" means making the source or binary available on some kind of media, together with other
source and binary packages, which is sold for a distribution charge.

In order to encode these restrictions, the package system defines five make variables that can be set to
note these restrictions:

• RESTRICTED
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This variable should be set whenever a restriction exists (regardless of its kind). Set this variable to a
string containing the reason for the restriction. It should be understood that those wanting to
understand the restriction will have to read the license, and perhaps seek advice of counsel.

• NO_BIN_ON_CDROM

Binaries may not be placed on CD-ROM containing other binary packages, for which a distribution
charge may be made. In this case, set this variable to ${RESTRICTED}.

• NO_BIN_ON_FTP

Binaries may not made available on the Internet without charge. In this case, set this variable to
${RESTRICTED}. If this variable is set, binary packages will not be included on ftp.NetBSD.org.

• NO_SRC_ON_CDROM

Distfiles may not be placed on CD-ROM, together with other distfiles, for which a fee may be charged.
In this case, set this variable to ${RESTRICTED}.

• NO_SRC_ON_FTP

Distfiles may not made available via FTP at no charge. In this case, set this variable to
${RESTRICTED}. If this variable is set, the distfile(s) will not be mirrored on ftp.NetBSD.org.

Please note that packages will be removed from pkgsrc when the distfiles are not distributable and cannot
be obtained for a period of one full quarter branch. Packages with manual/interactive fetch must have a
maintainer and it is his/her responsibility to ensure this.

21.1.5. Handling dependencies

Your package may depend on some other package being present, and there are various ways of
expressing this dependency. pkgsrc supports the DEPENDS, BUILD_DEPENDS, TOOL_DEPENDS, and
TEST_DEPENDS definitions, the USE_TOOLS definition, as well as dependencies via buildlink3.mk,
which is the preferred way to handle dependencies, and which uses the variables named above. See
Chapter 18 for more information.

The basic difference is that the DEPENDS definition registers that pre-requisite in the binary package so it
will be pulled in when the binary package is later installed, whilst the BUILD_DEPENDS,
TOOL_DEPENDS, and TEST_DEPENDS definitions do not, marking a dependency that is only needed for
building or testing the resulting package. See also Chapter 14 for more information.

This means that if you only need a package present whilst you are building or testing, it should be noted
as a TOOL_DEPENDS, BUILD_DEPENDS, or TEST_DEPENDS. When cross-compiling, TOOL_DEPENDS are
native packages, i.e. packages for the architecture where the package is built; BUILD_DEPENDS are target
packages, i.e., packages for the architecture for which the package is built.

The format for a DEPENDS, BUILD_DEPENDS, TOOL_DEPENDS, and TEST_DEPENDS definition is:

<pre-req-package-name>:../../<category>/<pre-req-package>

Please note that the “pre-req-package-name” may include any of the wildcard version numbers
recognized by pkg_info(1).

1. If your package needs another package’s binaries or libraries to build and run, and if that package
has a buildlink3.mk file available, use it:
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.include "../../graphics/jpeg/buildlink3.mk"

2. If your package needs another package’s binaries or libraries only for building, and if that package
has a buildlink3.mk file available, use it:

.include "../../graphics/jpeg/buildlink3.mk"

but set BUILDLINK_DEPMETHOD.jpeg?=build to make it a build dependency only. This case is
rather rare.

3. If your package needs binaries from another package to build, use the TOOL_DEPENDS definition:

TOOL_DEPENDS+= itstool-[0-9]*:../../textproc/itstool

4. If your package needs static libraries to link against, header files to include, etc. from another
package to build, use the BUILD_DEPENDS definition.

5. If your package needs a library with which to link and there is no buildlink3.mk file available,
create one. Using DEPENDS won’t be sufficient because the include files and libraries will be hidden
from the compiler.

6. If your package needs some executable to be able to run correctly and if there’s no buildlink3.mk

file, this is specified using the DEPENDS variable. The print/lyx package needs to be able to
execute the latex binary from the tex-latex-bin package when it runs, and that is specified:

DEPENDS+= tex-latex-bin-[0-9]*:../../print/tex-latex-bin

7. If your package includes a test suite that has extra dependencies only required for this purpose
(frequently this can be run as a “make test” target), use the TEST_DEPENDS variable.

8. You can use wildcards in package dependencies. Note that such wildcard dependencies are retained
when creating binary packages. The dependency is checked when installing the binary package and
any package which matches the pattern will be used. Wildcard dependencies should be used with
care.

The “-[0-9]*” should be used instead of “-*” to avoid potentially ambiguous matches such as
“tk-postgresql” matching a “tk-*” DEPENDS.

Wildcards can also be used to specify that a package will only build against a certain minimum
version of a pre-requisite:

DEPENDS+= ImageMagick>=6.0:../../graphics/ImageMagick

This means that the package will build using version 6.0 of ImageMagick or newer. Such a
dependency may be warranted if, for example, the command line options of an executable have
changed.

If you need to depend on minimum versions of libraries, set BUILDLINK_API_DEPENDS.pkg to the
appropriate pattern before including its buildlink3.mk file, e.g.

BUILDLINK_API_DEPENDS.jpeg+= jpeg>=9.0
.include "../../graphics/jpeg/buildlink3.mk"

For security fixes, please update the package vulnerabilities file. See Section 21.1.9 for more
information.

If your package needs files from another package to build, add the relevant distribution files to
DISTFILES, so they will be extracted automatically. See the print/ghostscript package for an
example. (It relies on the jpeg sources being present in source form during the build.)
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21.1.6. Handling conflicts with other packages

Your package may conflict with other packages users might already have installed on their system, e.g.,
if your package installs the same set of files as another package in the pkgsrc tree.

For example, x11/libXaw3d and x11/Xaw-Xpm install the same shared library, thus you set in
pkgsrc/x11/libXaw3d/Makefile:

CONFLICTS= Xaw-Xpm-[0-9]*

and in pkgsrc/x11/Xaw-Xpm/Makefile:

CONFLICTS= libXaw3d-[0-9]*

pkg_add(1) is able to detect attempts to install packages that conflict with existing packages and abort.
However, in many situations this is too late in the process. Binary package managers will not know about
the conflict until they attempt to install the package after already downloading it and all its dependencies.
Users may also waste time building a package and its dependencies only to find out at the end that it
conflicts with another package they have installed.

To avoid these issues CONFLICTS entries should be added in all cases where it is known that packages
conflict with each other. These CONFLICTS entries are exported in pkg_summary(5) files and consumed
by binary package managers to inform users that packages cannot be installed onto the target system.

21.1.7. Packages that cannot or should not be built

There are several reasons why a package might be instructed to not build under certain circumstances. If
the package builds and runs on most platforms, the exceptions should be noted with
BROKEN_ON_PLATFORM. If the package builds and runs on a small handful of platforms, set
BROKEN_EXCEPT_ON_PLATFORM instead. Both BROKEN_ON_PLATFORM and
BROKEN_EXCEPT_ON_PLATFORM are OS triples (OS-version-platform) that can use glob-style wildcards.

If a package is not appropriate for some platforms (as opposed to merely broken), a different set of
variables should be used as this affects failure reporting and statistics. If the package is appropriate for
most platforms, the exceptions should be noted with NOT_FOR_PLATFORM. If the package is appropriate
for only a small handful of platforms (often exactly one), set ONLY_FOR_PLATFORM instead. Both
ONLY_FOR_PLATFORM and NOT_FOR_PLATFORM are OS triples (OS-version-platform) that can use
glob-style wildcards.

Some packages are tightly bound to a specific version of an operating system, e.g. LKMs or
sysutils/lsof. Such binary packages are not backwards compatible with other versions of the OS,
and should be uploaded to a version specific directory on the FTP server. Mark these packages by setting
OSVERSION_SPECIFIC to “yes”. This variable is not currently used by any of the package system
internals, but may be used in the future.

If the package should be skipped (for example, because it provides functionality already provided by the
system), set PKG_SKIP_REASON to a descriptive message. If the package should fail because some
preconditions are not met, set PKG_FAIL_REASON to a descriptive message.
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21.1.8. Packages which should not be deleted, once installed

To ensure that a package may not be deleted, once it has been installed, the PKG_PRESERVE definition
should be set in the package Makefile. This will be carried into any binary package that is made from this
pkgsrc entry. A “preserved” package will not be deleted using pkg_delete(1) unless the “-f” option is
used.

21.1.9. Handling packages with security problems

When a vulnerability is found, this should be noted in pkgsrc/doc/pkg-vulnerabilities. Entries
in that file consist of three parts:

• package version pattern

• type of vulnerability (please cut’n’paste an existing one where possible)

• URL providing additional information about the issue

For the package version pattern please always use ‘<’ to mark an upper bound (not ‘<=’!). This will
avoid possible problems due unrelated PKGREVISION bumps not related to security fixes. Lower bounds
can be added too, using ’>’ or ’>=’. For example, “foo>=1<1.2” would mark versions 1.0 (included) to
1.2 (excluded) of “foo” as affected by the security issue.

Entries should always be added at the bottom of the file.

When fixing packages, please modify the upper bound of the corresponding entry. To continue the
previous example, if a fix was backported to version 1.1nb2, change the previous pattern to
“foo>=1<1.1nb2”.

To locally test a package version pattern against a PKGNAME you can use the pkg_admin pmatch
command.

The URL should be as permanent as possible and provide as much information about the issue as
possible. CVE entries are preferred.

After committing that file, ask pkgsrc-security@NetBSD.org to update the file on ftp.NetBSD.org.

After fixing the vulnerability by a patch, its PKGREVISION should be increased (this is of course not
necessary if the problem is fixed by using a newer release of the software), and the pattern in the
pkg-vulnerabilities file must be updated.

Also, if the fix should be applied to the stable pkgsrc branch, be sure to submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handled semi-automatically by a weekly cron job.

In case a security issue is disputed, please contact pkgsrc-security@NetBSD.org.

21.1.10. How to handle incrementing versions when fixing an existing
package

When making fixes to an existing package it can be useful to change the version number in PKGNAME. To
avoid conflicting with future versions by the original author, a “nb1”, “nb2”, ... suffix can be used on
package versions by setting PKGREVISION=1 (2, ...). The “nb” is treated like a “.” by the package tools.
e.g.
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DISTNAME= foo-17.42
PKGREVISION= 9

will result in a PKGNAME of “foo-17.42nb9”. If you want to use the original value of PKGNAME without
the “nbX” suffix, e.g. for setting DIST_SUBDIR, use PKGNAME_NOREV.

When a new release of the package is released, the PKGREVISION should be removed, e.g. on a new
minor release of the above package, things should be like:

DISTNAME= foo-17.43

PKGREVISION should be incremented for any non-trivial change in the resulting binary package. Without
a PKGREVISION bump, someone with the previous version installed has no way of knowing that their
package is out of date. Thus, changes without increasing PKGREVISION are essentially labeled "this is so
trivial that no reasonable person would want to upgrade", and this is the rough test for when increasing
PKGREVISION is appropriate. Examples of changes that do not merit increasing PKGREVISION are:

• Changing HOMEPAGE, MAINTAINER, OWNER, or comments in Makefile.

• Changing build variables if the resulting binary package is the same.

• Changing DESCR.

• Adding PKG_OPTIONS if the default options don’t change.

Examples of changes that do merit an increase to PKGREVISION include:

• Security fixes

• Changes or additions to a patch file

• Changes to the PLIST

• A dependency is changed or renamed.

PKGREVISION must also be incremented when dependencies have ABI changes.

21.1.11. Substituting variable text in the package files (the SUBST
framework)

When you want to replace the same text in multiple files, or multiple times in the same file, it is
cumbersome to maintain a patch file for this. This is where the SUBST framework steps in. It provides
an easy-to-use interface for replacing text in files. It just needs the following information:

• In which phase of the package build cycle should the replacement happen?

• In which files should the replacement happen?

• Which text should be replaced with what?

This information is encoded in a block of SUBST variables. A minimal example is:

SUBST_CLASSES+= paths
SUBST_STAGE.paths= pre-configure
SUBST_FILES.paths= src/*.c
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SUBST_SED.paths= -e ’s,/usr/local,${PREFIX},g’

Translated into English, it means: In the pre-configure stage (that is, after applying the patches from the
patches/ directory and before running the configure script and the portability check), replace the text
/usr/local with the content of the variable PREFIX.

Each SUBST block starts by appending an identifier to SUBST_CLASSES (note the +=). This identifier
can be chosen freely by the package. If there should ever be duplicate identifiers, the pkgsrc
infrastructure will catch this and fail early, so don’t worry about name collisions.

Except for SUBST_CLASSES, all variables in a SUBST block are parameterized using this identifier. In
the remainder of this section, these parameterized variables are written as SUBST_STAGE.*.

SUBST_CLASSES+= paths
SUBST_STAGE.paths= pre-configure
SUBST_MESSAGE.paths= Fixing absolute paths.
SUBST_FILES.paths= src/*.c
SUBST_FILES.paths+= scripts/*.sh
SUBST_SED.paths= -e ’s,"/usr/local,"${PREFIX},g’
SUBST_SED.paths+= -e ’s,"/var/log,"${VARBASE}/log,g’
SUBST_VARS.paths= LOCALBASE PREFIX PKGVERSION

To get a complete picture about the SUBST substitutions, run bmake show-all-subst. If something
doesn’t work as expected, run pkglint on the package, which detects several typical mistakes surrounding
the SUBST blocks. For any questions that might remain after this, have a look at mk/subst.mk.

21.1.11.1. Choosing the time where the substitutions happen

The SUBST_STAGE.* is one of {pre,do,post}-{extract,patch,configure,build,test,install}. Of these,
pre-configure is used most often, by far. The most popular stages are, in chronological order:

post-extract

The substitutions are applied immediately after the distfiles are extracted. Running bmake extract
on the package will leave no traces of the original files.

When the substitution applies to files for which there is also a patch in the patches/ directory, this
means that the patches will be computed based on the result of the substitution. When these patches
are sent to the upstream maintainer later, to be fixed in the upstream package, these patches may no
longer match what the upstream author is used to. Because of this, pre-configure is often a
better choice.

pre-configure

The substitutions are applied after the patches from the patches/ directory. This makes it possible
to run bmake patch on the package, after which the patches can be edited using the tools pkgvi and
mkpatches from the pkgtools/pkgdiff package.

When updating the patches, it is helpful to explicitly separate the bmake patch from the bmake
configure, and to only edit the patches between these commands. Otherwise the substitutions from
the SUBST block will end up in the patch file. When this happens in really obvious ways, pkglint
will complain about patches that contain a hard-coded /usr/pkg instead of the correct and
intended @PREFIX@, but it can only detect these really obvious cases.
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do-configure

This stage should only be used if the package defines a pre-configure action itself, and the
substitution must happen after that. Typical examples are packages that use the pre-configure
stage to regenerate the GNU configure script from configure.ac.

post-configure

This stage is used to fix up any mistakes by the configure stage.

pre-build

This stage should only be used for substitutions that are clearly related to building the package, not
for fixing the configuration. Substitutions for pathnames (such as replacing /usr/local with
${PREFIX}) or user names (such as replacing @MY_USER@ with the actual username) belong in
pre-configure or post-configure instead.

post-build

Just as with pre-build, this stage should only be used for substitutions that are clearly related to
building the package, not for fixing the configuration. Substitutions for pathnames (such as
replacing /usr/local with ${PREFIX}) or user names (such as replacing @MY_USER@ with the
actual username) belong in pre-configure or post-configure instead.

A typical use is to update pkg-config files to include the rpath compiler options.

pre-install

In general, the install phase should be as simple as possible. As with the pre-build and post-build
stages, it should not be used to fix pathnames or user names, these belong in pre-configure instead.
There are only few legitimate use cases for applying substitutions in this stage.

21.1.11.2. Choosing the files where the substitutions happen

The SUBST_FILES.* variable contains a list of filename patterns. These patterns are relative to WRKSRC

since that is where most substitutions happen. A typical example is:

SUBST_FILES.path= Makefile */Makefile */*/Makefile *.[ch]

The above patterns, especially the last, are quite broad. The SUBST implementation checks that each
filename pattern that is mentioned here has an effect. For example, if none of the */*/Makefile files
contains the patterns to be found and substituted, that filename pattern is redundant and should be left
out. By default, the SUBST framework will complain with an error message. If the text to be substituted
occurs in some of the files from a single pattern, but not in all of them, that is totally ok, and the SUBST
framework will only print an INFO message for those files.

If there is a good reason for having redundant filename patterns, set SUBST_NOOP_OK.* to yes.

Another popular way of choosing the files for the substitutions is via a shell command, like this:

C_FILES_CMD= cd ${WRKSRC} && ${FIND} . -name ’*.c’
SUBST_FILES.path= ${C_FILES_CMD:sh}
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The variable name C_FILES_CMD in this example is freely chosen and independent of the SUBST
framework.

In this variant, the SUBST_FILES.* variable lists each file individually. Thereby chances are higher that
there are filename patterns in which no substitution happens. Since the SUBST framework cannot know
whether the filename patterns in SUBST_FILES.* have been explicitly listed in the Makefile (where any
redundant filename pattern would be suspicious) or been generated by a shell command (in which
redundant filename patterns are more likely and to be expected), it will complain about these redundant
filename patterns. Therefore, SUBST blocks that use a shell command to generate the list of filename
patterns often need to set SUBST_NOOP_OK.* to yes.

21.1.11.3. Choosing what to substitute

In most cases, the substitutions are given using one or more sed(1) commands, like this:

SUBST_SED.path= -e ’s|/usr/local|${PREFIX}|g’

Each of the sed commands needs to be preceded by the -e option and should be specified on a line of its
own, to avoid hiding short sed commands at the end of a line.

Since the sed commands often contain shell metacharacters as the separator (the | in the above example),
it is common to enclose them in single quotes.

A common substitution is to replace placeholders of the form @VARNAME@ with their pkgsrc counterpart
variable ${VARNAME}. A typical example is:

SUBST_VARS.path= PREFIX

This type of substitutions is typically done by the GNU configure scripts during the do-configure stage,
but in some cases these need to be overridden. The same pattern is also used when a package defines
patches that replace previously hard-coded paths like /usr/local with a @PREFIX@ placeholder first,
which then gets substituted by the actual ${PREFIX} in the pre-configure stage. In many of these cases,
it works equally well to just use the SUBST framework to directly replace /usr/local with
${PREFIX}, thereby omitting the intermediate patch file.

If the above is not flexible enough, it is possible to not use sed at all for the substitution but to specify an
entirely different command, like this:

SUBST_FILTER_CMD.path= LC_ALL=C ${TR} -d ’\r’

This is used for the few remaining packages in which the distributed files use Windows-style line endings
that need to be converted to UNIX-style line endings.

21.1.11.4. Other SUBST variables

When a SUBST block is applied during a package build, a message is logged. The default message is
fine for most purposes but can be overridden by setting SUBST_MESSAGE.* to an individual message.
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21.2. The fetch phase

21.2.1. Packages whose distfiles aren’t available for plain downloading

If you need to download from a dynamic URL you can set DYNAMIC_MASTER_SITES and a make fetch
will call files/getsite.sh with the name of each file to download as an argument, expecting it to
output the URL of the directory from which to download it. graphics/ns-cult3d is an example of
this usage.

If the download can’t be automated, because the user must submit personal information to apply for a
password, or must pay for the source, or whatever, you can set FETCH_MESSAGE to a list of lines that are
displayed to the user before aborting the build. Example:

FETCH_MESSAGE= "Please download the files"
FETCH_MESSAGE+= " "${DISTFILES:Q}
FETCH_MESSAGE+= "manually from "${MASTER_SITES:Q}"."

21.2.2. How to handle modified distfiles with the ’old’ name

Sometimes authors of a software package make some modifications after the software was released, and
they put up a new distfile without changing the package’s version number. If a package is already in
pkgsrc at that time, the checksum will no longer match. The contents of the new distfile should be
compared against the old one before changing anything, to make sure the distfile was really updated on
purpose, and that no trojan horse or so crept in. Please mention that the distfiles were compared and what
was found in your commit message.

Then, the correct way to work around this is to set DIST_SUBDIR to a unique directory name, usually
based on PKGNAME_NOREV (but take care with python or ruby packages, where PKGNAME includes a
variable prefix). All DISTFILES and PATCHFILES for this package will be put in that subdirectory of the
local distfiles directory. (See Section 21.1.10 for more details.) In case this happens more often,
PKGNAME can be used (thus including the nbX suffix) or a date stamp can be appended, like
${PKGNAME_NOREV}-YYYYMMDD.

DIST_SUBDIR is also used when a distfile’s name does not contain a version and the distfile is apt to
change. In cases where the likelihood of this is very small, DIST_SUBDIR might not be required.
Additionally, DIST_SUBDIR must not be removed unless the distfile name changes, even if a package is
being moved or renamed.

Do not forget regenerating the distinfo file after that, since it contains the DIST_SUBDIR path in the
filenames. Also, increase the PKGREVISION if the installed package is different. Furthermore, a mail to
the package’s authors seems appropriate telling them that changing distfiles after releases without
changing the file names is not good practice.

21.2.3. Packages hosted on github.com

Helper methods exist for packages hosted on github.com which will often have distfile names that clash
with other packages, for example 1.0.tar.gz. Use one of the three recipes from below:
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21.2.3.1. Fetch based on a tagged release

If your distfile URL looks similar to
https://github.com/username/example/archive/v1.0.zip, then you are packaging a tagged
release.

DISTNAME= example-1.0
MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}
#GITHUB_PROJECT= example # can be omitted if same as DISTNAME
GITHUB_TAG= v${PKGVERSION_NOREV}
EXTRACT_SUFX= .zip

Here, DISTNAME combined with use of GITHUB_TAG leads the file fetching infrastructure to save the
resulting file locally as example-1.0.zip.

21.2.3.2. Fetch based on a specific commit before the first release

If your distfile looks similar to
https://github.com/username/example/archive/988881adc9fc3655077dc2d4d757d480b5ea0e11

and is from a commit before the first release, then set the package version to 0.0.0.N, where N is the
number of commits to the repository, and set GITHUB_TAG to the commit hash. This will (almost)
ensure that the first tagged release will have a version greater than this one so that package upgrades will
function properly.

DISTNAME= example-0.0.0.347
MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}
#GITHUB_PROJECT= example # can be omitted if same as DISTNAME
GITHUB_TAG= 988881adc9fc3655077dc2d4d757d480b5ea0e11

21.2.3.3. Fetch based on a specific commit after a release

If your distfile looks similar to
https://github.com/username/example/archive/988881adc9fc3655077dc2d4d757d480b5ea0e11

and is from a commit after a release, then include the last release version and the commit count since that
release in the package version and set GITHUB_TAG to the commit hash. The latest release and commit
count are shown in the output of "git describe --tags":

# git clone https://github.com/username/example
# cd example
# git describe --tags
1.2.3-5-g988881a

DISTNAME= example-1.2.3.5
MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}
#GITHUB_PROJECT= example # can be omitted if same as DISTNAME
GITHUB_TAG= 988881adc9fc3655077dc2d4d757d480b5ea0e11
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21.2.3.4. Fetch based on release

If your distfile URL looks similar to
https://github.com/username/example/releases/download/rel-1.6/offensive-1.6.zip,
then you are packaging a release.

DISTNAME= offensive-1.6
PKGNAME= ${DISTNAME:S/offensive/proper/}
MASTER_SITES= ${MASTER_SITE_GITHUB:=username/}
GITHUB_PROJECT= example
GITHUB_RELEASE= rel-${PKGVERSION_NOREV} # usually just set this to ${DISTNAME}
EXTRACT_SUFX= .zip

21.3. The configure phase

21.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with different object formats like a.out and ELF, and varying
abilities to do shared library and dynamic loading at all. To accompany this, varying commands and
options have to be passed to the compiler, linker, etc. to get the Right Thing, which can be pretty
annoying especially if you don’t have all the machines at your hand to test things. The devel/libtool
pkg can help here, as it just “knows” how to build both static and dynamic libraries from a set of source
files, thus being platform-independent.

Here’s how to use libtool in a package in seven simple steps:

1. Add USE_LIBTOOL=yes to the package Makefile.

2. For library objects, use “${LIBTOOL} --mode=compile ${CC}” in place of “${CC}”. You could
even add it to the definition of CC, if only libraries are being built in a given Makefile. This one
command will build both PIC and non-PIC library objects, so you need not have separate shared and
non-shared library rules.

3. For the linking of the library, remove any “ar”, “ranlib”, and “ld -Bshareable” commands, and
instead use:

${LIBTOOL} --mode=link \
${CC} -o ${.TARGET:.a=.la} \

${OBJS:.o=.lo} \
-rpath ${PREFIX}/lib \
-version-info major:minor

Note that the library is changed to have a .la extension, and the objects are changed to have a .lo
extension. Change OBJS as necessary. This automatically creates all of the .a, .so.major.minor,
and ELF symlinks (if necessary) in the build directory. Be sure to include “-version-info”, especially
when major and minor are zero, as libtool will otherwise strip off the shared library version.

From the libtool manual:

So, libtool library versions are described by three integers:

110



Chapter 21. Making your package work

CURRENT
The most recent interface number that this library implements.

REVISION
The implementation number of the CURRENT interface.

AGE
The difference between the newest and oldest interfaces that
this library implements. In other words, the library implements
all the interface numbers in the range from number ‘CURRENT -
AGE’ to ‘CURRENT’.

If two libraries have identical CURRENT and AGE numbers, then the
dynamic linker chooses the library with the greater REVISION number.

The “-release” option will produce different results for a.out and ELF (excluding symlinks) in only
one case. An ELF library of the form “libfoo-release.so.x.y” will have a symlink of “libfoo.so.x.y”
on an a.out platform. This is handled automatically.

The “-rpath argument” is the install directory of the library being built.

In the PLIST, include only the .la file, the other files will be added automatically.

4. When linking shared object (.so) files, i.e. files that are loaded via dlopen(3), NOT shared libraries,
use “-module -avoid-version” to prevent them getting version tacked on.

The PLIST file gets the foo.so entry.

5. When linking programs that depend on these libraries before they are installed, preface the cc(1) or
ld(1) line with “${LIBTOOL} --mode=link”, and it will find the correct libraries (static or shared),
but please be aware that libtool will not allow you to specify a relative path in -L (such as
“-L../somelib”), because it expects you to change that argument to be the .la file. e.g.

${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -lsomelib

should be changed to:

${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la

and it will do the right thing with the libraries.

6. When installing libraries, preface the install(1) or cp(1) command with “${LIBTOOL}
--mode=install”, and change the library name to .la. e.g.

${LIBTOOL} --mode=install ${BSD_INSTALL_LIB} ${SOMELIB:.a=.la} ${PREFIX}/lib

This will install the static .a, shared library, any needed symlinks, and run ldconfig(8).

7. In your PLIST, include only the .la file (this is a change from previous behaviour).

21.3.2. Using libtool on GNU packages that already support libtool

Add USE_LIBTOOL=yes to the package Makefile. This will override the package’s own libtool in most
cases. For older libtool using packages, libtool is made by ltconfig script during the do-configure step;
you can check the libtool script location by doing make configure; find work*/ -name libtool.
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LIBTOOL_OVERRIDE specifies which libtool scripts, relative to WRKSRC, to override. By default, it is set
to “libtool */libtool */*/libtool”. If this does not match the location of the package’s libtool script(s), set
it as appropriate.

If you do not need *.a static libraries built and installed, then use SHLIBTOOL_OVERRIDE instead.

If your package makes use of the platform-independent library for loading dynamic shared objects, that
comes with libtool (libltdl), you should include devel/libltdl/buildlink3.mk.

Some packages use libtool incorrectly so that the package may not work or build in some circumstances.
Some of the more common errors are:

• The inclusion of a shared object (-module) as a dependent library in an executable or library. This in
itself isn’t a problem if one of two things has been done:

1. The shared object is named correctly, i.e. libfoo.la, not foo.la

2. The -dlopen option is used when linking an executable.

• The use of libltdl without the correct calls to initialisation routines. The function lt_dlinit() should be
called and the macro LTDL_SET_PRELOADED_SYMBOLS included in executables.

21.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed to regenerate the configure script and
Makefile.in makefile templates from configure.ac and Makefile.am, then they should be
executed in a pre-configure target:

USE_TOOLS+= autoconf automake autoreconf
GNU_CONFIGURE= yes
...

pre-configure:
set -e; cd ${WRKSRC} && autoreconf -fi

...

Packages which use GNU Automake will sometimes require GNU Make (gmake in USE_TOOLS), but
not always. Note that autoreconf only needs to be executed if configure.ac or Makefiles are modified,
or configure is not present.

There are times when the configure process makes additional changes to the generated files, which then
causes the build process to try to re-execute the automake sequence. This is prevented by touching
various files in the configure stage. If this causes problems with your package you can set
AUTOMAKE_OVERRIDE=NO in the package Makefile.

21.3.4. Meson / ninja

Packages using Meson to configure need to include:

.include "../../devel/meson/build.mk"
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In nearly all cases (any program with dependencies), pkg-config needs to be added to USE_TOOLS. If the
package installs translation files for non-English languages, also add msgfmt and xgettext:

USE_TOOLS+= pkg-config msgfmt xgettext

If any options need to be passed to Meson, use MESON_ARGS instead of CONFIGURE_ARGS:

MESON_ARGS+= -Dx11=false

21.3.5. Determining the endianness

To determine the endianness of the target platform, have a look at mk/endian.mk.

21.4. Programming languages

21.4.1. C, C++, and Fortran

Compilers for the C and C++ languages come with the NetBSD base system. By default, pkgsrc assumes
that a package is written in C and will hide all other compilers (via the wrapper framework, see Chapter
18).

To declare which languages should be made available through pkgsrc’s compiler wrappers, use the
USE_LANGUAGES variable. Allowed values currently are:

c, c++, fortran, fortran77, java, objc, obj-c++, and ada.

(and any combination). The default is “c”. Packages using GNU configure scripts, even if written in C++,
usually need a C compiler for the configure phase.

To declare which features a package requires from the compiler, set either USE_CC_FEATURES or
USE_CXX_FEATURES. Allowed values for USE_CC_FEATURES are currently:

c11, c99, has_include

Allowed values for USE_CXX_FEATURES are currently:

c++11, c++14, c++17, c++20, has_include, regex, filesystem,
charconv, parallelism_ts, unique_ptr, put_time,
is_trivially_copy_constructible

Note at present these variables only affect use of GCC, not other compilers.

Language variants like gnu99 and c++11 can be specified in FORCE_C_STD and FORCE_CXX_STD if the
package does not explicitly set -std=... when compiling (i.e. the package assumes the compiler
defaults to C++11 or some other standard). This is a common bug in upstream build systems.

Allowed values for FORCE_C_STD are currently:

c90, c99, c11, gnu90, gnu99, gnu11
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Allowed values for FORCE_CXX_STD are currently:

c++03, c++11, c++14, c++17, c++20,
gnu++03, gnu++11, gnu++14, gnu++17, gnu++20

Note at present these variables only affect use of GCC and Clang.

21.4.2. Java

If a program is written in Java, use the Java framework in pkgsrc. The package must include
../../mk/java-vm.mk. This Makefile fragment provides the following variables:

• USE_JAVA defines if a build dependency on the JDK is added. If USE_JAVA is set to “run”, then there
is only a runtime dependency on the JDK. The default is “yes”, which also adds a build dependency on
the JDK.

• Set USE_JAVA2 to declare that a package needs a Java2 implementation. The supported values are
“yes”, “1.4”, and “1.5”. “yes” accepts any Java2 implementation, “1.4” insists on versions 1.4 or
above, and “1.5” only accepts versions 1.5 or above. This variable is not set by default.

• PKG_JAVA_HOME is automatically set to the runtime location of the used Java implementation
dependency. It may be used to set JAVA_HOME to a good value if the program needs this variable to be
defined.

21.4.3. Go

If a program is written in Go and has any dependencies on other Go modules, have the package include
../../lang/go/go-module.mk.

1. Generate a list of those dependencies with make clean && make patch && make
show-go-modules > go-modules.mk.

2. Prepend .include "go-modules.mk" to any other .includes.

3. Incorporate these modules in distinfo with make makesum.

21.4.4. Rust

If a program is written in Rust and uses Cargo to build, have the package include
../../lang/rust/cargo.mk.

1. Generate a list of those dependencies with make CARGO_ARGS="build --release" build &&
make print-cargo-depends > cargo-depends.mk.

2. Prepend .include "cargo-depends.mk" to any other .includes.

3. Incorporate these modules in distinfo with make makesum.
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21.4.5. Packages containing Perl scripts

If your package contains interpreted Perl scripts, add “perl” to the USE_TOOLS variable and set
REPLACE_PERL to ensure that the proper interpreter path is set. REPLACE_PERL should contain a list of
scripts, relative to WRKSRC, that you want adjusted. Every occurrence of */bin/perl in a she-bang line
will be replaced with the full path to the Perl executable.

If a particular version of Perl is needed, set the PERL5_REQD variable to the version number. The default
is “5.0”.

See Section 21.6.6 for information about handling Perl modules.

There is also the REPLACE_PERL6 variable for the language now known as Raku.

21.4.6. Packages containing shell scripts

REPLACE_SH, REPLACE_BASH, REPLACE_CSH, and REPLACE_KSH can be used to replace shell
she-bangs in files. Please use the appropriate one, preferring REPLACE_SH when this shell is sufficient.
Each should contain a list of scripts, relative to WRKSRC, that you want adjusted. Every occurrence of the
matching shell in a she-bang line will be replaced with the full path to the shell executable. When using
REPLACE_BASH, don’t forget to add bash to USE_TOOLS.

21.4.7. Other programming languages

There are further similar REPLACE variables available, e.g., REPLACE_AWK for packages containing
awk scripts, and REPLACE_R for R. These two, like the others noted above, have their actions defined
centrally in mk/configure/replace-interpreter.mk. Other languages define the actions of these
variables within their own dedicated part of the tree, e.g., REPLACE_PHP is actioned in
lang/php/replace.mk, and REPLACE_PYTHON is actioned in lang/python/application.mk. For
other languages, consult the mk files found within their specific directories (the naming convention
varies), or check the list found in Appendix E.

Currently, special handling for other languages varies in pkgsrc. If a compiler package provides a
buildlink3.mk file, include that, otherwise just add a (build) dependency on the appropriate compiler
package.

21.5. The build phase
The most common failures when building a package are that some platforms do not provide certain
header files, functions or libraries, or they provide the functions in a library that the original package
author didn’t know. To work around this, you can rewrite the source code in most cases so that it does not
use the missing functions or provides a replacement function.

21.5.1. Compiling C and C++ code conditionally

If a package already comes with a GNU configure script, the preferred way to fix the build failure is to
change the configure script, not the code. In the other cases, you can utilize the C preprocessor, which
defines certain macros depending on the operating system and hardware architecture it compiles for.
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These macros can be queried using for example #if defined(__i386). Almost every operating
system, hardware architecture and compiler has its own macro. For example, if the macros __GNUC__,
__i386__ and __NetBSD__ are all defined, you know that you are using NetBSD on an i386
compatible CPU, and your compiler is GCC.

The list of the following macros for hardware and operating system depends on the compiler that is used.
For example, if you want to conditionally compile code on Solaris, don’t use __sun__, as the SunPro
compiler does not define it. Use __sun instead.

21.5.1.1. C preprocessor macros to identify the operating system

To distinguish between specific NetBSD versions, you should use the following code.

#ifdef __NetBSD__
#include <sys/param.h>
#if __NetBSD_Prereq__(9,99,17)
/* use a newer feature */
#else
/* older code */
#endif
#endif

#ifndef _WIN32
/* Unix-like specific code */
#endif

To distinguish between 4.4 BSD-derived systems and the rest of the world, you should use the following
code.

#include <sys/param.h>
#if (defined(BSD) && BSD >= 199306)
/* BSD-specific code goes here */
#else
/* non-BSD-specific code goes here */
#endif

You can also test for the following macros:

Cygwin __CYGWIN__
DragonFly __DragonFly__
FreeBSD __FreeBSD__
Haiku __HAIKU__
IRIX __sgi (TODO: get a definite source for this)
Linux __linux
Mac OS X __APPLE__
Minix3 __minix
NetBSD __NetBSD__
OpenBSD __OpenBSD__
Solaris sun, __sun
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21.5.1.2. C preprocessor macros to identify the hardware architecture

i386 i386, __i386, __i386__
x86-64 __amd64__, __x86_64__
ARM __arm__
MIPS __mips
SPARC sparc, __sparc
PowerPC __powerpc

21.5.1.3. C preprocessor macros to identify the compiler

GCC __GNUC__ (major version), __GNUC_MINOR__
MIPSpro _COMPILER_VERSION (0x741 for MIPSpro 7.41)
SunPro __SUNPRO_C (0x570 for Sun C 5.7)
SunPro C++ __SUNPRO_CC (0x580 for Sun C++ 5.8)

21.5.2. How to handle compiler bugs

Some source files trigger bugs in the compiler, based on combinations of compiler version and
architecture and almost always relation to optimisation being enabled. Common symptoms are gcc
internal errors or never finishing compiling a file.

Typically, a workaround involves testing the MACHINE_ARCH and compiler version, disabling
optimisation for that combination of file, MACHINE_ARCH and compiler.

This used to be a big problem in the past, but is rarely needed now as compiler technology has matured.
If you still need to add a compiler specific workaround, please do so in the file hacks.mk and describe
the symptom and compiler version as detailed as possible.

21.5.3. No such file or directory

Compilation sometimes fails with an error message like this:

.../x11/gtk3/work/gtk+-3.24.12/gdk/gdktypes.h:35:10:
fatal error: pango/pango.h: No such file or directory

The proper way to fix this problem depends on the type of the header, which is described in the following
sections.

21.5.3.1. Headers from other packages

If the header name looks like it comes from a different package, that other package should be included
via the buildlink3 framework.

First, look whether the header is somewhere in the buildlink3 directory below WRKDIR. In the above case
of the missing Pango header:

$ find work/.buildlink/ -print | grep -F pango/pango.h
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In the case of Pango, the output is:

work/.buildlink/include/pango-1.0/pango/pango.h

If the pango/pango.h file were placed directly in the .buildlink directory, it would have been found
automatically. There is an extra pango-1.0 path component though, which means that the compiler
command line must contain an option of the form
-I${BUILDLINK3_PREFIX.pango}/include/pango-1.0. In most cases this option is generated by
the configure script, which can be examined using:

$ $ grep -o ’[-]I[^[:space:]]*/pango[^[:space:]]*’ work/*/Makefile
-I/usr/pkg/include/pango-1.0
-I/usr/pkg/include/pango-1.0
-I/usr/pkg/include/pango-1.0
-I/usr/pkg/include/pango-1.0
-I/usr/pkg/include/pango-1.0

This looks good. These options are transformed by the buildlink wrapper to refer to the correct path
inside work/.buildlink.

Since the compilation fails though, examine the compiler command lines in work/.work.log to see
whether the -I option is included in the particular command line.

To further analyze the situation, run bmake build-env, which sets up an interactive, realistic
environment including all the pkgsrc wrapper commands and environment variables. From there, try to
compile some simple example programs that use the header.

21.5.3.2. Headers generated during the build

If the name of the header seems to come from the package itself, and if the build is run with parallel jobs,
the package may have some undeclared dependencies between the .c and the .h files, and a C file is
compiled before its required header is generated.

To see whether the build runs with parallel jobs, run bmake show-all-build | grep JOBS. Its output
looks like this:

usr MAKE_JOBS= 7
pkg MAKE_JOBS_SAFE # undefined
def _MAKE_JOBS_N= 7

In this case the pkgsrc user has asked pkgsrc to build packages with 7 jobs in parallel (MAKE_JOBS). The
package could have disabled parallel builds by setting MAKE_JOBS_SAFE to no, but in this case it hasn’t.

To see whether the build failure is caused by parallel builds, first save the exact error message and a bit of
context, maybe you need it later for reporting a bug. Next, run:

MAKE_JOBS_SAFE=no bmake clean build

If that succeeds, file a bug report (https://www.NetBSD.org/cgi-bin/sendpr.cgi?gndb=netbsd) against the
pkgsrc package, including the exact error message and the contents of your mk.conf file.
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21.5.3.3. Symlinks

Pkgsrc does not work reliably if any of LOCALBASE, VARBASE or WRKDIR contains a symlink. Since
2019Q2, the pkgsrc bootstrap program prevents installing pkgsrc in symlink-based directories. Existing
pkgsrc installations are not checked for symlinks though.

The "No such file or directory" error messages are a typical symptom of symlinks, and it’s quite difficult
to find out that this is the actual cause.

21.5.3.4. Stale working directories

When building a hierarchy of packages, it may happen that one package is built and then pkgsrc is
updated. This situation can provoke various hard to diagnose build errors. To clean up the situation:

$ (cd ../../ && cat mk/bsd.pkg.mk >/dev/null && rm -rf */*/work)

(The only purpose of the bsd.pkg.mk is to prevent running this command in the wrong directory.)

If you have set WRKOBJDIR in mk.conf, remove that directory as well.

21.5.3.5. Other possible reasons

On platforms other than BSD, third-party packages are installed in /usr/include, together with the
base system. This means that pkgsrc cannot distinguish between headers provided by the base system
(which it needs) and headers from third-party packages (which are often included in pkgsrc as well).
This can lead to subtle version mismatches.

In pkgsrc installations that have been active for several years, it may happen that some files are manually
deleted. To exclude this unlikely reason, run pkg_admin check.

It may help to run pkg_admin rebuild-tree to check/fix dependencies.

If all of the above doesn’t help, see Chapter 2 for contact information. Be prepared to describe what you
have tried so far and what any error messages were.

21.5.4. Undefined reference to “...”

This error message often means that a package did not link to a shared library it needs. The following
functions are known to cause this error message over and over.

Function Library Affected platforms
accept, bind, connect -lsocket Solaris

crypt -lcrypt DragonFly, NetBSD

dlopen, dlsym -ldl Linux

gethost* -lnsl Solaris

inet_aton -lresolv Solaris

nanosleep, sem_*, timer_* -lrt Solaris

openpty -lutil Linux
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To fix these linker errors, it is often sufficient to add LIBS.OperatingSystem+= -lfoo to the package
Makefile and then run bmake clean; bmake.

21.5.4.1. The SunPro compiler and inline functions

When you are using the SunPro compiler, there is another possibility. That compiler cannot handle the
following code:

extern int extern_func(int);

static inline int
inline_func(int x)
{

return extern_func(x);
}

int main(void)
{

return 0;
}

It generates the code for inline_func even if that function is never used. This code then refers to
extern_func, which can usually not be resolved. To solve this problem you can try to tell the package
to disable inlining of functions.

21.5.4.2. Missing atomic functions

When building for older machine architectures (e.g., i386, PowerPC), builds may fail because the
package expects modern 64-bit atomic functions which the underlying hardware either doesn’t support,
or will only support with specific compiler flags. This is generally handled via inclusion of
mk/atomic64.mk.

21.5.5. Running out of memory

Sometimes packages fail to build because the compiler runs into an operating system specific soft limit.
With the UNLIMIT_RESOURCES variable pkgsrc can be told to unlimit the resources. The allowed values
are any combination of “cputime”, “datasize”, “memorysize”, “stacksize” and “virtualsize”. Setting this
variable is similar to running the shell builtin ulimit command to raise the maximum data segment size
or maximum stack size of a process, respectively, to their hard limits.

21.6. The install phase

21.6.1. Creating needed directories

The BSD-compatible install supplied with some operating systems cannot create more than one
directory at a time. As such, you should call ${INSTALL_*_DIR} like this:
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${INSTALL_DATA_DIR} ${PREFIX}/dir1
${INSTALL_DATA_DIR} ${PREFIX}/dir2

Instead of running the install commands directly, you can also append “dir1 dir2” to the
INSTALLATION_DIRS variable, which will automatically do the right thing.

21.6.2. Where to install documentation

In general, documentation should be installed into ${PREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME_NOREV} (the latter includes the version number of the package).

Many modern packages using GNU autoconf allow to set the directory where HTML documentation is
installed with the “--with-html-dir” option. Sometimes using this flag is needed because otherwise the
documentation ends up in ${PREFIX}/share/doc/html or other places. In pkgsrc, the HTML
documentation should go into the package-specific directory, just like any other documentation.

An exception to the above is that library API documentation generated with the textproc/gtk-doc
tools, for use by special browsers (devhelp) should be left at their default location, which is
${PREFIX}/share/gtk-doc. Such documentation can be recognized from files ending in .devhelp

or .devhelp2. (It is also acceptable to install such files in ${PREFIX}/share/doc/${PKGBASE} or
${PREFIX}/share/doc/${PKGNAME}; the .devhelp* file must be directly in that directory then, no
additional subdirectory level is allowed in this case. This is usually achieved by using
“--with-html-dir=${PREFIX}/share/doc”. ${PREFIX}/share/gtk-doc is preferred though.)

21.6.3. Installing highscore files

Certain packages, most of them in the games category, install a score file that allows all users on the
system to record their highscores. In order for this to work, the binaries need to be installed setgid and
the score files owned by the appropriate group and/or owner (traditionally the "games" user/group). Set
USE_GAMESGROUP to yes to support this. The following variables, documented in more detail in
mk/defaults/mk.conf, control this behaviour: GAMEDATAMODE, GAMEDIRMODE, GAMES_GROUP,
GAMEMODE, GAME_USER. Other useful variables are: GAMEDIR_PERMS, GAMEDATA_PERMS and
SETGID_GAMES_PERMS.

An example that illustrates some of the variables described above is games/moon-buggy.
OWN_DIRS_PERMS is used to properly set directory permissions of the directory where the scorefile is
saved, REQD_FILES_PERMS is used to create a dummy scorefile (mbscore) with the proper permissions
and SPECIAL_PERMS is used to install setgid the game binary:

USE_GAMESGROUP= yes

BUILD_DEFS+= VARBASE

OWN_DIRS_PERMS+= ${VARBASE}/games/moon-buggy ${GAMEDIR_PERMS}
REQD_FILES_PERMS+= /dev/null ${VARBASE}/games/moon-buggy/mbscore ${GAMEDATA_PERMS}
SPECIAL_PERMS+= ${PREFIX}/bin/moon-buggy ${SETGID_GAMES_PERMS}

Various INSTALL_* variables are also available: INSTALL_GAME to install setgid game binaries,
INSTALL_GAME_DIR to install game directories that are needed to be accessed by setgid games and
INSTALL_GAME_DATA to install scorefiles.
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A package should therefore never hard code file ownership or access permissions but rely on *_PERMS as
described above or alternatively on INSTALL_GAME, INSTALL_GAME_DATA and INSTALL_GAME_DIR to
set these correctly.

21.6.4. Adding DESTDIR support to packages

DESTDIR support means that a package installs into a staging directory, not the final location of the files.
Then a binary package is created which can be used for installation as usual. There are two ways: Either
the package must install as root (“destdir”) or the package can install as non-root user (“user-destdir”).

• PKG_DESTDIR_SUPPORT has to be set to “destdir” or “user-destdir”. By default
PKG_DESTDIR_SUPPORT is set to “user-destdir” to help catching more potential packaging problems.
If bsd.prefs.mk is included in the Makefile, PKG_DESTDIR_SUPPORT needs to be set before the
inclusion.

• All installation operations have to be prefixed with ${DESTDIR}.

• automake gets this DESTDIR mostly right automatically. Many manual rules and pre/post-install often
are incorrect; fix them.

• If files are installed with special owner/group use SPECIAL_PERMS.

• In general, packages should support UNPRIVILEGED to be able to use DESTDIR.

21.6.5. Packages with hardcoded paths to other interpreters

Your package may also contain scripts with hardcoded paths to other interpreters besides (or as well as)
Perl. To correct the full pathname to the script interpreter, you need to set the following definitions in
your Makefile (we shall use tclsh in this example):

REPLACE_INTERPRETER+= tcl
REPLACE.tcl.old= .*/bin/tclsh
REPLACE.tcl.new= ${PREFIX}/bin/tclsh
REPLACE_FILES.tcl= # list of tcl scripts which need to be fixed,
# relative to ${WRKSRC}, just as in REPLACE_PERL

21.6.6. Packages installing Perl modules

Makefiles of packages providing perl5 modules should include the Makefile fragment
../../lang/perl5/module.mk. It provides a do-configure target for the standard perl configuration
for such modules as well as various hooks to tune this configuration. See comments in this file for details.

Perl5 modules will install into different places depending on the version of perl used during the build
process. To address this, pkgsrc will append lines to the PLIST corresponding to the files listed in the
installed .packlist file generated by most perl5 modules. This is invoked by defining
PERL5_PACKLIST to a space-separated list of packlist files relative to PERL5_PACKLIST_DIR

(PERL5_INSTALLVENDORARCH by default), e.g.:

PERL5_PACKLIST= auto/Pg/.packlist
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The perl5 config variables installarchlib, installscript, installvendorbin,
installvendorscript, installvendorarch, installvendorlib, installvendorman1dir,
and installvendorman3dir represent those locations in which components of perl5 modules may be
installed, provided as variable with uppercase and prefixed with PERL5_, e.g. PERL5_INSTALLARCHLIB
and may be used by perl5 packages that don’t have a packlist. These variables are also substituted for in
the PLIST as uppercase prefixed with PERL5_SUB_.

21.6.7. Packages installing pkg-config files

Some packages, usually those providing libraries, install pkg-config files so that their headers and
libraries can easily be found. The file names end with .pc.

Most of the time, these files only provide the linker flags for the library, but do not include the flags for
setting the rpath so the libraries can also be found at runtime. Since this is so common, pkgsrc provides
PKGCONFIG_OVERRIDE for this. Many packages generate the .pc from .pc.in, in that case add those
files to the PKGCONFIG_OVERRIDE variable:

PKGCONFIG_OVERRIDE+= foo.pc.in

For packages using meson, the files are generated during build and you also need to change the phase in
which the replacement is done. For example:

PKGCONFIG_OVERRIDE+= output/meson-private/foo.pc
PKGCONFIG_OVERRIDE_STAGE= post-build

21.6.8. Packages installing info files

Some packages install info files or use the “makeinfo” or “install-info” commands. INFO_FILES should
be defined in the package Makefile so that INSTALL and DEINSTALL scripts will be generated to handle
registration of the info files in the Info directory file. The “install-info” command used for the info files
registration is either provided by the system, or by a special purpose package automatically added as
dependency if needed.

PKGINFODIR is the directory under ${PREFIX} where info files are primarily located. PKGINFODIR
defaults to “info” and can be overridden by the user.

The info files for the package should be listed in the package PLIST; however any split info files need
not be listed.

A package which needs the “makeinfo” command at build time must add “makeinfo” to USE_TOOLS in
its Makefile. If a minimum version of the “makeinfo” command is needed it should be noted with the
TEXINFO_REQD variable in the package Makefile. By default, a minimum version of 3.12 is required.
If the system does not provide a makeinfo command or if it does not match the required minimum, a
build dependency on the devel/gtexinfo package will be added automatically.

The build and installation process of the software provided by the package should not use the install-info
command as the registration of info files is the task of the package INSTALL script, and it must use the
appropriate makeinfo command.
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To achieve this goal, the pkgsrc infrastructure creates overriding scripts for the install-info and makeinfo
commands in a directory listed early in PATH.

The script overriding install-info has no effect except the logging of a message. The script overriding
makeinfo logs a message and according to the value of TEXINFO_REQD either runs the appropriate
makeinfo command or exit on error.

21.6.9. Packages installing man pages

All packages that install manual pages should install them into the same directory, so that there is one
common place to look for them. In pkgsrc, this place is ${PREFIX}/${PKGMANDIR}, and this
expression should be used in packages. The default for PKGMANDIR is “man”. Another often-used value
is “share/man”.

Note: The support for a custom PKGMANDIR is far from complete.

The PLIST files can just use man/ as the top level directory for the man page file entries, and the pkgsrc
framework will convert as needed. In all other places, the correct PKGMANDIR must be used.

Packages that are configured with GNU_CONFIGURE set as “yes”, by default will use the ./configure
--mandir switch to set where the man pages should be installed. The path is GNU_CONFIGURE_MANDIR
which defaults to ${PREFIX}/${PKGMANDIR}.

Packages that use GNU_CONFIGURE but do not use --mandir, can set CONFIGURE_HAS_MANDIR to “no”.
Or if the ./configure script uses a non-standard use of --mandir, you can set
GNU_CONFIGURE_MANDIR as needed.

See Section 19.5 for information on installation of compressed manual pages.

21.6.10. Packages installing X11 fonts

If a package installs font files, you will need to rebuild the fonts database in the directory where they get
installed at installation and deinstallation time. This can be automatically done by using the pkginstall
framework.

You can list the directories where fonts are installed in the FONTS_DIRS.type variables, where type
can be one of “ttf”, “type1” or “x11”. Also make sure that the database file fonts.dir is not listed in
the PLIST.

Note that you should not create new directories for fonts; instead use the standard ones to avoid that the
user needs to manually configure his X server to find them.

21.6.11. Packages installing SGML or XML data

If a package installs SGML or XML data files that need to be registered in system-wide catalogs (like
DTDs, sub-catalogs, etc.), you need to take some extra steps:

1. Include ../../textproc/xmlcatmgr/catalogs.mk in your Makefile, which takes care of
registering those files in system-wide catalogs at installation and deinstallation time.

124



Chapter 21. Making your package work

2. Set SGML_CATALOGS to the full path of any SGML catalogs installed by the package.

3. Set XML_CATALOGS to the full path of any XML catalogs installed by the package.

4. Set SGML_ENTRIES to individual entries to be added to the SGML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (specifically, arguments recognized by the
’add’ action). Note that you will normally not use this variable.

5. Set XML_ENTRIES to individual entries to be added to the XML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (specifically, arguments recognized by the
’add’ action). Note that you will normally not use this variable.

21.6.12. Packages installing extensions to the MIME database

If a package provides extensions to the MIME database by installing .xml files inside
${PREFIX}/share/mime/packages, you need to take some extra steps to ensure that the database is
kept consistent with respect to these new files:

1. Include ../../databases/shared-mime-info/mimedb.mk (avoid using the buildlink3.mk
file from this same directory, which is reserved for inclusion from other buildlink3.mk files). It
takes care of rebuilding the MIME database at installation and deinstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries under the share/mime directory, except for files saved
under share/mime/packages. The former are handled automatically by the
update-mime-database program, but the latter are package-dependent and must be removed by the
package that installed them in the first place.

3. Remove any share/mime/* directories from the PLIST. They will be handled by the
shared-mime-info package.

21.6.13. Packages using intltool

If a package uses intltool during its build, add intltool to the USE_TOOLS, which forces it to use the
intltool package provided by pkgsrc, instead of the one bundled with the distribution file.

This tracks intltool’s build-time dependencies and uses the latest available version; this way, the package
benefits of any bug fixes that may have appeared since it was released.

21.6.14. Packages installing startup scripts

If a package contains an rc.d script, it won’t be copied into the startup directory (/etc/rc.d) by default,
but you can enable copying by setting the option PKG_RCD_SCRIPTS=YES in mk.conf. With
PKG_RCD_SCRIPTS=YES, rc.d scripts will be copied into /etc/rc.d when a package is installed, but
only if the target does not already exist. Copies in /etc/rc.d will be automatically removed only if
they have not been modified.

Note that this alone does not enable the service: It must still be added to /etc/rc.conf.
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21.6.15. Packages installing TeX modules

If a package installs TeX packages into the texmf tree, the ls-R database of the tree needs to be updated.

Note: Except the main TeX packages such as kpathsea, packages should install files into
${PREFIX}/share/texmf-dist, not ${PREFIX}/share/texmf.

1. Include ../../print/kpathsea/texmf.mk. This takes care of rebuilding the ls-R database at
installation and deinstallation time.

2. If your package installs files into a texmf tree other than the one at
${PREFIX}/share/texmf-dist, set TEX_TEXMF_DIRS to the list of all texmf trees that need
database update.

If your package also installs font map files that need to be registered using updmap, include
../../print/tex-tetex/map.mk and set TEX_MAP_FILES and/or TEX_MIXEDMAP_FILES to
the list of all such font map files. Then updmap will be run automatically at
installation/deinstallation to enable/disable font map files for TeX output drivers.

3. Make sure that none of ls-R databases are included in PLIST, as they will be removed only by the
kpathsea package.

21.6.16. Packages supporting running binaries in emulation

There are some packages that provide libraries and executables for running binaries from a one operating
system on a different one (if the latter supports it). One example is running Linux binaries on NetBSD.

The pkgtools/rpm2pkg helps in extracting and packaging Linux rpm packages.

The CHECK_SHLIBS can be set to no to avoid the check-shlibs target, which tests if all libraries for each
installed executable can be found by the dynamic linker. Since the standard dynamic linker is run, this
fails for emulation packages, because the libraries used by the emulation are not in the standard
directories.

21.6.17. Packages installing hicolor icons

If a package installs images under the share/icons/hicolor and/or updates the
share/icons/hicolor/icon-theme.cache database, you need to take some extra steps to make
sure that the shared theme directory is handled appropriately and that the cache database is rebuilt:

1. Include ../../graphics/hicolor-icon-theme/buildlink3.mk.

2. Check the PLIST and remove the entry that refers to the theme cache.

3. Ensure that the PLIST does not remove the shared icon directories from the
share/icons/hicolor hierarchy because they will be handled automatically.

The best way to verify that the PLIST is correct with respect to the last two points is to regenerate it
using make print-PLIST.
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21.6.18. Packages installing desktop files

If a package installs .desktop files under share/applications and these include MIME information
(MimeType key), you need to take extra steps to ensure that they are registered into the MIME database:

1. Include ../../sysutils/desktop-file-utils/desktopdb.mk.

2. Check the PLIST and remove the entry that refers to the
share/applications/mimeinfo.cache file. It will be handled automatically.

The best way to verify that the PLIST is correct with respect to the last point is to regenerate it using
make print-PLIST.

21.7. Marking packages as having problems
In some cases one does not have the time to solve a problem immediately. In this case, one can plainly
mark a package as broken. For this, one just sets the variable BROKEN to the reason why the package is
broken (similar to the PKG_FAIL_REASON variable). A user trying to build the package will immediately
be shown this message, and the build will not be even tried.

BROKEN packages are removed from pkgsrc in irregular intervals.
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Quoting GNOME’s web site (https://www.gnome.org/):

The GNOME project provides two things: The GNOME desktop environment, an intuitive and attractive
desktop for users, and the GNOME development platform, an extensive framework for building applications
that integrate into the rest of the desktop.

pkgsrc provides a seamless way to automatically build and install a complete GNOME environment
under many different platforms. We can say with confidence that pkgsrc is one of the most advanced
build and packaging systems for GNOME due to its included technologies buildlink3, the wrappers and
tools framework and automatic configuration file management. Lots of efforts are put into achieving a
completely clean deinstallation of installed software components.

Given that pkgsrc is NetBSD (https://www.NetBSD.org/)’s official packaging system, the above also
means that great efforts are put into making GNOME work under this operating system.

This chapter is aimed at pkgsrc developers and other people interested in helping our GNOME porting
and packaging efforts. It provides instructions on how to manage the existing packages and some
important information regarding their internals.

22.1. Meta packages
pkgsrc includes three GNOME-related meta packages:

• meta-pkgs/gnome-base: Provides the core GNOME desktop environment. It only includes the
necessary bits to get it to boot correctly, although it may lack important functionality for daily
operation. The idea behind this package is to let end users build their own configurations on top of this
one, first installing this meta package to achieve a functional setup and then adding individual
applications.

• meta-pkgs/gnome: Provides a complete installation of the GNOME platform and desktop as defined
by the GNOME project; this is based on the components distributed in the
platform/x.y/x.y.z/sources and desktop/x.y/x.y.z/sources directories of the official
FTP server. Developer-only tools found in those directories are not installed unless required by some
other component to work properly. Similarly, packages from the bindings set
(bindings/x.y/x.y.z/sources) are not pulled in unless required as a dependency for an end-user
component. This package "extends" meta-pkgs/gnome-base.

• meta-pkgs/gnome-devel: Installs all the tools required to build a GNOME component when
fetched from the CVS repository. These are required to let the autogen.sh scripts work appropriately.

In all these packages, the DEPENDS lines are sorted in a way that eases updates: a package may depend
on other packages listed before it but not on any listed after it. It is very important to keep this order to
ease updates so... do not change it to alphabetical sorting!
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22.2. Packaging a GNOME application
Almost all GNOME applications are written in C and use a common set of tools as their build system.
Things get different with the new bindings to other languages (such as Python), but the following will
give you a general idea on the minimum required tools:

• Almost all GNOME applications use the GNU Autotools as their build system. As a general rule you
will need to tell this to your package:

GNU_CONFIGURE= yes
USE_LIBTOOL= yes
USE_TOOLS+= gmake

• If the package uses pkg-config to detect dependencies, add this tool to the list of required utilities:

USE_TOOLS+= pkg-config

Also use pkgtools/verifypc at the end of the build process to ensure that you did not miss to
specify any dependency in your package and that the version requirements are all correct.

• If the package uses intltool, be sure to add intltool to the USE_TOOLS to handle dependencies and
to force the package to use the latest available version.

• If the package uses gtk-doc (a documentation generation utility), do not add a dependency on it. The
tool is rather big and the distfile should come with pregenerated documentation anyway; if it does not,
it is a bug that you ought to report. For such packages you should disable gtk-doc (unless it is the
default):

CONFIGURE_ARGS+= --disable-gtk-doc

The default location of installed HTML files (share/gtk-doc/<package-name>) is correct and
should not be changed unless the package insists on installing them somewhere else. Otherwise
programs as devhelp will not be able to open them. You can do that with an entry similar to:

CONFIGURE_ARGS+= --with-html-dir=${PREFIX}/share/gtk-doc/...

GNOME uses multiple shared directories and files under the installation prefix to maintain databases. In
this context, shared means that those exact same directories and files are used among several different
packages, leading to conflicts in the PLIST. pkgsrc currently includes functionality to handle the most
common cases, so you have to forget about using @unexec ${RMDIR} lines in your file lists and
omitting shared files from them. If you find yourself doing those, your package is most likely incorrect.

The following table lists the common situations that result in using shared directories or files. For each of
them, the appropriate solution is given. After applying the solution be sure to regenerate the package’s
file list with make print-PLIST and ensure it is correct.

Table 22-1. PLIST handling for GNOME packages

If the package... Then...
Installs icons under the share/icons/hicolor
hierarchy or updates
share/icons/hicolor/icon-theme.cache.

See Section 21.6.17.

Installs files under share/mime/packages. See Section 21.6.12.
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If the package... Then...
Installs .desktop files under
share/applications and these include MIME
information.

See Section 21.6.18.

22.3. Updating GNOME to a newer version
When seeing GNOME as a whole, there are two kinds of updates:

Major update

Given that there is still a very long way for GNOME 3 (if it ever appears), we consider a major
update one that goes from a 2.X version to a 2.Y one, where Y is even and greater than X. These are
hard to achieve because they introduce lots of changes in the components’ code and almost all
GNOME distfiles are updated to newer versions. Some of them can even break API and ABI
compatibility with the previous major version series. As a result, the update needs to be done all at
once to minimize breakage.

A major update typically consists of around 80 package updates and the addition of some new ones.

Minor update

We consider a minor update one that goes from a 2.A.X version to a 2.A.Y one where Y is greater
than X. These are easy to achieve because they do not update all GNOME components, can be done
in an incremental way and do not break API nor ABI compatibility.

A minor update typically consists of around 50 package updates, although the numbers here may
vary a lot.

In order to update the GNOME components in pkgsrc to a new stable release (either major or minor), the
following steps should be followed:

1. Get a list of all the tarballs that form the new release by using the following commands. These will
leave the full list of the components’ distfiles into the list.txt file:

% echo ls "*.tar.bz2" | \

ftp -V ftp://ftp.gnome.org/pub/gnome/platform/x.y/x.y.z/sources/ | \

awk ’{ print $9 }’ >list.txt

% echo ls "*.tar.bz2" | \

ftp -V ftp://ftp.gnome.org/pub/gnome/desktop/x.y/x.y.z/sources/ | \

awk ’{ print $9 }’ >>list.txt

2. Open each meta package’s Makefile and bump their version to the release you are updating them
to. The three meta packages should be always consistent with versioning. Obviously remove any
PKGREVISIONs that might be in them.

3. For each meta package, update all its DEPENDS lines to match the latest versions as shown by the
above commands. Do not list any newer version (even if found in the FTP) because the meta
packages are supposed to list the exact versions that form a specific GNOME release. Exceptions are
permitted here if a newer version solves a serious issue in the overall desktop experience; these
typically come in the form of a revision bump in pkgsrc, not in newer versions from the developers.
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Packages not listed in the list.txt file should be updated to the latest version available (if found
in pkgsrc). This is the case, for example, of the dependencies on the GNU Autotools in the
meta-pkgs/gnome-devel meta package.

4. Generate a patch from the modified meta packages and extract the list of "new" lines. This will
provide you an outline on what packages need to be updated in pkgsrc and in what order:

% cvs diff -u gnome-devel gnome-base gnome | grep ’^+D’ >todo.txt

5. For major desktop updates it is recommended to zap all your installed packages and start over from
scratch at this point.

6. Now comes the longest step by far: iterate over the contents of todo.txt and update the packages
listed in it in order. For major desktop updates none of these should be committed until the entire set
is completed because there are chances of breaking not-yet-updated packages.

7. Once the packages are up to date and working, commit them to the tree one by one with appropriate
log messages. At the end, commit the three meta package updates and all the corresponding changes
to the doc/CHANGES-<YEAR> and pkgsrc/doc/TODO files.

22.4. Patching guidelines
GNOME is a very big component in pkgsrc which approaches 100 packages. Please, it is very important
that you always, always, always feed back any portability fixes you do to a GNOME package to the
mainstream developers (see Section 12.3.5). This is the only way to get their attention on portability
issues and to ensure that future versions can be built out-of-the box on NetBSD. The less custom patches
in pkgsrc, the easier further updates are. Those developers in charge of issuing major GNOME updates
will be grateful if you do that.

The most common places to report bugs are the GNOME’s GitLab (https://gitlab.gnome.org/GNOME)
and the freedesktop.org’s GitLab (https://gitlab.freedesktop.org/explore/groups). Not all components use
these to track bugs, but most of them do. Do not be short on your reports: always provide detailed
explanations of the current failure, how it can be improved to achieve maximum portability and, if at all
possible, provide a patch against the main Git branch. The more verbose you are, the higher chances of
your patch being accepted.

Also, please avoid using preprocessor magic to fix portability issues. While the FreeBSD GNOME
people are doing a great job in porting GNOME to their operating system, the official GNOME sources
are now plagued by conditionals that check for __FreeBSD__ and similar macros. This hurts portability.
Please see our patching guidelines (Section 12.3.4) for more details.
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23.1. Submitting binary packages
Our policy is that we accept binaries only from pkgsrc developers to guarantee that the packages don’t
contain any trojan horses etc. This is not to annoy anyone but rather to protect our users! You’re still free
to put up your home-made binary packages and tell the world where to get them. NetBSD developers
doing bulk builds and wanting to upload them please see Chapter 8.

23.2. Submitting source packages (for non-NetBSD-developers)
Firstly, you can import new packages into pkgsrc-wip (“pkgsrc work-in-progress”); see the homepage at
https://pkgsrc.org/wip/ for details.

Next, check that your package is complete, compiles and runs well; see Chapter 14 and the rest of this
document. Run the pkgtools/pkglint tool and fix any errors that appear.

Finally, send a report to the pkgsrc bug tracking system, either with the send-pr(1) command, or if you
don’t have that, go to the web page https://www.NetBSD.org/support/send-pr.html, which contains some
instructions and a link to a form where you can submit packages. The sysutils/gtk-send-pr
package is also available as a substitute for either of the above two tools.

In the form of the problem report, the category should be “pkg”, the synopsis should include the package
name and version number, and the description field should contain a short description of your package
(contents of the COMMENT variable or DESCR file are OK).

23.3. General notes when adding, updating, or removing packages
Please note all package additions, updates, moves, and removals in pkgsrc/doc/CHANGES-YYYY . It’s
very important to keep this file up to date and conforming to the existing format, because it will be used
by scripts to automatically update pages on www.NetBSD.org (https://www.NetBSD.org/) and other
sites. Additionally, check the pkgsrc/doc/TODO file and remove the entry for the package you updated
or removed, in case it was mentioned there.

When the PKGREVISION of a package is bumped, the change should appear in
pkgsrc/doc/CHANGES-YYYY if it is security related or otherwise relevant. Mass bumps that result from
a dependency being updated should not be mentioned. In all other cases it’s the developer’s decision.

There is a make target that helps in creating proper CHANGES-YYYY entries: make changes-entry. It uses
the optional CTYPE and NETBSD_LOGIN_NAME variables. The general usage is to first make sure that
your CHANGES-YYYY file is up-to-date (to avoid having to resolve conflicts later-on) and then to cd to the
package directory. For package updates, make changes-entry is enough. For new packages, or package
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moves or removals, set the CTYPE variable on the command line to "Added", "Moved", or "Removed".
You can set NETBSD_LOGIN_NAME in mk.conf if your local login name is not the same as your NetBSD
login name. The target also automatically removes possibly existing entries for the package in the TODO
file. Don’t forget to commit the changes, e.g. by using make commit-changes-entry! If you are not
using a checkout directly from cvs.NetBSD.org, but e.g. a local copy of the repository, you can set
USE_NETBSD_REPO=yes. This makes the cvs commands use the main repository.

23.4. Commit Messages
For several years, there have been mirrors of pkgsrc in fossil, git, and hg. Standard practice when using
these tools is to make the first line of a commit message function as a summary that can be read without
the rest, such as is commonly done with "git log --oneline". For this reason, we have the following
guidelines for pkgsrc commit messages:

• Start the commit message with a line that explains the big picture in 65 characters or less. When a
commit is for one package, include the name of the package. For updates, include the version to which
it is updated.

• Leave the next line empty.

• Then come the details for the commit (changes in that package, reason for a change) and any relevant
PRs. Wrap this section.

Here is an example:

libxslt: update to 1.0.30

Changes since 1.0.29:
...

Here is another example:

mk/bsd.pkg.mk: enable SSP by default on NetBSD

(rationale)

Commit messages are final: no “cvs admin” is allowed on the pkgsrc repository to change commit
messages.

23.5. Committing: Adding a package to CVS
This section is only of interest for pkgsrc developers with write access to the pkgsrc repository.

When the package is finished, “cvs add” the files. Start by adding the directory and then files in the
directory. Don’t forget to add the new package to the category’s Makefile. Make sure you don’t forget
any files; you can check by running “cvs status”. An example:

$ cd .../pkgsrc/category
$ cvs add pkgname
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$ cd pkgname
$ cvs add DESCR Makefile PLIST distinfo buildlink3.mk patches
$ cvs add patches/p*
$ cvs status | less
$ cvs commit
$ cd ..
$ vi Makefile # add SUBDIR+=pkgname line
$ cvs commit Makefile
$ cd pkgname
$ make CTYPE=Added commit-changes-entry

The commit message of the initial import should include part of the DESCR file, so people reading the
mailing lists know what the package is/does.

Also mention the new package in pkgsrc/doc/CHANGES-20xx.

Previously, “cvs import” was suggested, but it was much easier to get wrong than “cvs add”.

23.6. Updating a package to a newer version
Please always put a concise, appropriate and relevant summary of the changes between old and new
versions into the commit log when updating a package. There are various reasons for this:

• A URL is volatile, and can change over time. It may go away completely or its information may be
overwritten by newer information.

• Having the change information between old and new versions in our CVS repository is very useful for
people who use either cvs or anoncvs.

• Having the change information between old and new versions in our CVS repository is very useful for
people who read the pkgsrc-changes mailing list, so that they can make tactical decisions about when
to upgrade the package.

Please also recognize that, just because a new version of a package has been released, it should not
automatically be upgraded in the CVS repository. We prefer to be conservative in the packages that are
included in pkgsrc - development or beta packages are not really the best thing for most places in which
pkgsrc is used. Please use your judgement about what should go into pkgsrc, and bear in mind that
stability is to be preferred above new and possibly untested features.

23.7. Renaming a package in pkgsrc
Renaming packages is not recommended.

When renaming packages, be sure to fix any references to the old name in other Makefiles, options,
buildlink files, etc.

Also, when renaming a package, please add the package name and version pattern(s) of the previous
package to SUPERSEDES. This may be repeated for multiple renames. The new package would be an
exact replacement. Example:

SUPERSEDES+= p5-IO-Compress-Zlib<2.017
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SUPERSEDES+= optcomp-[0-9]*

Note that “successor” in the CHANGES-YYYY file doesn’t necessarily mean that it supersedes, as that
successor may not be an exact replacement but is a suggestion for the replaced functionality.

23.8. Moving a package in pkgsrc
It is preferred that packages are not renamed or moved, but if needed please follow these steps.

1. Make a copy of the directory somewhere else.

2. Remove all CVS dirs.

Alternatively to the first two steps you can also do:

% cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsrc/category/package

and use that for further work.

3. Fix CATEGORIES and any DEPENDS paths that just did “../package” instead of
“../../category/package”.

4. In the modified package’s Makefile, consider setting PREV_PKGPATH to the previous
category/package pathname. The PREV_PKGPATH can be used by tools for doing an update using
pkgsrc building; for example, it can search the pkg_summary(5) database for PREV_PKGPATH (if no
SUPERSEDES) and then use the corresponding new PKGPATH for that moved package. Note that it
may have multiple matches, so the tool should also check on the PKGBASE too. The PREV_PKGPATH
probably has no value unless SUPERSEDES is not set, i.e. PKGBASE stays the same.

5. cvs add the modified package in the new place.

6. Check if any package depends on it:

% cd /usr/pkgsrc

% grep /package */*/Makefile* */*/buildlink*

7. Fix paths in packages from step 5 to point to new location.

8. cvs rm (-f) the package at the old location.

9. Remove from oldcategory/Makefile.

10. Add to newcategory/Makefile.

11. Commit the changed and removed files:

% cvs commit oldcategory/package oldcategory/Makefile newcategory/Makefile

(and any packages from step 5, of course).
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pkgsrc Policies

24.1. Packages for which updating is restricted
In the past, some packages have caused more package failures than others, and we’d like to reduce this in
the future.

For this reason, pkgsrc-pmc marks some packages with POLICY_UPDATE_LIMITED. The possible values
currently are:

• abi for packages where ABI/API changes often broke the packages depending on them

• bootstrap for packages that are used during the pkgsrc bootstrap

pkglint will warn when committing updates to these packages.

24.1.1. Limited Updates - ABI

Before committing non-micro version updates to packages marked with
POLICY_UPDATE_LIMITED=abi, a limited bulk build of meta-pkgs/bulk-test-${PACKAGE} needs
to be run and the result posted to the tech-pkg mailing list, highlighting what packages would stop
building (if any).

Depending on the result, pkgsrc-pmc then decides:

• go ahead with the update

• wait for packages X, Y, Z to be fixed (upstream or locally) with the updated version, which is put in
wip in the meantime

• In the second case, all pkgsrc developers are encouraged to work on fixing this - it is not only the
updater’s task to fix them.

The decision to wait for packages can be revisited.

24.1.2. Limited Updates - Bootstrap

When updating packages used in the bootstrap, i.e. marked with
POLICY_UPDATE_LIMITED=bootstrap, test the bootstrap process and preferably some basic packages
and send the patch to the tech-pkg mailing list so it can be tested on other platforms as well. Give at least
two weeks for feedback and testing by others.
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Frequently Asked Questions

This section contains the answers to questions that may arise when you are writing a package. If you
don’t find your question answered here, first have a look in the other chapters, and if you still don’t have
the answer, ask on the pkgsrc-users mailing list.

1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?

MAKEFLAGS are the flags passed to the pkgsrc-internal invocations of make(1).

MAKE_FLAGS are the flags that are passed to the MAKE_PROGRAM when building the package.

.MAKEFLAGS is an internal variable of bmake and should not be used by packages.

2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?

MAKE is the path to the make(1) program that is used in the pkgsrc infrastructure.

GMAKE is the path to GNU Make, but you need to say USE_TOOLS+=gmake to use that.

MAKE_PROGRAM is the path to the Make program that is used for building the package.

3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?

CC is the path to the real C compiler, which can be configured by the pkgsrc user.

PKG_CC is the path to the compiler wrapper.

PKGSRC_COMPILER is not a path to a compiler, but the type of compiler that should be used. See
mk/compiler.mk for more information about the latter variable.

4. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it’s empty?

For optimization reasons, some variables are only available in the “wrapper” phase and later. To
“simulate” the wrapper phase, append PKG_PHASE=wrapper to the above command.

5. What does ${MASTER_SITE_SOURCEFORGE:=package/} mean? I don’t understand the := inside it.

The := is not an assignment operator, even though it may look like one. Instead, it is a degenerate form
of ${LIST:old_string=new_string}, which is documented in the make(1) man page and which is
commonly used in the form ${SRCS:.c=.o}. In the case of MASTER_SITE_*, old_string is the
empty string and new_string is package/. That’s where the : and the = fall together.
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6. Which mailing lists are there for package developers?

tech-pkg (https://www.NetBSD.org/mailinglists/index.html#tech-pkg)

This is a list for technical discussions related to pkgsrc development, e.g. soliciting feedback for
changes to pkgsrc infrastructure, proposed new features, questions related to porting pkgsrc to a
new platform, advice for maintaining a package, patches that affect many packages, help requests
moved from pkgsrc-users when an infrastructure bug is found, etc.

pkgsrc-bugs (https://www.NetBSD.org/mailinglists/index.html#pkgsrc-bugs)

All bug reports in category "pkg" sent with send-pr(1) appear here. Please do not report your bugs
here directly; use one of the other mailing lists.

7. Where is the pkgsrc documentation?

There are many places where you can find documentation about pkgsrc:

• The pkgsrc guide (this document) is a collection of chapters that explain large parts of pkgsrc, but
some chapters tend to be outdated. Which ones they are is hard to say.

• On the mailing list archives (see https://mail-index.NetBSD.org/), you can find discussions about
certain features, announcements of new parts of the pkgsrc infrastructure and sometimes even
announcements that a certain feature has been marked as obsolete. The benefit here is that each
message has a date appended to it.

• Many of the files in the mk/ directory start with a comment that describes the purpose of the file and
how it can be used by the pkgsrc user and package authors. An easy way to find this documentation is
to run bmake help.

• The CVS log messages are a rich source of information, but they tend to be highly abbreviated,
especially for actions that occur often. Some contain a detailed description of what has changed, but
they are geared towards the other pkgsrc developers, not towards an average pkgsrc user. They also
only document changes, so if you don’t know what has been before, these messages may not be worth
too much to you.

• Some parts of pkgsrc are only “implicitly documented”, that is the documentation exists only in the
mind of the developer who wrote the code. To get this information, use the cvs annotate command to
see who has written it and ask on the tech-pkg mailing list, so that others can find your questions
later (see above). To be sure that the developer in charge reads the mail, you may CC him or her.

8. I have a little time to kill. What shall I do?

This is not really an FAQ yet, but here’s the answer anyway.

• Run pkg_chk -N (from the pkgtools/pkg_chk package). It will tell you about newer versions of
installed packages that are available, but not yet updated in pkgsrc.

• Browse pkgsrc/doc/TODO — it contains a list of suggested new packages and a list of cleanups and
enhancements for pkgsrc that would be nice to have.

• Review packages for which review was requested on the tech-pkg
(https://www.NetBSD.org/mailinglists/index.html#tech-pkg) mailing list.
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III. The pkgsrc infrastructure
internals

This part of the guide deals with everything from the infrastructure that is behind the interfaces described
in the developer’s guide. A casual package maintainer should not need anything from this part.



Chapter 26.

Design of the pkgsrc
infrastructure

The pkgsrc infrastructure consists of many small Makefile fragments. Each such fragment needs a
properly specified interface. This chapter explains how such an interface looks like.

26.1. The meaning of variable definitions
Whenever a variable is defined in the pkgsrc infrastructure, the location and the way of definition provide
much information about the intended use of that variable. Additionally, more documentation may be
found in a header comment or in this pkgsrc guide.

A special file is mk/defaults/mk.conf, which lists all variables that are intended to be user-defined.
They are either defined using the ?= operator or they are left undefined because defining them to
anything would effectively mean “yes”. All these variables may be overridden by the pkgsrc user in the
MAKECONF file.

Outside this file, the following conventions apply: Variables that are defined using the ?= operator may
be overridden by a package.

Variables that are defined using the = operator may be used read-only at run-time.

Variables whose name starts with an underscore must not be accessed outside the pkgsrc infrastructure at
all. They may change without further notice.

Note: These conventions are currently not applied consistently to the complete pkgsrc infrastructure.

26.2. Avoiding problems before they arise
All variables that contain lists of things should default to being empty. Two examples that do not follow
this rule are USE_LANGUAGES and DISTFILES. These variables cannot simply be modified using the +=
operator in package Makefiles (or other files included by them), since there is no guarantee whether the
variable is already set or not, and what its value is. In the case of DISTFILES, the packages “know” the
default value and just define it as in the following example.

DISTFILES= ${DISTNAME}${EXTRACT_SUFX} additional-files.tar.gz

Because of the selection of this default value, the same value appears in many package Makefiles.
Similarly for USE_LANGUAGES, but in this case the default value (“c”) is so short that it doesn’t stand
out. Nevertheless it is mentioned in many files.

140



Chapter 26. Design of the pkgsrc infrastructure

26.3. Variable evaluation

26.3.1. At load time

Variable evaluation takes place either at load time or at runtime, depending on the context in which they
occur. The contexts where variables are evaluated at load time are:

• The right hand side of the := and != operators,

• Make directives like .if or .for,

• Dependency lines.

A special exception are references to the iteration variables of .for loops, which are expanded inline, no
matter in which context they appear.

As the values of variables may change during load time, care must be taken not to evaluate them by
accident. Typical examples for variables that should not be evaluated at load time are DEPENDS and
CONFIGURE_ARGS. To make the effect more clear, here is an example:

CONFIGURE_ARGS= # none
CFLAGS= -O
CONFIGURE_ARGS+= CFLAGS=${CFLAGS:Q}

CONFIGURE_ARGS:= ${CONFIGURE_ARGS}

CFLAGS+= -Wall

This code shows how the use of the := operator can quickly lead to unexpected results. The first
paragraph is fairly common code. The second paragraph evaluates the CONFIGURE_ARGS variable,
which results in CFLAGS=-O. In the third paragraph, the -Wall is appended to the CFLAGS, but this
addition will not appear in CONFIGURE_ARGS. In actual code, the three paragraphs from above typically
occur in completely unrelated files.

26.3.2. At runtime

After all the files have been loaded, the values of the variables cannot be changed anymore. Variables
that are used in the shell commands are expanded at this point.

26.4. How can variables be specified?
There are many ways in which the definition and use of a variable can be restricted in order to detect
bugs and violations of the (mostly unwritten) policies. A package can be checked with pkglint -Wall

to see whether it meets these rules.
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26.5. Designing interfaces for Makefile fragments
Most of the .mk files fall into one of the following classes. Cases where a file falls into more than one
class should be avoided as it often leads to subtle bugs.

26.5.1. Procedures with parameters

In a traditional imperative programming language some of the .mk files could be described as
procedures. They take some input parameters and—after inclusion—provide a result in output
parameters. Since all variables in Makefiles have global scope care must be taken not to use parameter
names that have already another meaning. For example, PKGNAME is a bad choice for a parameter name.

Procedures are completely evaluated at preprocessing time. That is, when calling a procedure all input
parameters must be completely resolvable. For example, CONFIGURE_ARGS should never be an input
parameter since it is very likely that further text will be added after calling the procedure, which would
effectively apply the procedure to only a part of the variable. Also, references to other variables will be
modified after calling the procedure.

A procedure can declare its output parameters either as suitable for use in preprocessing directives or as
only available at runtime. The latter alternative is for variables that contain references to other runtime
variables.

Procedures shall be written such that it is possible to call the procedure more than once. That is, the file
must not contain multiple-inclusion guards.

Examples for procedures are mk/bsd.options.mk and mk/buildlink3/bsd.builtin.mk. To
express that the parameters are evaluated at load time, they should be assigned using the := operator,
which should be used only for this purpose.

26.5.2. Actions taken on behalf of parameters

Action files take some input parameters and may define runtime variables. They shall not define loadtime
variables. There are action files that are included implicitly by the pkgsrc infrastructure, while other must
be included explicitly.

An example for action files is mk/subst.mk.

26.6. The order in which files are loaded
Package Makefiles usually consist of a set of variable definitions, and include the file
../../mk/bsd.pkg.mk in the very last line. Before that, they may also include various other *.mk
files if they need to query the availability of certain features like the type of compiler or the X11
implementation. Due to the heavy use of preprocessor directives like .if and .for, the order in which
the files are loaded matters.

This section describes at which point the various files are loaded and gives reasons for that order.
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26.6.1. The order in bsd.prefs.mk

The very first action in bsd.prefs.mk is to define some essential variables like OPSYS, OS_VERSION
and MACHINE_ARCH.

Then, the user settings are loaded from the file specified in MAKECONF, which is usually mk.conf. After
that, those variables that have not been overridden by the user are loaded from mk/defaults/mk.conf.

After the user settings, the system settings and platform settings are loaded, which may override the user
settings.

Then, the tool definitions are loaded. The tool wrappers are not yet in effect. This only happens when
building a package, so the proper variables must be used instead of the direct tool names.

As the last steps, some essential variables from the wrapper and the package system flavor are loaded, as
well as the variables that have been cached in earlier phases of a package build.

26.6.2. The order in bsd.pkg.mk

First, bsd.prefs.mk is loaded.

Then, the various *-vars.mk files are loaded, which fill default values for those variables that have not
been defined by the package. These variables may later be used even in unrelated files.

Then, the file bsd.pkg.error.mk provides the target error-check that is added as a special
dependency to all other targets that use DELAYED_ERROR_MSG or DELAYED_WARNING_MSG.

Then, the package-specific hacks from hacks.mk are included.

Then, various other files follow. Most of them don’t have any dependencies on what they need to have
included before or after them, though some do.

The code to check PKG_FAIL_REASON and PKG_SKIP_REASON is then executed, which restricts the use
of these variables to all the files that have been included before. Appearances in later files will be silently
ignored.

Then, the files for the main targets are included, in the order of later execution, though the actual order
should not matter.

At last, some more files are included that don’t set any interesting variables but rather just define make
targets to be executed.
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Regression tests

The pkgsrc infrastructure consists of a large codebase, and there are many corners where every little bit
of a file is well thought out, making pkgsrc likely to fail as soon as anything is changed near those parts.
To prevent most changes from breaking anything, a suite of regression tests should go along with every
important part of the pkgsrc infrastructure. This chapter describes how regression tests work in pkgsrc
and how you can add new tests.

27.1. Running the regression tests
You first need to install the pkgtools/pkg_regress package, which provides the pkg_regress
command. Then you can simply run that command, which will run all tests in the regress/ directory.

27.2. Adding a new regression test
Every directory in the regress/ directory that contains a file called spec is considered a regression
test. This file is a shell program that is included by the pkg_regress command. The following functions
can be overridden to suit your needs.

27.2.1. Overridable functions

These functions do not take any parameters. Although they are called in “set -e” mode, they don’t stop at
the first failing command. See this Stack Overflow question (https://stackoverflow.com/q/4072984) for
details.

do_setup

This function prepares the environment for the test. By default it does nothing.

do_test

This function runs the actual test. By default, it calls TEST_MAKE with the arguments
MAKEARGS_TEST and writes its output including error messages into the file TEST_OUTFILE.

When defining this function, make sure that all output that needs to be checked is written to the
correct output file. Example:

do_test() {
echo "Example output"

} 1>$TEST_OUTFILE 2>&1
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check_result

This function is run after the test and is typically used to compare the actual output from the one
that is expected. It can make use of the various helper functions from the next section. Example:

check_result() {
exit_status 0
output_require "Example"
output_require "^[[:alpha:]+[[:space:]][[:alpha:]]{6}$"
output_prohibit "no such file or directory"
regress_fail "expected $expected but got $actual for input $input"

}

do_cleanup

This function cleans everything up after the test has been run. By default it does nothing.

27.2.2. Helper functions

regress_fail message...

This function makes the test fail with the given error message.

exit_status expected

This function compares the exitcode of the do_test function with its first parameter. If they differ,
the test will fail.

output_require regex...

This function checks for each of its parameters if the output from do_test matches the extended
regular expression. If it does not, the test will fail. Example:

output_require "looks fine"
output_require "^[[:alpha:]+[[:space:]][[:alpha:]]{6}$"

output_prohibit regex...

This function checks for each of its parameters if the output from do_test() does not match the
extended regular expression. If any of the regular expressions matches, the test will fail.
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Porting pkgsrc

The pkgsrc system has already been ported to many operating systems, hardware architectures and
compilers. This chapter explains the necessary steps to make pkgsrc even more portable.

28.1. Porting pkgsrc to a new operating system
To port pkgsrc to a new operating system (called MyOS in this example), you need to touch the following
files:

pkgtools/bootstrap-mk-files/files/mods/MyOS.sys.mk

This file contains some basic definitions, for example the name of the C compiler.

mk/bsd.prefs.mk

Insert code that defines the variables OPSYS, OS_VERSION, OPSYS_VERSION, LOWER_VENDOR,
MACHINE_ARCH, OBJECT_FMT, APPEND_ELF, and the other variables that appear in this file.

mk/platform/MyOS.mk

This file contains the platform-specific definitions that are used by pkgsrc. Start by copying one of
the other files and edit it to your needs.

mk/tools/tools.MyOS.mk

This file defines the paths to all the tools that are needed by one or the other package in pkgsrc, as
well as by pkgsrc itself. Find out where these tools are on your platform and add them.

Now, you should be able to build some basic packages, like lang/perl5, shells/bash.
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A simple example package:
bison

We checked to find a piece of software that wasn’t in the packages collection, and picked GNU bison.
Quite why someone would want to have bison when Berkeley yacc is already present in the tree is
beyond us, but it’s useful for the purposes of this exercise.

A.1. files

A.1.1. Makefile

# $NetBSD$
#

DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU:=bison/}

MAINTAINER= pkgsrc-users@NetBSD.org
HOMEPAGE= https://www.gnu.org/software/bison/bison.html
COMMENT= GNU yacc clone

GNU_CONFIGURE= yes
INFO_FILES= yes

.include "../../mk/bsd.pkg.mk"

A.1.2. DESCR

GNU version of yacc. Can make re-entrant parsers, and numerous other
improvements. Why you would want this when Berkeley yacc(1) is part
of the NetBSD source tree is beyond me.

A.1.3. PLIST

@comment $NetBSD$
bin/bison
man/man1/bison.1.gz
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share/bison.simple
share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes with pkgtools/pkglint which helps to check the contents of
these files. After installation it is quite easy to use, just change to the directory of the package you wish
to examine and run pkglint:

$ pkglint

ERROR: Makefile: Each package must define its LICENSE.
WARN: Makefile:9: HOMEPAGE should migrate from http to https.
NOTE: PLIST:3: The .gz extension is unnecessary for manual pages.
WARN: PLIST:5: "share/bison.hairy" should be sorted before "share/bison.simple".
1 error, 2 warnings and 1 note found.
(Run "pkglint -e" to show explanations.)
(Run "pkglint -fs" to show what can be fixed automatically.)
(Run "pkglint -F" to automatically fix some issues.)

Depending on the supplied command line arguments (see pkglint(1)), more checks will be performed.
Use e.g. pkglint -Wall for a very thorough check.

A.2. Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:

# cd /usr/pkgsrc/lang

# mkdir bison

# cd bison

# mkdir patches

Create Makefile, DESCR and PLIST (see Chapter 12) then continue with fetching the distfile:

# make fetch

>> bison-1.25.tar.gz doesn’t seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
Successfully retrieved file.

Generate the checksum of the distfile into distinfo:
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# make makedistinfo

Now compile:

# make

>> Checksum OK for bison-1.25.tar.gz.
===> Extracting for bison-1.25
===> Patching for bison-1.25
===> Ignoring empty patch directory
===> Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g LR0.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g allocate.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g closure.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g conflicts.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g derives.c
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFILE1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -g ./files.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getargs.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g gram.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lalr.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g lex.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g main.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g nullable.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g output.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g print.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reader.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g reduce.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g symtab.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g warshall.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g version.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include -g getopt1.c
cc -g -o bison LR0.o allocate.o closure.o conflicts.o derives.o files.o getargs.o gram.o lalr.o lex.o main.o nullable.o output.o print.o reader.o reduce.o symtab.o warshall.o version.o getopt.o getopt1.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
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rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./bison.simple > bison.s1

Everything seems OK, so install the files:

# make install

>> Checksum OK for bison-1.25.tar.gz.
===> Installing for bison-1.25
sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg/info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.info*
install -c -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/pkg/share/bison.hairy
cd .; for f in bison.info*; do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info/$f; done
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/man/man1/bison.1
===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with pkg_delete bison. Should you decide
that you want a binary package, do this now:

# make package

>> Checksum OK for bison-1.25.tar.gz.
===> Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip’d tar ball in ’/u/pkgsrc/lang/bison/bison-1.25.tgz’

Now that you don’t need the source and object files any more, clean up:

# make clean

===> Cleaning for bison-1.25
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Security hardening

A number of mechanisms are available in pkgsrc to improve the security of the resulting system. This
page describes the mechanisms, and gives hints about detecting and fixing problems.

Mechanisms can be enabled individually in mk.conf, and are individually described below.

Typically, a feature will cause some programs to fail to build or work when first enabled. This can be due
to latent problems in the program, and can be due to other reasons. After enough testing to have
confidence that user problems will be quite rare, individual mechanisms will be enabled by default.

For each mechanism, see the Caveats section below for an explanation of what might go wrong at
compile time and at run time, and how to notice and address these problems.

B.1. Mechanisms

B.1.1. Enabled by default

B.1.1.1. PKGSRC_USE_FORTIFY

This allows substitute wrappers to be used for some commonly used library functions that do not have
built-in bounds checking - but could in some cases.

Two mitigation levels are available:

• "weak" only enables checks at compile-time.

• "strong" enables checks at compile-time and runtime.

"strong" has been enabled by default since pkgsrc-2017Q3.

B.1.1.2. PKGSRC_USE_SSP

This enables a stack-smashing protection mitigation. It is done by adding a guard variable to functions
with vulnerable objects. The guards are initialized when a function is entered and then checked when the
function exits. The guard check will fail and the program forcibly exited if the variable was modified in
the meantime. This can happen in case of buffer overflows or memory corruption, and therefore exposing
these bugs.

Different mitigation levels are available:

• "yes", which will only protect functions considered vulnerable by the compiler;

• "all", which will protect every function;
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• "strong", the default, which will apply a better balance between the two settings above.

This mitigation is supported by both GCC and clang. It may be supported in additional compilers,
possibly under a different name. It is particularly useful for unsafe programming languages, such as
C/C++.

• "yes" is enabled by default where known supported since pkgsrc-2017Q3.

• "strong" is enabled by default where known supported since pkgsrc-2021Q4.

More details can be found here:

• Buffer overflow protection on Wikipedia (https://en.wikipedia.org/wiki/Buffer_overflow_protection)

B.1.1.3. PKGSRC_MKPIE

This requests the creation of PIE (Position Independent Executables) for all executables. The PIE
mechanism is normally used for shared libraries, so that they can be loaded at differing addresses at
runtime. PIE itself does not have useful security properties; however, it is necessary to fully leverage
some, such as ASLR. Some operating systems support Address Space Layout Randomization (ASLR),
which causes different addresses to be used each time a program is run. This makes it more difficult for
an attacker to guess addresses and thus makes exploits harder to construct. With PIE, ASLR can really be
applied to the entire program, instead of the stack and heap only.

PIE executables will only be built for toolchains that are known to support PIE. Currently, this means
NetBSD on x86, ARM, SPARC64, m68k, and MIPS.

PKGSRC_MKPIE was enabled by default after the pkgsrc-2021Q3 branch.

B.1.1.4. PKGSRC_USE_RELRO

This also makes the exploitation of some security vulnerabilities more difficult in some cases.

Two different mitigation levels are available:

• partial (the default): the ELF sections are reordered so that internal data sections precede the
program’s own data sections, and non-PLT GOT is read-only;

• full: in addition to partial RELRO, every relocation is performed immediately when starting the
program, allowing the entire GOT to be read-only. This can greatly slow down startup of large
programs.

This is currently supported by GCC. Many software distributions now enable this feature by default, at
the "partial" level.

More details can be found here:

• Hardening ELF binaries using Relocation Read-Only (RELRO)
(https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro)
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B.1.2. Not enabled by default

B.1.2.1. PKGSRC_MKREPRO

With this option, pkgsrc will try to build packages reproducibly. This allows packages built from the
same tree and with the same options, to produce identical results bit by bit. This option should be
combined with ASLR and PKGSRC_MKPIE to avoid predictable address offsets for attackers attempting
to exploit security vulnerabilities.

More details can be found here:

• Reproducible Builds - a set of software development practices that create an independently-verifiable
path from source to binary code (https://reproducible-builds.org/)

More work likely needs to be done before pkgsrc is fully reproducible.

B.1.2.2. PKGSRC_USE_STACK_CHECK

This uses -fstack-check with GCC for another stack protection mitigation.

It asks the compiler to generate code verifying that it does not corrupt the stack. According to GCC’s
manual page, this is really only useful for multi-threaded programs.

B.2. Caveats

B.2.1. Problems with PKGSRC_MKPIE

B.2.1.1. Packages failing to build

A number of packages may fail to build with this option enabled. The failures are often related to the
absence of the -fPIC compilation flag when building libraries or executables (or ideally -fPIE in the
latter case). This flag is added to the CFLAGS already, but requires the package to actually support it.

B.2.1.1.1. How to fix

These instructions are meant as a reference only; they likely need to be adapted for many packages
individually.

For packages using Makefiles:

MAKE_FLAGS+= CFLAGS=${CFLAGS:Q}
MAKE_FLAGS+= LDFLAGS=${LDFLAGS:Q}

For packages using Imakefiles:

MAKE_FLAGS+= CCOPTIONS=${CFLAGS:Q}
MAKE_FLAGS+= LOCAL_LDFLAGS=${LDFLAGS:Q}
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B.2.1.2. Run-time crashes

Some programs may fail to run, or crash at random times once built as PIE. Two scenarios are essentially
possible. This is nearly always due to a bug in the program being exposed due to ASLR.

B.2.1.3. Disabling PKGSRC_MKPIE on a per-package basis

Ideally, packages should be fixed for compatibility with MKPIE. However, in some cases this is very
difficult, due to complex build systems, packages using non-standard toolchains, or programming
languages with odd bootstrapping mechanisms.

To disable PKGSRC_MKPIE on a per-package basis, set MKPIE_SUPPORTED= no in the package’s
Makefile before bsd.prefs.mk is included.

B.2.2. Problems with PKGSRC_USE_FORTIFY

B.2.2.1. Packages failing to build

This feature makes use of pre-processing directives to look for hardened, alternative implementations of
essential library calls. Some programs may fail to build as a result; this usually happens for those trying
too hard to be portable, or otherwise abusing definitions in the standard library.

B.2.2.2. Run-time crashes

This feature may cause some programs to crash, usually indicating an actual bug in the program. The fix
will typically involve patching the original program’s source code.

B.2.2.3. Optimization is required

At least in the case of GCC, FORTIFY will only be applied if optimization is applied while compiling.
This means that the CFLAGS should also contain -O, -O2 or another optimization level. This cannot
easily be applied globally, as some packages may require specific optimization levels.

B.2.2.4. Disabling FORTIFY on a per-package basis

Note: FORTIFY should not be disabled to work around runtime crashes in the program! This is a
very bad idea and will expose you to security vulnerabilities.

To disable FORTIFY on a per-package basis, set the following in the package’s Makefile before
bsd.prefs.mk is included:

FORTIFY_SUPPORTED= no
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B.2.3. Problems with PKGSRC_USE_RELRO

B.2.3.1. Performance impact

For better protection, full RELRO requires every symbol to be resolved when the program starts, rather
than simply when required at run-time. This will have more impact on programs using a lot of symbols,
or linked to libraries exposing a lot of symbols. Therefore, daemons or programs otherwise running in
background are affected only when started. Programs loading plug-ins at run-time are affected when
loading the plug-ins.

The impact is not expected to be noticeable on modern hardware, except in some cases for big programs.

B.2.3.2. Run-time crashes

Some programs handle plug-ins and dependencies in a way that conflicts with RELRO: for instance, with
an initialization routine listing any other plug-in required. With full RELRO, the missing symbols are
resolved before the initialization routine can run, and the dynamic loader will not be able to find them
directly and abort as a result. Unfortunately, this is how Xorg loads its drivers. Partial RELRO can be
applied instead in this case.

B.2.3.3. Disabling RELRO on a per-package basis

To disable RELRO on a per-package basis, set the following in the package’s Makefile before
bsd.prefs.mk is included:

RELRO_SUPPORTED= no

It is also possible to at most enable partial RELRO, by setting RELRO_SUPPORTED to partial.

B.2.4. Problems with PKGSRC_USE_SSP

B.2.4.1. Packages failing to build

The stack-smashing protection provided by this option does not work for some programs. The most
common situation in which this happens is when the program allocates variables on the stack, with the
size determined at run-time.

B.2.4.2. Run-time crashes

Again, this feature may cause some programs to crash via a SIGABRT, usually indicating an actual bug in
the program.

On NetBSD LOG_CRIT level syslog messages are sent and - by default - appended to
/var/log/messages, e.g.:

Jan 6 15:42:51 hostname -: hostname program - - - buffer overflow detected; terminated

(where hostname is the hostname(1) and program is the basename(1) of the program crashed).
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Patching the original program is then required.

Rebuilding the package via:

% env CFLAGS=-g INSTALL_UNSTRIPPED=yes make replace

and inspecting the backtrace of the coredump via the debugger should point out the problematic call by
inspecting the frame calling the _chk() (SSP) function.

B.2.4.3. Performance impact

The compiler emits extra code when using this feature: a check for buffer overflows is performed when
entering and exiting functions, requiring an extra variable on the stack. The level of protection can
otherwise be adjusted to affect only those functions considered more sensitive by the compiler (with
-fstack-protector instead of -fstack-protector-all).

The impact is not expected to be noticeable on modern hardware. However, programs with a hard
requirement to run at the fastest possible speed should avoid using this feature, or using libraries built
with this feature.

B.2.4.4. Disabling SSP on a per-package basis

Note: SSP should not be disabled to work around runtime crashes in the program! This is a very bad
idea and will expose you to security vulnerabilities.

To disable SSP on a per-package basis, set the following in the package’s Makefile before
bsd.prefs.mk is included:

SSP_SUPPORTED= no

B.3. Auditing the system
The illusion of security is worse than having no security at all. This section lists a number of ways to
ensure the security features requested are actually effective.

These instructions were obtained and tested on a system derived from NetBSD 7 (amd64). YMMV.

B.3.1. Checking for PIE

The ELF executable type in use changes for binaries built as PIE; without:

$ file /path/to/bin/ary

/path/to/bin/ary: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for NetBSD 7.0, not stripped

as opposed to the following binary, built as PIE:

$ file /path/to/pie/bin/ary
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/path/to/pie/bin/ary: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for NetBSD 7.0, not stripped

The latter result is then what is expected.

B.3.2. Checking for partial RELRO

The following command should list a section called RELRO:

$ objdump -p /path/to/bin/ary

/path/to/bin/ary: file format elf64-x86-64

Program Header:
[...]

RELRO off 0x0000000000000d78 vaddr 0x0000000000600d78 paddr 0x0000000000600d78 align 2**0

This check is now performed automatically if PKG_DEVELOPER is set and RELRO is enabled.

B.3.3. Checking for full RELRO

The dynamic loader will apply RELRO immediately when detecting the presence of the BIND_NOW flag:

$ objdump -x /path/to/bin/ary

/path/to/bin/ary: file format elf64-x86-64

Dynamic Section:
[...]
BIND_NOW 0x0000000000000000

This has to be combined with partial RELRO (see above) to be fully efficient.

This check is now performed automatically (where supported) if PKG_DEVELOPER is set.

B.3.4. Checking for SSP

Note: Checking for SSP using this method only works where the operating system uses libssp.
libssp is not used on recent NetBSD/FreeBSD/Linux versions.

Building objects, binaries and libraries with SSP will affect the presence of additional symbols in the
resulting file:

$ nm /path/to/bin/ary

[...]
U __stack_chk_fail

0000000000600ea0 B __stack_chk_guard

This is an indicator that the program was indeed built with support for SSP.
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This check is now performed automatically (where supported) if PKG_DEVELOPER is set and SSP is
enabled.
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Build logs

C.1. Building figlet
# make

===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn’t seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.figlet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as password.
230-You are user #5 of 500 simultaneous users allowed.
230-
230- ___ _ _ _
230- | _| |_ ___ ___| |_|___ ___ ___ ___
230- | _| _| . |_| . | | | . |_| . | _| . |
230- |_| |_| | _|_| _|_|_|_ |_|___|_| |_ |
230- |_| |_| |___| |___|
230-
230-** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are logged. If you
230-do not like this, please disconnect now.
230-
230-This archive is available via
230-
230-HTTP: http://ftp.plig.org/
230-FTP: ftp://ftp.plig.org/ (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/ (max 30 connections)
230-
230-Please email comments, bug reports and requests for packages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250- ftp://ftp.figlet.org/pub/figlet/
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250-
250-The official FIGlet web page is:
250- http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org. If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; transfer starting for figlet221.tar.gz (172219 bytes).
38% |************** | 65800 64.16 KB/s 00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9]*: ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DDEFAULTFONTFILE=\"standard.flf\" figlet.c zipio.c crc.c inflate.c -o figlet
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#

# make install

===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/*.flf /usr/pkg/share/figlet
cp fonts/*.flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#
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C.2. Packaging figlet
# make package

===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/figlet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#
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Directory layout of the pkgsrc
FTP server

As in other big projects, the directory layout of pkgsrc is quite complex for newbies. This chapter
explains where you find things on the FTP server. The base directory on ftp.NetBSD.org is
/pub/pkgsrc/ (ftp://ftp.NetBSD.org/pub/pkgsrc/). On other servers it may be different, but inside this
directory, everything should look the same, no matter on which server you are. This directory contains
some subdirectories, which are explained below.

D.1. distfiles: The distributed source files
The directory distfiles contains lots of archive files from all pkgsrc packages, which are mirrored
here. The subdirectories are called after their package names and are used when the distributed files have
names that don’t explicitly contain a version number or are otherwise too generic (for example
release.tar.gz).

D.2. misc: Miscellaneous things
This directory contains things that individual pkgsrc developers find worth publishing.

D.3. packages: Binary packages
This directory contains binary packages for the various platforms that are supported by pkgsrc. Each
subdirectory is of the form OPSYS/ARCH/OSVERSION_TAG. The meaning of these variables is:

• OPSYS is the name of the operating system for which the packages have been built. The name is taken
from the output of the uname command, so it may differ from the one you are used to hear.

• ARCH is the hardware architecture of the platform for which the packages have been built. It also
includes the ABI (Application Binary Interface) for platforms that have several of them.

• OSVERSION is the version of the operating system. Typically it is the version defining an ABI, e.g. 9.0.

• TAG is either 20YYQN for a stable branch, or current for packages built from the HEAD branch. The
latter should only be used when the packages are updated on a regular basis.

The rationale for this scheme is that users can first search by OPSYS and ARCH, since these are more or
less unchangeable. After that, there is a management set of directories with OSVERSION and TAG.

See also README.md in packages for more details, including about symlinks.
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In each of these directories, there is a whole binary packages collection for a specific platform. It has a
directory called All which contains all binary packages.

D.4. reports: Bulk build reports
Here are the reports from bulk builds, for those who want to fix packages that didn’t build on some of the
platforms. The structure of subdirectories should look like the one in Section D.3.

D.5. current, stable, pkgsrc-20xxQy: source packages
These directories contain the “real” pkgsrc, that is the files that define how to create binary packages
from source archives.

Each of the current, stable and pkgsrc-20xxQy directories share the same structure. They each
contain a pkgsrc directory and pkgsrc.tar.{bz,gz,xz} file.

The directory pkgsrc contains a snapshot of the CVS repository, which is updated regularly. The file
pkgsrc.tar.{bz,gz,xz} contains the same as the directory, ready to be downloaded as a whole.

The current directory contains files related to the HEAD branch of the CVS repository. In this
directory there is an additional file called pkgsrc-readmes.tar.{bz,gz,xz} that contains all pkgsrc
READMEs with information about categories and packages.

The stable directory is a symlink to the latest pkgsrc-20xxQy.

The pkgsrc-20xxQy. directories contain files related to the -20xxQy stable branch of the CVS
repository. In these directories there is an additional file called pkgsrc-20xxQy.tar.{bz,gz,xz},
which contains the state of pkgsrc when it was branched.
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Help topics

The following list contains all help topics that are available when running bmake help topic=:index.

#! -lintl
32bit 64bit
ABI ACCEPTABLE_LICENSES
ACROREAD_FONTPATH ADDITIONAL
AFAIK AIX
ALLOW_NETWORK_ACCESS ALLOW_NEWER_COMPILER
ALLOW_VULNERABLE_PACKAGES ALL_ENV
ALSA_PC ALTERNATIVES_SRC
AMANDA_TMP AMANDA_USER
AMANDA_VAR APACHE_GROUP
APACHE_MODULE_NAME APACHE_MODULE_SRC
APACHE_MODULE_SRCDIR APACHE_PKG_PREFIX
APACHE_SUEXEC_CONFIGURE_ARGS APACHE_SUEXEC_DOCROOT
APACHE_USER ARGMAX_REQ
ARG_MAX ARLA_CACHE
AUDIT_PACKAGES_FLAGS AUTOCONF_REQD
AUTOMAKE_OVERRIDE AUTOMAKE_REQD
AUTO_MKDIRS AUX
BDB185_DEFAULT BDBBASE
BDB_ACCEPTED BDB_DEFAULT
BDB_LIBS BDB_TYPE
BINCIMAP_GROUP BINCIMAP_LOG_USER
BINCIMAP_USER BIND_DIR
BIND_GROUP BIND_USER
BINOWN BINPKG_SITES
BIN_INSTALL_FLAGS BISON_PKGDATADIR
BLAS BLAS_ACCEPTED
BLAS_C_INTERFACE BLAS_INCLUDES
BLAS_INDEX64 BLAS_LIBS
BLAS_PC BLAS_TYPE
BOOTSTRAP_DEPENDS BROKEN
BROKEN_EXCEPT_ON_PLATFORM BROKEN_ON_PLATFORM
BSDSRCDIR BSDXSRCDIR
BSD_MAKE_ENV BUILDLINK_AUTO_DIRS
BUILDLINK_AUTO_VARS BUILDLINK_CFLAGS
BUILDLINK_CONTENTS_FILTER BUILDLINK_CPPFLAGS
BUILDLINK_DEPMETHOD BUILDLINK_FILES
BUILDLINK_FILES_CMD BUILDLINK_FNAME_TRANSFORM
BUILDLINK_LDFLAGS BUILDLINK_LIBS
BUILDLINK_OPSYS_SUPPORT_PTHREAD BUILDLINK_PKGNAME
BUILDLINK_PREFIX BUILDLINK_RPATHDIRS
BUILDLINK_TREE BUILD_DEFS
BUILD_DEFS_EFFECTS BUILD_DEPENDS
BUILD_DIRS BUILD_ENV_SHELL
BUILD_MAKE_CMD BUILD_MAKE_FLAGS
BUILD_TARGET BUILTIN_FIND_FILES
BUILTIN_FIND_FILES_VAR BUILTIN_FIND_GREP
BUILTIN_FIND_HEADERS BUILTIN_FIND_HEADERS_VAR
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BUILTIN_FIND_PKGCONFIG BUILTIN_FIND_PKGCONFIG_VAR
BUILTIN_PKG BUILTIN_TEST_CURSES_DEFINES
BUILTIN_TEST_CURSES_FUNCS BUILTIN_VERSION_SCRIPT
BUILTIN_X11_TYPE BUILTIN_X11_VERSION
CACTI_GROUP CACTI_USER
CANNA_GROUP CANNA_USER
CAT CBLAS_LIBS
CBLAS_PC CCACHE_BASE
CCACHE_DIR CCACHE_LOGFILE
CCACHE_RECACHE CC_VERSION
CC_VERSION_STRING CDRECORD_CONF
CDROM_PKG_URL_DIR CDROM_PKG_URL_HOST
CHANGES CHECKOUT_DATE
CHECK_COMPILER CHECK_FAKEHOME
CHECK_FILES CHECK_FILES_ONLY_PREFIX
CHECK_FILES_SKIP CHECK_FILES_STRICT
CHECK_HEADERS CHECK_HEADERS_SKIP
CHECK_INTERPRETER CHECK_INTERPRETER_SKIP
CHECK_PERMS CHECK_PERMS_AUTOFIX
CHECK_PERMS_SKIP CHECK_PIE
CHECK_PIE_SKIP CHECK_PIE_SUPPORTED
CHECK_PORTABILITY CHECK_PORTABILITY_EXPERIMENTAL
CHECK_PORTABILITY_SKIP CHECK_RELRO
CHECK_RELRO_SKIP CHECK_RELRO_SUPPORTED
CHECK_SHLIBS CHECK_SHLIBS_SKIP
CHECK_SHLIBS_SUPPORTED CHECK_SHLIBS_TOXIC
CHECK_SSP CHECK_SSP_SKIP
CHECK_SSP_SUPPORTED CHECK_STRIPPED
CHECK_STRIPPED_SKIP CHECK_WRKREF
CHECK_WRKREF_EXTRA_DIRS CHECK_WRKREF_SKIP
CLAMAV_DBDIR CLAMAV_GROUP
CLAMAV_USER CLANGBASE
CLEANDEPENDS CLT
CMAKE_DEPENDENCIES_REWRITE CMAKE_INSTALL_NAME_DIR
CMAKE_INSTALL_PREFIX CMAKE_MODULE_PATH_OVERRIDE
CMAKE_PKGSRC_BUILD_FLAGS CMAKE_PREFIX_PATH
CMAKE_USE_GNU_INSTALL_DIRS COMMON_LISP_DOCFILES
COMMON_LISP_EXAMPLES COMMON_LISP_EXTRAFILES
COMMON_LISP_PACKAGES COMMON_LISP_SYSTEM
COMPILER_RPATH_FLAG COMPILER_USE_SYMLINKS
CONFIGURE_ARGS CONFIGURE_DIRS
CONFIGURE_ENV CONFIGURE_ENV_SHELL
CONFIGURE_HAS_INFODIR CONFIGURE_HAS_MANDIR
CONFIGURE_SCRIPT CONFIG_SHELL
CONFIG_SHELL_FLAGS CONF_FILES
CONF_FILES_MODE CONF_FILES_PERMS
CONSERVER_DEFAULTHOST CONSERVER_DEFAULTPORT
CP CPE
CPE_EDITION CPE_LANG
CPE_OTHER CPE_PART
CPE_PRODUCT CPE_SW_EDITION
CPE_TARGET_HW CPE_TARGET_SW
CPE_UPDATE CPE_URI
CPE_VENDOR CPE_VERSION
CPP CPP_PRECOMP_FLAGS
CREATE_WRKDIR_SYMLINK CROSSBASE
CTFCONVERT CTF_FILES_SKIP
CTF_SUPPORTED CTYPE
CUPS_GROUP CUPS_SYSTEM_GROUPS
CUPS_USER CURSES_DEFAULT
CURSES_TYPE CVS_EXTRACTDIR
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CVS_MODULE CVS_PROJECT
CVS_REPOSITORIES CVS_ROOT
CVS_ROOT_GNU CVS_ROOT_NONGNU
CVS_ROOT_SOURCEFORGE CVS_TAG
CYRUS_GROUP CYRUS_IDLE
CYRUS_USER DAEMONTOOLS_GROUP
DAEMONTOOLS_LOG_USER DARWIN_NO_SYSTEM_LIBS
DARWIN_REQUIRES_FILTER DBUS_GROUP
DBUS_USER DEFANG_GROUP
DEFANG_USER DEFAULT_ACCEPTABLE_LICENSES
DEFAULT_DISTFILES DEFAULT_IRC_SERVER
DEFAULT_SERIAL_DEVICE DEF_UMASK
DEINSTALLDEPENDS DEINSTALL_SRC
DEINSTALL_TEMPLATES DELAYED_ERROR_MSG
DELAYED_WARNING_MSG DEPENDS
DEPENDS_TARGET DEPENDS_TYPE
DESTDIR DESTDIR_VARNAME
DIALER_GROUP DIGEST_REQD
DISTDIR DISTFILES
DISTINFO_FILE DISTNAME
DIST_PATH DIST_SUBDIR
DJBDNS_AXFR_USER DJBDNS_CACHE_USER
DJBDNS_DJBDNS_GROUP DJBDNS_LOG_USER
DJBDNS_RBL_USER DJBDNS_TINY_USER
DLOPEN_REQUIRE_PTHREADS DL_AUTO_VARS
DL_CFLAGS DL_LDFLAGS
DL_LIBS DNS
DOCOWN DOWNLOADED_DISTFILE
DQCACHE_GROUP DQCACHE_USER
DT_LAYOUT DYNAMIC_SITES_CMD
DYNAMIC_SITES_SCRIPT ECHO
ECHO_N ELK_GUI
EMACS_TYPE EMULDIR
EMULSUBDIR EMULSUBDIRSLASH
EMUL_ARCH EMUL_DISTRO
EMUL_EXEC_FMT EMUL_IS_NATIVE
EMUL_MODULES EMUL_OPSYS
EMUL_PKG_FMT EMUL_PLATFORM
EMUL_PLATFORMS EMUL_PREFER
EMUL_REQD EMUL_TYPE
ERROR_MSG EXIM_GROUP
EXIM_USER EXPORT_SYMBOLS_LDFLAGS
EXTRACTOR EXTRACT_CMD
EXTRACT_CMD_DEFAULT EXTRACT_DIR
EXTRACT_ELEMENTS EXTRACT_ENV
EXTRACT_ONLY EXTRACT_OPTS
EXTRACT_SUFX EXTRACT_USING
FAIL FAILOVER_FETCH
FAIL_MSG FAKE_NCURSES
FAM FAM_ACCEPTED
FAM_DEFAULT FAM_SERVER
FCPATH FETCH_AFTER_ARGS
FETCH_BEFORE_ARGS FETCH_CMD
FETCH_INSECURE FETCH_OUTPUT_ARGS
FETCH_PROXY FETCH_RESUME_ARGS
FETCH_TIMEOUT FETCH_USE_IPV4_ONLY
FETCH_USING FILES_SUBST
FILES_SUBST_SED FIX_SYSTEM_HEADERS
FONTDIR FONTS_DIRS
FONTS_VERBOSE FOO_HACKS_MK
FORCE_CXX_STD FORCE_C_STD
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FOSSIL_EXTRACTDIR FOSSIL_REPO
FOSSIL_REPOSITORIES FOSSIL_VERSION
FOX_USE_XUNICODE FREEWNN_GROUP
FREEWNN_USER FTP_PKG_URL_DIR
FTP_PKG_URL_HOST GAMEDATAMODE
GAMEDATA_PERMS GAMEDIRMODE
GAMEDIR_PERMS GAMEGRP
GAMEMODE GAMEOWN
GAMES_GROUP GAMES_USER
GCC GCCBASE
GCC_REQD GCC_VERSION_SUFFIX
GEM_BUILD GEM_CLEANBUILD
GEM_CLEANBUILD_EXTENSIONS GEM_DOCDIR
GEM_EXTSDIR GEM_HOME
GEM_KEEPBUILD GEM_LIBDIR
GEM_NAME GEM_PATH
GEM_PLUGINSDIR GEM_SPECFILE
GENERATE_PLIST GHC
GHOSTSCRIPT_REQD GITHUB_PROJECT
GITHUB_RELEASE GITHUB_SUBMODULES
GITHUB_TAG GITHUB_TYPE
GITLAB_PROJECT GITLAB_RELEASE
GITLAB_SUBMODULES GITLAB_TAG
GITLAB_TYPE GIT_BRANCH
GIT_ENV GIT_EXTRACTDIR
GIT_REPO GIT_REPOSITORIES
GIT_REVISION GIT_TAG
GNU GNU_CONFIGURE
GNU_CONFIGURE_ICONV GNU_CONFIGURE_INFODIR
GNU_CONFIGURE_MANDIR GNU_CONFIGURE_QUIET
GNU_CONFIGURE_STRICT GODEP_REDIRECTS
GO_BUILD_PATTERN GO_DEPS
GO_DIST_BASE GO_EXTRA_MOD_DIRS
GO_MODULE_EXTRACT GO_MODULE_FILES
GO_SRCPATH GROUP_SPECIFIC_PKGS
GRUB_NETWORK_CARDS GRUB_PRESET_COMMAND
GRUB_SCAN_ARGS GZIP
HASKELL_COMPILER HASKELL_DISABLE_EXECUTABLES
HASKELL_DISABLE_LIBRARIES HASKELL_ENABLE_DYNAMIC_EXECUTABLE
HASKELL_ENABLE_HADDOCK_DOCUMENTATION HASKELL_ENABLE_LIBRARY_PROFILING
HASKELL_ENABLE_SHARED_LIBRARY HASKELL_ENABLE_TESTS
HASKELL_OPTIMIZATION_LEVEL HASKELL_PKG_NAME
HASKELL_UNRESTRICT_DEPENDENCIES HEADER_TEMPLATES
HG_REPO HG_REPOSITORIES
HG_TAG HOMEPAGE
HOST_PKGTOOLS_ARGS HOST_SPECIFIC_PKGS
HOWL_GROUP HOWL_USER
ICCBASE ICECAST_CHROOTDIR
ICON_THEMES IDOBASE
IGNORE_CCACHE IGNORE_INFO_DIRS
IGNORE_INTERACTIVE_FETCH IMAKE
IMAKEOPTS IMAKE_MAKE
IMAKE_MANINSTALL IMAP_UW_CCLIENT_MBOX_FMT
IMDICTDIR INCOMPAT_CURSES
INFO_DIR INFO_FILES
INFO_MSG INIT_SYSTEM
INN_DATA_DIR INN_GROUP
INN_USER INSTALLATION_DIRS
INSTALLATION_DIRS_FROM_PLIST INSTALL_ENV
INSTALL_ENV_SHELL INSTALL_SH_OVERRIDE
INSTALL_SRC INSTALL_TEMPLATES
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INSTALL_UNSTRIPPED IRCD_HYBRID_IRC_GROUP
IRCD_HYBRID_IRC_USER IRCD_HYBRID_MAXCONN
IRCD_HYBRID_NICLEN IRCD_HYBRID_SYSLOG_EVENTS
IRCD_HYBRID_SYSLOG_FACILITY IRCD_HYBRID_TOPICLEN
IRIX IRRD_USE_PGP
JABBERD_GROUP JABBERD_LOGDIR
JABBERD_PIDDIR JABBERD_SPOOLDIR
JABBERD_USER JAVA_APP_PATH
JAVA_APP_TARGETS JAVA_BINPREFIX
JAVA_CLASSPATH JAVA_HOME
JAVA_LD_LIBRARY_PATH JAVA_NAME
JAVA_UNLIMIT JAVA_WRAPPERS
JPEG_ACCEPTED JPEG_DEFAULT
KERBEROS KERMIT_SUID_UUCP
KJS_USE_PCRE KNEWS_DOMAIN_FILE
KNEWS_DOMAIN_NAME KRB5_ACCEPTED
KRB5_DEFAULT LANGUAGES
LAPACKE_LIBS LAPACKE_PC
LAPACK_LIBS LAPACK_PC
LATEX2HTML_ICONPATH LDCONFIG_ADD_CMD
LDCONFIG_REMOVE_CMD LDD
LEAFNODE_DATA_DIR LEAFNODE_GROUP
LEAFNODE_USER LIBDVDCSS_HOMEPAGE
LIBDVDCSS_MASTER_SITES LIBIMAGEQUANT_TYPE
LIBRSVG_TYPE LIBTOOL
LIBTOOLIZE_PLIST LIBTOOL_M4_OVERRIDE
LIBUSB_TYPE LICENSE
LINKER_RPATH_FLAG LINK_RPATH_FLAG
LINUX_BASE_NODEPS LINUX_BASE_PREFERRED
LINUX_BASE_REQUIRED LINUX_LOCALES
LOCALBASE LOCALBASE_LOCKTYPE
LOCALPATCHES LOVE_DATA
LOVE_GAME LOVE_VERSION
LOWER_OPSYS LOWER_OPSYS_VERSUFFIX
LOWER_VARIANT_VERSION LOWER_VENDOR
LP32PLATFORMS LP64PLATFORMS
LUA_BUSTED_ARGS LUA_CDIR
LUA_COMPILER LUA_DOCDIR
LUA_EXAMPLESDIR LUA_INCDIR
LUA_INTERPRETER LUA_LDIR
LUA_LINKER_MAGIC LUA_PKGPREFIX
LUA_SELF_CONFLICT LUA_USE_BUSTED
LUA_VERSIONS_ACCEPTED LUA_VERSIONS_INCOMPATIBLE
LUA_VERSION_DEFAULT LUA_VERSION_REQD
Lua MACHINE_PLATFORM
MAILAGENT_DOMAIN MAILAGENT_EMAIL
MAILAGENT_FQDN MAILAGENT_ORGANIZATION
MAJORDOMO_HOMEDIR MAJOR_OS_VERSION
MAKEINFO_ARGS MAKE_DIRS
MAKE_DIRS_PERMS MAKE_ENV
MAKE_FILE MAKE_FLAGS
MAKE_JOBS MAKE_JOBS_SAFE
MAKE_PROGRAM MANCOMPRESSED_IF_MANZ
MANINSTALL MANZ
MARIADB_VERSIONS_ALL MASTER_SITES
MASTER_SITE_BACKUP MASTER_SITE_LOCAL
MASTER_SITE_MOZILLA MASTER_SITE_OVERRIDE
MASTER_SITE_PERL_CPAN MASTER_SORT
MASTER_SORT_RANDOM MASTER_SORT_REGEX
MECAB_CHARSET MEDIATOMB_GROUP
MEDIATOMB_USER MIPSPROBASE
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MIREDO_GROUP MIREDO_USER
MISSING_FEATURES MKDIR
MKPIE_SUPPORTED MLDONKEY_GROUP
MLDONKEY_HOME MLDONKEY_USER
MONOTONE_GROUP MONOTONE_USER
MOTIFBASE MOTIF_TYPE
MOTIF_TYPE_DEFAULT MPI_TYPE
MSGFMT_STRIP_MSGCTXT MSGFMT_STRIP_MSGID_PLURAL
MTOOLS_ENABLE_FLOPPYD MUST
MV MYSQL_CHARSET
MYSQL_DATADIR MYSQL_EXTRA_CHARSET
MYSQL_GROUP MYSQL_USER
MYSQL_VERSION MYSQL_VERSIONS_ACCEPTED
MYSQL_VERSION_DEFAULT NAGIOSCMD_GROUP
NAGIOSDIR NAGIOS_GROUP
NAGIOS_USER NATIVE_EXEC_FMT
NATIVE_LOWER_OPSYS NATIVE_LOWER_VENDOR
NATIVE_MACHINE_PLATFORM NATIVE_OBJECT_FMT
NATIVE_OPSYS_VERSION NATIVE_OS_VARIANT
NATIVE_OS_VERSION NBPAX_PROGRAM_PREFIX
NETBSD_LOGIN_NAME NMH_EDITOR
NMH_MTA NMH_PAGER
NODE_VERSIONS_ACCEPTED NODE_VERSIONS_INCOMPATIBLE
NODE_VERSION_DEFAULT NODE_VERSION_REQD
NOLOGIN NOTE
NOT_FOR_PLATFORM NOT_PAX_ASLR_SAFE
NOT_PAX_MPROTECT_SAFE NO_BUILD
NO_CHECKSUM NO_CONFIGURE
NO_SKIP NSD_GROUP
NSD_LOG_FACILITY NSD_USER
NS_PREFERRED NULLMAILER_GROUP
NULLMAILER_USER OBJECT_FMT
OBJHOSTNAME OBJMACHINE
OCAML_FINDLIB_DIRS OCAML_FINDLIB_REGISTER
OCAML_FINDLIB_REGISTER_VERBOSE OCAML_SITELIBDIR
OMF ONLY_FOR_COMPILER
ONLY_FOR_PLATFORM OPENSSH_CHROOT
OPENSSH_GROUP OPENSSH_USER
OPSYS OPSYS_EMULDIR
OPSYS_VERSION OS
OSS_TYPE OSX
OSX_PATH_TO_M4 OSX_PATH_TO_YACC
OS_HAVE_ALSA OS_HAVE_RCD
OS_VARIANT OS_VERSION
OTF_FONTS_DIR OVERRIDE_DIRDEPTH
OVERRIDE_GEMSPEC OVERRIDE_GNU_CONFIG_SCRIPTS
OVERRIDE_ROCKSPEC OWN_DIRS
OWN_DIRS_PERMS P4GROUP
P4PORT P4ROOT
P4USER PACKAGES
PALMOS_DEFAULT_SDK PAMBASE
PAM_DEFAULT PAPERSIZE
PASSIVE_FETCH PATCHDIR
PATCHFILES PATCH_ARGS
PATCH_DEBUG PATCH_DIST_ARGS
PATCH_DIST_CAT PATCH_DIST_STRIP
PATCH_FUZZ_FACTOR PATCH_STRIP
PATH PCCBASE
PEAR PEAR_CHANNEL
PEAR_CHANNEL_ALIAS PEAR_CHANNEL_VERSION
PEAR_CMD PEAR_LIB
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PEAR_PACKAGE_XML PEP-518
PERL5 PERL5_CONFIGURE
PERL5_CONFIGURE_DIRS PERL5_LDFLAGS
PERL5_LICENSE PERL5_MODULE_TYPE
PERL5_PACKLIST PERL5_PACKLIST_DIR
PERL5_PERLBASE PERL5_SITEBASE
PERL5_USE_PACKLIST PERL5_VENDORBASE
PFCTL PFVAR_H
PF_VERSION PGGROUP
PGHOME PGPKGSRCDIR
PGSQL_TYPE PGSQL_VERSION
PGSQL_VERSIONS_ACCEPTED PGSQL_VERSION_DEFAULT
PGUSER PG_LIB_EXT
PHP PHPCOMMON_MK
PHPPKGSRCDIR PHP_BASE_VERS
PHP_EGDIR PHP_EXTENSION_DIR
PHP_INCDIR PHP_LIBDIR
PHP_MAJOR_VERS PHP_MINIMUM_TEENY
PHP_MINOR_VERS PHP_PKG_PREFIX
PHP_SHAREDIR PHP_VER
PHP_VERSION PHP_VERSIONS_ACCEPTED
PHP_VERSIONS_INCOMPATIBLE PHP_VERSION_DEFAULT
PHP_VERSION_REQD PILRC_USE_GTK
PKGCONFIG_BASE PKGCONFIG_FILE
PKGCONFIG_OVERRIDE PKGCONFIG_OVERRIDE_STAGE
PKGDIR PKGGNUDIR
PKGINFODIR PKGLOCALEDIR
PKGMANDIR PKGNAME
PKGNAME_REQD PKGPATH
PKGREVISION PKGSRC_BLAS_TYPES
PKGSRC_CHANGES PKGSRC_COMPILER
PKGSRC_KEEP_BIN_PKGS PKGSRC_LOCKTYPE
PKGSRC_MAKE_ENV PKGSRC_MESSAGE_RECIPIENTS
PKGSRC_MKPIE PKGSRC_MKREPRO
PKGSRC_OVERRIDE_MKPIE PKGSRC_RUN_TEST
PKGSRC_SETENV PKGSRC_SLEEPSECS
PKGSRC_TODO PKGSRC_USE_CTF
PKGSRC_USE_FORTIFY PKGSRC_USE_MKTOOLS
PKGSRC_USE_RELRO PKGSRC_USE_SSP
PKGSRC_USE_STACK_CHECK PKGTASKS_DATAFILE
PKGTOOLS_ARGS PKGTOOLS_ENV
PKG_ALTERNATIVES PKG_APACHE
PKG_APACHE_ACCEPTED PKG_APACHE_DEFAULT
PKG_BEST_EXISTS PKG_BUILD_OPTIONS
PKG_COMPRESSION PKG_CONFIG
PKG_CONFIG_PERMS PKG_CREATE_USERGROUP
PKG_DBDIR PKG_DB_TMPDIR
PKG_DEBUG_LEVEL PKG_DEFAULT_OPTIONS
PKG_DESTDIR_SUPPORT PKG_DEVELOPER
PKG_DISABLED_OPTIONS PKG_FATAL_ERRORS
PKG_FC PKG_FILELIST_CMD
PKG_GECOS PKG_GID
PKG_GROUPS PKG_GROUPS_VARS
PKG_HOME PKG_INIT_SCRIPTS
PKG_JAVA_HOME PKG_JVM
PKG_JVMS_ACCEPTED PKG_JVM_DEFAULT
PKG_LEGACY_OPTIONS PKG_LIBTOOL
PKG_MKSYMLINKS PKG_OPTIONS
PKG_OPTIONS_DEPRECATED_WARNINGS PKG_OPTIONS_LEGACY_OPTS
PKG_OPTIONS_LEGACY_VARS PKG_OPTIONS_NONEMPTY_SETS
PKG_OPTIONS_OPTIONAL_GROUPS PKG_OPTIONS_REQUIRED_GROUPS
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PKG_OPTIONS_VAR PKG_RCD_SCRIPTS
PKG_REFCOUNT_DBDIR PKG_REGISTER_SHELLS
PKG_RESUME_TRANSFERS PKG_SHELL
PKG_SUGGESTED_OPTIONS PKG_SUPPORTED_OPTIONS
PKG_SYSCONFBASE PKG_SYSCONFBASEDIR
PKG_SYSCONFDIR PKG_SYSCONFDIR_PERMS
PKG_SYSCONFSUBDIR PKG_SYSCONFVAR
PKG_TOOLS_BIN PKG_UID
PKG_UPDATE_FONTS_DB PKG_USERS
PKG_USERS_VARS PKG_VERBOSE
PLEASE PLIST
PLIST_AWK PLIST_AWK_ENV
PLIST_SRC PLIST_SUBST
PLIST_TYPE PLIST_VARS
POPTOP_USE_MPPE POSSIBLE_GFORTRAN_VERSION
POST_FETCH_HOOK PREFER
PREFER_NATIVE PREFER_NATIVE_PTHREADS
PREFER_PKGSRC PREFIX
PREPEND_PATH PRE_ROOT_CMD
PRIVILEGED_STAGES PS
PTHREAD_AUTO_VARS PTHREAD_CFLAGS
PTHREAD_LDFLAGS PTHREAD_LIBS
PTHREAD_OPTS PTHREAD_TYPE
PVM_SSH PYPKGPREFIX
PYTHON_FOR_BUILD_ONLY PYTHON_SELF_CONFLICT
PYTHON_VERSION PYTHON_VERSIONED_DEPENDENCIES
PYTHON_VERSIONS_ACCEPTED PYTHON_VERSIONS_INCOMPATIBLE
PYTHON_VERSION_DEFAULT PYTHON_VERSION_REQD
PYVERSSUFFIX QMAILDIR
QMAIL_ALIAS_USER QMAIL_DAEMON_USER
QMAIL_LOG_USER QMAIL_NOFILES_GROUP
QMAIL_PASSWD_USER QMAIL_QMAIL_GROUP
QMAIL_QUEUE_DIR QMAIL_QUEUE_EXTRA
QMAIL_QUEUE_USER QMAIL_REMOTE_USER
QMAIL_ROOT_USER QMAIL_SEND_USER
QORE_LATEST_MODULE_API QORE_MODULE_API
QORE_MODULE_DIR QORE_USER_MODULE_DIR
QORE_VERSION QPOPPER_FAC
QPOPPER_SPOOL_DIR QPOPPER_USER
RAKE_NAME RASMOL_DEPTH
RCD_DIR RCD_ORDER
RCD_SCRIPTS RCD_SCRIPTS_DIR
RCD_SCRIPTS_EXAMPLEDIR RCD_SCRIPTS_MODE
RCD_SCRIPTS_SHELL RCD_SCRIPT_SRC
RCD_SUBR RDOC
READLINE_DEFAULT READLINE_TYPE
REAL_ROOT_GROUP REAL_ROOT_USER
RECURSIVE_MAKE RELAY_CTRL_DIR
RELRO_SUPPORTED REPLACE_AWK
REPLACE_BASH REPLACE_CSH
REPLACE_KSH REPLACE_LUA
REPLACE_NODEJS REPLACE_OCTAVE
REPLACE_PERL REPLACE_PERL6
REPLACE_PHP REPLACE_PYTHON
REPLACE_QORE REPLACE_R
REPLACE_RUBY REPLACE_RUBY_DIRS
REPLACE_RUBY_PAT REPLACE_SH
REPLACE_TEXLUA REPLACE_TOOL_PYTHON
REPLACE_WISH REQD_DIRS
REQD_DIRS_PERMS REQD_FILES
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REQD_FILES_MODE REQD_FILES_PERMS
RESOLV_AUTO_VARS RESOLV_LDFLAGS
RESOLV_LIBS RM
ROCKSPEC_NAME ROCKSPEC_SPECFILE
ROOT_CMD ROOT_GROUP
ROOT_USER RPCGEN
RPM RPM2PKG_PLIST
RPM2PKG_PREFIX RPM2PKG_STAGE
RPM2PKG_STRIP RPM2PKG_SUBPREFIX
RPMFILES RPMIGNOREPATH
RPM_DB_PREFIX RSSH_CVS_PATH
RSSH_RDIST_PATH RSSH_RSYNC_PATH
RSSH_SCP_PATH RSSH_SFTP_SERVER_PATH
RUBY RUBYGEM
RUBYGEM_MANPAGES RUBYGEM_NAME
RUBYGEM_OPTIONS RUBYGEM_USE_MANPAGES
RUBYGEM_VERBOSE RUBY_ABI_VERSION
RUBY_ARCH RUBY_ARCHINC
RUBY_ARCHLIB RUBY_BASE
RUBY_BASERIDIR RUBY_BUILD_DOCUMENT
RUBY_DLEXT RUBY_DOC
RUBY_DYNAMIC_DIRS RUBY_EG
RUBY_ENCODING_ARG RUBY_EXTCONF
RUBY_EXTCONF_CHECK RUBY_EXTCONF_DEBUG
RUBY_EXTCONF_MAKEFILE RUBY_GEM_ARCH
RUBY_GEM_BASE RUBY_INC
RUBY_LIB RUBY_LIB_BASE
RUBY_NAME RUBY_NOVERSION
RUBY_PKGPREFIX RUBY_RAILS
RUBY_RAILS61_VERSION RUBY_RAILS70_VERSION
RUBY_RAILS71_VERSION RUBY_RAILS72_VERSION
RUBY_RAILS80_VERSION RUBY_RAILS_ACCEPTED
RUBY_RAILS_DEFAULT RUBY_RAILS_REQD
RUBY_RAILS_STRICT_DEP RUBY_RIDIR
RUBY_SETUP RUBY_SHLIB
RUBY_SHLIBALIAS RUBY_SHLIBVER
RUBY_SIMPLE_INSTALL RUBY_SITEARCHLIB
RUBY_SITELIB RUBY_SITELIB_BASE
RUBY_SITERIDIR RUBY_SLEXT
RUBY_SRCDIR RUBY_STATICLIB
RUBY_SUFFIX RUBY_SYSRIDIR
RUBY_USE_PTHREAD RUBY_VENDORARCHLIB
RUBY_VENDORLIB RUBY_VENDORLIB_BASE
RUBY_VER RUBY_VERSION
RUBY_VERSIONS_ACCEPTED RUBY_VERSIONS_INCOMPATIBLE
RUBY_VERSION_DEFAULT RUBY_VERSION_REQD
RUBY_VER_DIR RUN
RUN_LDCONFIG RUST_TYPE
SCO SCREWS_GROUP
SCREWS_USER SCRIPTS_ENV
SCROLLKEEPER_DATADIR SCROLLKEEPER_REBUILDDB
SCROLLKEEPER_UPDATEDB SDIST_PAWD
SDL12_TYPE SERIAL_DEVICES
SETGIDGAME SETGID_GAMES_PERMS
SETUID_ROOT_PERMS SH
SHLIB SHORTNAME
SIGN_PACKAGES SILC_CLIENT_WITH_PERL
SITE_SPECIFIC_PKGS SKIP_DEPENDS
SMF_INSTANCES SMF_MANIFEST
SMF_METHODS SMF_METHOD_SHELL
SMF_METHOD_SRC SMF_NAME
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SMF_PREFIX SMF_SRCDIR
SNIPROXY_GROUP SNIPROXY_USER
SOURCE_BUFFSIZE SPECIAL_PERMS
SPECIFIC_PKGS SSH_SUID
SSLCERTBUNDLE SSLCERTS
SSLDIR SSLKEYS
SSP_SUPPORTED SSYNC_PAWD
STEP_MSG STRIP
STRIP_DBG STRIP_DEBUG
STRIP_DEBUG_SUPPORTED STRIP_FILES_SKIP
SU SUBDIR
SUBST SUBST_CLASSES
SUBST_FILES SUBST_FILTER_CMD
SUBST_MESSAGE SUBST_NOOP_OK
SUBST_SED SUBST_SHOW_DIFF
SUBST_SKIP_TEXT_CHECK SUBST_STAGE
SUBST_VARS SUNWSPROBASE
SUSE_PREFER SU_CMD
SVN_EXTRACTDIR SVN_REPO
SVN_REPOSITORIES SVN_REVISION
SYSCONFBASE TARGET_MACHINE_ARCH
TBL TERMCAP_TYPE
TERMINFO_DEFAULT TERMINFO_TYPE
TEST TEST_DEPENDS
TEST_DIRS TEST_ENV
TEST_ENV_SHELL TEST_MAKE_CMD
TEST_MAKE_FLAGS TEST_TARGET
TEXLIVE_IGNORE_PATTERNS TEXLIVE_REV
TEXLIVE_UNVERSIONED TEXMFSITE
TEX_FORMATS TEX_HYPHEN_DAT
TEX_HYPHEN_DEF TEX_TEXMF_DIRS
THTTPD_LOG_FACILITY TINYDYN_USER
TLS TLSWRAPPER_CHROOT
TO TOOLDIR
TOOLS_ALIASES TOOLS_ALWAYS_WRAP
TOOLS_ARGS TOOLS_BROKEN
TOOLS_CMD TOOLS_CMDLINE_SED
TOOLS_CREATE TOOLS_CROSS_DESTDIR
TOOLS_DIR TOOLS_FAIL
TOOLS_GNU_MISSING TOOLS_LDCONFIG
TOOLS_NOOP TOOLS_PATH
TOOLS_SCRIPT TOOLS_USE_CROSS_COMPILE
TOOL_DEPENDS TTF_FONTDIR
TTF_FONTS_DIR TYPE
UAC_REQD_EXECS UCSPI_SSL_GROUP
UCSPI_SSL_USER UNBOUND_GROUP
UNBOUND_LOG_FACILITY UNBOUND_USER
UNLIMIT_RESOURCES UNPRIVILEGED
UNPRIVILEGED_GROUP UNPRIVILEGED_GROUPS
UNPRIVILEGED_USER UNWRAP_FILES
UNWRAP_PATTERNS UPDATE_GEMSPEC
UPDATE_TARGET URI
USERGROUP_PHASE USERPPP_GROUP
USER_SPECIFIC_PKGS USE_ABI_DEPENDS
USE_APR USE_BSD_MAKEFILE
USE_BUILTIN USE_CC_FEATURES
USE_CROSS_COMPILE USE_CURSES
USE_CWRAPPERS USE_CXX_FEATURES
USE_DB185 USE_FEATURES
USE_GAMESGROUP USE_GCC_RUNTIME
USE_IMAKE USE_INDIRECT_DEPENDS
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USE_JAVA USE_JAVA2
USE_LANGUAGES USE_LIBTOOL
USE_NATIVE_GCC USE_NETBSD_REPO
USE_PKGSRC_GCC USE_PKGSRC_GCC_RUNTIME
USE_PKGTASKS USE_PKG_ADMIN_DIGEST
USE_RUBY_EXTCONF USE_RUBY_INSTALL
USE_RUBY_SETUP USE_RUBY_SETUP_PKG
USE_TMPFILES USE_TOOLS
UUCP_GROUP UUCP_USER
VARBASE VARNAME
VIM_EXTRA_OPTS WARNING_MSG
WCALC_CGIDIR WCALC_CGIPATH
WCALC_HTMLDIR WCALC_HTMLPATH
WDM_MANAGERS WRAPPER_CC
WRAPPER_REORDER_CMDS WRKDIR
WRKDIR_BASENAME WRKDIR_LOCKTYPE
WRKLOG WRKOBJDIR
WRKSRC X10_PORT
X11 X11BASE
X11_PKGSRCDIR X11_TYPE
X509_CERTIFICATE X509_KEY
XAW_TYPE XLOCK_DEFAULT_MODE
XMKMF XMKMF_FLAGS
XXX XXXX
YES ZSH_STATIC
__stdc__ _vargroups
accept acquire-localbase-lock
acquire-lock add
added administrator
alloca alternatives
aslr asprintf
atlas autoconf
automake autoreconf
awk bash
big-endian bin-install
bind binpkg-list
blas bootstrap-depends
broken broken_on_platform
bsd bsd.prog.mk
build build-env
buildlink-directories buildlink-oss-soundcard-h
built-in builtin
c c++
ccache cce
cdefs ceil
changes changes-entry
changes-entry-noupdate check
check-clean check-files
check-files-clean check-hackage
check-vulnerable checksum
checksum-phase clean
clean-depends cleandir
commit commit-changes-entry
compact compiler
conf config.guess
config.sub configuration
configure configure-env
configure-help configure_args
connect cos
cpe cputime
create-usergroup csh
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ctf cvs
debug declaration
declare defined
depend dependencies
depends depends-checksum
depends-fetch deps
describe destdir
disable distclean
distfiles distinfo
dl dlopen
do-buildlink do-clean
do-configure do-configure-post-hook
do-extract do-fetch
do-install download
emul emul-distinfo
emul-fetch emulation
emulator enable
endian endif
enomem ensurepip
err errx
etc exp
extract-rpm fabs
feature features
fetch fetch-list
follows forbids
form format
fortify fortify_source
fossil friend
fts fts_close
fts_open fts_read
fts_set gcc
gethostbyaddr gethostbyname
gethostbyname2 getopt_long
getprogname getservbyname
getservbyport getservent
gettext git
github gitlab
glob gnu
gnu_configure_strict go
go-deps golang
guess-license hashbang
heimdal help
hg imake
in-tree increment
indirect inet_aton
install install-env
interp interpreter
intl ip4
ip6 ipv4
ipv6 iso
kerberos krb
krb5 ksh
lapack latex
libiconv libintl_bindtextdomain
libintl_gettext libintl_textdomain
libnbcompat libs
libtool licence
license lintl
little-endian lock
locking lua
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lvalue machine_endian
make makedistinfo
makepatchsum makesum
mdi memory
mercurial meta
meta-package meta_package
mit-krb5 mk.conf
mkl mount
move moved
mprotect mps
mremap native
nb nbcompat
netlib network
node node.js
nodejs obstack
obstack_ptr_grow occurs
only openblas
options options.mk
order override
override-intltool override-message-intltool
package parallel
path pax
paxctl pbulk-index
pc perl
perl5 perms
php pkg-build-options
pkg-config pkg_build_options
pkgsrc platform
plist post-extract
post-fetch post-wrapper
pre-build-checks-hook pre-configure-checks-hook
pre-extract pre-fetch
print-go-deps print-plist
print-summary-data privileged-install-hook
pypi python
r readme-all
recursive recv
recvfrom regcomp
release-localbase-lock release-lock
relro remove
removed rename
renamed reorder
replace replace_interpreter
reproducible resolv
root ruby
send sendfile
sendto setenv
setgid setprogname
setuid sh
shebang show
show-all show-build-defs
show-depends show-depends-dirs
show-depends-pkgpaths show-depends-recursive
show-deps show-distfiles
show-downlevel show-subdir-var
show-tools show-var
show-vars snprintf
socket ssp
st_mode stage-install
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strcasestr strict
strip strndup
strnlen strsep
subst substitutions
subversion sun
sunpro sunwspro
svn symlink
test test-env
tex texlive
tmp todo
tool tools
tools-libtool-m4-override transitive
type ulimit
undefined undo-replace
unlimit unprivileged
unprivileged-install-hook unstripped
update updated
upload upload-distfiles
use_tools user
utimes vasprintf
verbose vsnprintf
warn warning
warnings warnx
wattr_off wattr_on
work wrapper
wrkdir
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Appendix F.

Editing guidelines for the pkgsrc
guide

This section contains information on editing the pkgsrc guide itself.

F.1. Make targets
The pkgsrc guide’s source code is stored in pkgsrc/doc/guide/files, and several files are created
from it:

• pkgsrc/doc/pkgsrc.txt

• pkgsrc/doc/pkgsrc.html

• https://www.NetBSD.org/docs/pkgsrc/

• https://www.NetBSD.org/docs/pkgsrc/pkgsrc.pdf: The PDF version of the pkgsrc guide.

• https://www.NetBSD.org/docs/pkgsrc/pkgsrc.ps: PostScript version of the pkgsrc guide.

F.2. Procedure
The procedure to edit the pkgsrc guide is:

1. Make sure you have checked out the htdocs repository into a sibling directory of your pkgsrc
directory. You will need the ability to commit from both pkgsrc and htdocs.

2. Make sure you have the packages needed to regenerate the pkgsrc guide (and other XML-based
NetBSD documentation) installed. These are automatically installed when you install the
meta-pkgs/pkgsrc-guide-tools package.

3. Run cd doc/guide to get to the right directory. All further steps will take place here.

4. Edit the XML file(s) in files/.

5. Run bmake to check the pkgsrc guide for valid XML and to build the final output files. If you get
any errors at this stage, you can just edit the files, as there are only symbolic links in the working
directory, pointing to the files in files/.

6. (cd files && cvs commit)

7. Run bmake clean && bmake to regenerate the output files with the proper RCS Ids.

8. Run bmake regen to install and commit the files in both pkgsrc/doc and htdocs.
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Note: If you have added, removed or renamed some chapters, you need to synchronize them
using cvs add or cvs delete in the htdocs directory.

179


	The pkgsrc guide
	Table of Contents
	List of Tables
	Chapter 1. 
	What is pkgsrc?
	1.1. Introduction
	1.1.1. Why pkgsrc?
	1.1.2. Supported platforms

	1.2. Overview
	1.3. Terminology
	1.3.1. Roles involved in pkgsrc

	1.4. Typography


	I. The pkgsrc user's guide
	Chapter 2. 
	Getting help
	Chapter 3. 
	Where to get pkgsrc and how to keep it uptodate
	3.1. Getting pkgsrc for the first time
	3.1.1. As tar archive
	3.1.2. Via anonymous CVS

	3.2. Keeping pkgsrc uptodate
	3.2.1. Via tar files
	3.2.2. Via CVS
	3.2.2.1. Switching between different pkgsrc branches
	3.2.2.2. What happens to my changes when updating?




	Chapter 4. 
	Using pkgsrc on systems other than NetBSD
	4.1. Binary distribution
	4.2. Bootstrapping pkgsrc


	Chapter 5. 
	Using pkgsrc
	5.1. Using binary packages
	5.1.1. Finding binary packages
	5.1.2. Installing binary packages
	5.1.3. Updating packages
	5.1.4. Deinstalling packages
	5.1.5. Getting information about installed packages
	5.1.6. Checking for security vulnerabilities in installed packages
	5.1.7. Finding if newer versions of your installed packages are in pkgsrc
	5.1.8. Other administrative functions

	5.2. Building packages from source
	5.2.1. Requirements
	5.2.2. Fetching distfiles
	5.2.3. How to build and install



	Chapter 6. 
	Configuring pkgsrc
	6.1. General configuration
	6.2. Variables affecting the build process
	6.3. Preferences for native or pkgsrc software
	6.4. Variables affecting the installation process
	6.5. Selecting and configuring the compiler
	6.5.1. Selecting the compiler
	6.5.2. Additional flags to the compiler (CFLAGS)
	6.5.3. Additional flags to the linker (LDFLAGS)

	6.6. Developer/advanced settings
	6.7. Selecting Build Options


	Chapter 7. 
	Creating binary packages
	7.1. Building a single binary package
	7.2. Settings for creation of binary packages


	Chapter 8. 
	Creating binary packages for everything in pkgsrc (bulk builds)
	8.1. Preparations
	8.2. Running a bulk build
	8.2.1. Configuration

	8.3. Requirements of a full bulk build
	8.4. Bulk build variants
	8.4.1. Detect unknown configure options
	8.4.2. Detect classes of bugs by forcing compiler warnings
	8.4.3. Force compiler options only in the build phase
	8.4.4. Use custom directories
	8.4.5. Turn warnings into errors
	8.4.6. Reject packages for which pkglint reports errors
	8.4.7. Reject packages that contain forbidden strings
	8.4.8. Reject packages whose selftest fails
	8.4.9. Reject packages that use undefined shell variables
	8.4.10. Turn off verbose logging

	8.5. Creating a multiple CDROM packages collection
	8.5.1. Example of cdpack



	Chapter 9. 
	Directory layout of the installed files
	9.1. File system layout in ${LOCALBASE}
	9.2. File system layout in ${VARBASE}


	Chapter 10. 
	Frequently Asked Questions
	10.1. Are there any mailing lists for pkgrelated discussion?
	10.2. Utilities for package management (pkgtools)
	10.3. How to use pkgsrc as nonroot
	10.4. How to resume transfers when fetching distfiles?
	10.5. How can I install/use modular X.org from pkgsrc?
	10.6. How to fetch files from behind a firewall
	10.7. How to fetch files from HTTPS sites
	10.8. How do I tell make fetch to do passive FTP?
	10.9. How to fetch all distfiles at once
	10.10. What does Don't know how to make /usr/share/tmac/tmac.andoc mean?
	10.11. What does Could not find bsd.own.mk mean?
	10.12. Using 'sudo' or `priv` with pkgsrc
	10.13. How do I change the location of configuration files?
	10.14. Automated security checks
	10.15. Why do some packages ignore my CFLAGS?
	10.16. A package does not build. What shall I do?
	10.17. What does Makefile appears to contain unresolved cvs/rcs/??? merge conflicts mean?


	II. The pkgsrc developer's guide
	Chapter 11. 
	Getting help
	Chapter 12. 
	Package components files, directories and contents
	12.1. Makefile
	12.2. distinfo
	12.3. patches/*
	12.3.1. Structure of a single patch file
	12.3.2. Creating patch files
	12.3.3. Sources where the patch files come from
	12.3.4. Patching guidelines
	12.3.5. Feedback to the author

	12.4. Other mandatory files
	12.5. Optional files
	12.5.1. Files affecting the binary package
	12.5.2. Files affecting the build process
	12.5.3. Files affecting nothing at all

	12.6. work*
	12.7. files/*


	Chapter 13. 
	The build process
	13.1. Introduction
	13.2. Program location
	13.3. Directories used during the build process
	13.4. Running a phase
	13.5. The fetch phase
	13.5.1. What to fetch and where to get it from
	13.5.2. How are the files fetched?

	13.6. The checksum phase
	13.7. The extract phase
	13.8. The patch phase
	13.9. The tools phase
	13.10. The wrapper phase
	13.11. The configure phase
	13.12. The build phase
	13.13. The test phase
	13.14. The install phase
	13.15. The package phase
	13.16. Cleaning up
	13.17. Other helpful targets


	Chapter 14. 
	Creating a new pkgsrc package from scratch
	14.1. Common types of packages
	14.1.1. Python modules and programs
	14.1.2. R packages
	14.1.3. TeXlive packages

	14.2. Examples
	14.2.1. How the www/nvu package came into pkgsrc
	14.2.1.1. The initial package
	14.2.1.2. Fixing all kinds of problems to make the package work
	14.2.1.3. Installing the package




	Chapter 15. 
	Programming in Makefiles
	15.1. Caveats
	15.2. Makefile variables
	15.2.1. Naming conventions

	15.3. Code snippets
	15.3.1. Adding things to a list
	15.3.2. Echoing a string exactly asis
	15.3.3. Passing CFLAGS to GNU configure scripts
	15.3.4. Handling possibly empty variables
	15.3.5. Testing yes/no variables in conditions



	Chapter 16. 
	Options handling
	16.1. Global default options
	16.2. Converting packages to use bsd.options.mk
	16.3. Option Names
	16.4. Determining the options of dependencies


	Chapter 17. 
	Tools needed for building or running
	17.1. Tools for pkgsrc builds
	17.2. Tools needed by packages
	17.3. Tools provided by platforms


	Chapter 18. 
	Buildlink methodology
	18.1. Converting packages to use buildlink3
	18.2. Writing buildlink3.mk files
	18.2.1. Anatomy of a buildlink3.mk file
	18.2.2. Updating BUILDLINKAPIDEPENDS.pkg and BUILDLINKABIDEPENDS.pkg in buildlink3.mk files

	18.3. Writing builtin.mk files
	18.3.1. Anatomy of a builtin.mk file



	Chapter 19. 
	PLIST issues
	19.1. RCS ID
	19.2. Semiautomatic PLIST generation
	19.3. Tweaking output of make printPLIST
	19.4. Variable substitution in PLIST
	19.5. Man page compression
	19.6. Changing PLIST source with PLISTSRC
	19.7. Platformspecific and differing PLISTs
	19.8. Buildspecific PLISTs
	19.9. Sharing directories between packages


	Chapter 20. 
	The pkginstall framework
	20.1. Files and directories outside the installation prefix
	20.1.1. Directory manipulation
	20.1.2. File manipulation

	20.2. Configuration files
	20.2.1. How PKGSYSCONFDIR is set
	20.2.2. Telling the software where configuration files are
	20.2.3. Patching installation
	20.2.4. Declaring configuration files
	20.2.5. Disabling handling of configuration files

	20.3. System startup scripts
	20.3.1. Disabling handling of system startup scripts

	20.4. System users and groups
	20.5. System shells
	20.5.1. Disabling shell registration

	20.6. Fonts
	20.6.1. Disabling automatic update of the fonts databases



	Chapter 21. 
	Making your package work
	21.1. General operation
	21.1.1. How to pull in usersettable variables from mk.conf
	21.1.2. User interaction
	21.1.3. Handling licenses
	21.1.3.1. Adding a package with a new license
	21.1.3.2. Change to the license

	21.1.4. Restricted packages
	21.1.5. Handling dependencies
	21.1.6. Handling conflicts with other packages
	21.1.7. Packages that cannot or should not be built
	21.1.8. Packages which should not be deleted, once installed
	21.1.9. Handling packages with security problems
	21.1.10. How to handle incrementing versions when fixing an existing package
	21.1.11. Substituting variable text in the package files (the SUBST framework)
	21.1.11.1. Choosing the time where the substitutions happen
	21.1.11.2. Choosing the files where the substitutions happen
	21.1.11.3. Choosing what to substitute
	21.1.11.4. Other SUBST variables


	21.2. The fetch phase
	21.2.1. Packages whose distfiles aren't available for plain downloading
	21.2.2. How to handle modified distfiles with the 'old' name
	21.2.3. Packages hosted on github.com
	21.2.3.1. Fetch based on a tagged release
	21.2.3.2. Fetch based on a specific commit before the first release
	21.2.3.3. Fetch based on a specific commit after a release
	21.2.3.4. Fetch based on release


	21.3. The configure phase
	21.3.1. Shared libraries libtool
	21.3.2. Using libtool on GNU packages that already support libtool
	21.3.3. GNU Autoconf/Automake
	21.3.4. Meson / ninja
	21.3.5. Determining the endianness

	21.4. Programming languages
	21.4.1. C, C++, and Fortran
	21.4.2. Java
	21.4.3. Go
	21.4.4. Rust
	21.4.5. Packages containing Perl scripts
	21.4.6. Packages containing shell scripts
	21.4.7. Other programming languages

	21.5. The build phase
	21.5.1. Compiling C and C++ code conditionally
	21.5.1.1. C preprocessor macros to identify the operating system
	21.5.1.2. C preprocessor macros to identify the hardware architecture
	21.5.1.3. C preprocessor macros to identify the compiler

	21.5.2. How to handle compiler bugs
	21.5.3. No such file or directory
	21.5.3.1. Headers from other packages
	21.5.3.2. Headers generated during the build
	21.5.3.3. Symlinks
	21.5.3.4. Stale working directories
	21.5.3.5. Other possible reasons

	21.5.4. Undefined reference to ...
	21.5.4.1. The SunPro compiler and inline functions
	21.5.4.2. Missing atomic functions

	21.5.5. Running out of memory

	21.6. The install phase
	21.6.1. Creating needed directories
	21.6.2. Where to install documentation
	21.6.3. Installing highscore files
	21.6.4. Adding DESTDIR support to packages
	21.6.5. Packages with hardcoded paths to other interpreters
	21.6.6. Packages installing Perl modules
	21.6.7. Packages installing pkgconfig files
	21.6.8. Packages installing info files
	21.6.9. Packages installing man pages
	21.6.10. Packages installing X11 fonts
	21.6.11. Packages installing SGML or XML data
	21.6.12. Packages installing extensions to the MIME database
	21.6.13. Packages using intltool
	21.6.14. Packages installing startup scripts
	21.6.15. Packages installing TeX modules
	21.6.16. Packages supporting running binaries in emulation
	21.6.17. Packages installing hicolor icons
	21.6.18. Packages installing desktop files

	21.7. Marking packages as having problems


	Chapter 22. 
	GNOME packaging and porting
	22.1. Meta packages
	22.2. Packaging a GNOME application
	22.3. Updating GNOME to a newer version
	22.4. Patching guidelines


	Chapter 23. 
	Submitting and Committing
	23.1. Submitting binary packages
	23.2. Submitting source packages (for nonNetBSDdevelopers)
	23.3. General notes when adding, updating, or removing packages
	23.4. Commit Messages
	23.5. Committing: Adding a package to CVS
	23.6. Updating a package to a newer version
	23.7. Renaming a package in pkgsrc
	23.8. Moving a package in pkgsrc


	Chapter 24. 
	pkgsrc Policies
	24.1. Packages for which updating is restricted
	24.1.1. Limited Updates ABI
	24.1.2. Limited Updates Bootstrap



	Chapter 25. 
	Frequently Asked Questions
	III. The pkgsrc infrastructure internals
	Chapter 26. 
	Design of the pkgsrc infrastructure
	26.1. The meaning of variable definitions
	26.2. Avoiding problems before they arise
	26.3. Variable evaluation
	26.3.1. At load time
	26.3.2. At runtime

	26.4. How can variables be specified?
	26.5. Designing interfaces for Makefile fragments
	26.5.1. Procedures with parameters
	26.5.2. Actions taken on behalf of parameters

	26.6. The order in which files are loaded
	26.6.1. The order in bsd.prefs.mk
	26.6.2. The order in bsd.pkg.mk



	Chapter 27. 
	Regression tests
	27.1. Running the regression tests
	27.2. Adding a new regression test
	27.2.1. Overridable functions
	27.2.2. Helper functions



	Chapter 28. 
	Porting pkgsrc
	28.1. Porting pkgsrc to a new operating system

	Appendix A. 
	A simple example package: bison
	A.1. files
	A.1.1. Makefile
	A.1.2. DESCR
	A.1.3. PLIST
	A.1.4. Checking a package with pkglint

	A.2. Steps for building, installing, packaging


	Appendix B. 
	Security hardening
	B.1. Mechanisms
	B.1.1. Enabled by default
	B.1.1.1. PKGSRCUSEFORTIFY
	B.1.1.2. PKGSRCUSESSP
	B.1.1.3. PKGSRCMKPIE
	B.1.1.4. PKGSRCUSERELRO

	B.1.2. Not enabled by default
	B.1.2.1. PKGSRCMKREPRO
	B.1.2.2. PKGSRCUSESTACKCHECK


	B.2. Caveats
	B.2.1. Problems with PKGSRCMKPIE
	B.2.1.1. Packages failing to build
	B.2.1.2. Runtime crashes
	B.2.1.3. Disabling PKGSRCMKPIE on a perpackage basis

	B.2.2. Problems with PKGSRCUSEFORTIFY
	B.2.2.1. Packages failing to build
	B.2.2.2. Runtime crashes
	B.2.2.3. Optimization is required
	B.2.2.4. Disabling FORTIFY on a perpackage basis

	B.2.3. Problems with PKGSRCUSERELRO
	B.2.3.1. Performance impact
	B.2.3.2. Runtime crashes
	B.2.3.3. Disabling RELRO on a perpackage basis

	B.2.4. Problems with PKGSRCUSESSP
	B.2.4.1. Packages failing to build
	B.2.4.2. Runtime crashes
	B.2.4.3. Performance impact
	B.2.4.4. Disabling SSP on a perpackage basis


	B.3. Auditing the system
	B.3.1. Checking for PIE
	B.3.2. Checking for partial RELRO
	B.3.3. Checking for full RELRO
	B.3.4. Checking for SSP



	Appendix C. 
	Build logs
	C.1. Building figlet
	C.2. Packaging figlet


	Appendix D. 
	Directory layout of the pkgsrc FTP server
	D.1. distfiles: The distributed source files
	D.2. misc: Miscellaneous things
	D.3. packages: Binary packages
	D.4. reports: Bulk build reports
	D.5. current, stable, pkgsrc20xxQy: source packages


	Appendix E. 
	Help topics
	Appendix F. 
	Editing guidelines for the pkgsrc guide
	F.1. Make targets
	F.2. Procedure



