A M achine-Independent DMA Framework for NetBSD

Jason R. Thorpe
Numerical Aerospace Smulation Facility

NASA Ames Research Center
Abstract 1.1. Hostplatform details
One of the challenges in implementing a portable In the example platforms listed alepthere are at

kernel is finding good abstractions for semantically-least three di€érent mechanisms used to perform DMA.
similar operations which often ¥ vey machine- The first is used by the i386 platform. This mechanism
dependent implementations. This is especially imporcan be described as "what you see is what you get": the
tant on modern machines which share common archaddress that the diee uses to perform the DMA trans-
tectural features, e.g. the PCI bus. fer is the same address that the host CPU uses to access

This paper describes wta machine-independent the memory location in question.

DMA mapping abstraction is needed, the design consid- DMA address Host address
erations for such an abstraction, and the implementation
of this abstraction in the NetBSD/alpha and
NetBSD/i386 kernels.

NetBSD is a portable, modern UNIX-&kperat-
ing system which currently runs on eighteen platforms
covering nine processor architectureSome of these
platforms, including the Alpha and i386hare the PCI
bus as a ommon architectural featureln order to
share device drers for PCI devices between fdifent
platforms, abstractions that hide the details of b
access must bevented. Thedetails that must be hid-
den can be broken down intodwdasses: CPU access Figure 1 - WYSIWYG DMA
to devices on theus (us _space) and device access to
host memorylfus dma). Herewe will discuss the lat- The second mechanism, employed by the Alpha,
ter; bus_space is a complicated topic in and of itself, is very similar to the first; the address the host CPU
and is beyond the scope of this paper. uses to access the memory location in questiorfsstof
Within the scope of DMA, there are avbroad from some base address at which host memory is

classes of details that must be hidden from the corgiréct-mapped on the dee bus for the purpose of

device driver. The first class, host details, deals with DMA.
issues such as theystical mapping of system memory

(and the DMA mechanisms empkd as a result of

such mapping) and cache semantics. The second class,
bus details, deals with issues related to features or limi-
tations specific to the bus to which a device is attached,
such as DMA bursting and address line limitations.

Jason R. Thorpe is an employee of MRsthhology Solu-
tions, Inc. This work is funded by NASA contract NAS2-14303.

2The term "i386" is used here to refer to all of the 386-class
and higher processors, including the 486, Pentium, Pentium Pro, and
Pentium II.



DMA address Host address issues exist with theufboChannel bus used on DEC-
stations and early Alpha systems, and with theu®-b
used on some DEC MIPS and VAX-based servers.

The semantics of the host systerache are also
important to devices which wish to perform DMA.
Some systems are capable of cache-coherent DOA.
such systems, the cache is often write-through (i.e.
stores are written both to the cache and to host mem-
ory), or the cache has special snooping logic that can
detect access to a memory location for which there is a
dirty cache line (which causes the cache to be flushed
automatically). Othesystems are not capable of cache-
coherent DMA. On these systems, software must
explicitly flush ary data caches before memory-to-
device DMA transfers, as well asvaidate soon-to-be-
stale cache lines before device-to-memory DMA.

Figure 2 - direct-mapped DMA

The third mechanism, scatigather-mapped

DMA, employs an MMU which performs translation of 1.2. Busdetails
DMA addresses to host memory physical addresses. |n addition to hiding the platform-specific DMA
This mechanism is also used by the Alpha, becausgetails for a single bus, it is desirable to share as much
Alpha platforms implement a phical address space device driver code as possible for a device which may
sometimes significantly larger than the 32-bit addresattach to multiple bsses. Agood eample is the Bus-
space supported by most currentigilable PCl  Logic family of SCSI adapters. Thisrhily of devices
devices. comes in ISA, EISA, VESA local bus, and PChes.

DMA address Host address While thgre are some t_)us—.specific details, _suph as prob-
ing and interrupt initialization, the vast majority of the
code that dries this family of deices is identical for
each flaor.

The BusLogic &mily of SCSI adapters aream-
ples of what are termdulis masters. That is to saythe
device itself performs all bs handshaking and host
memory access during a DMA transfédo third party
MMU is involved in the transfer Such deices, when per
forming a DMA transferpresent the DMA address on
the bus address linesxeeute the bs’s fetch or store
operation, increment the address, and so forth until the
transfer is complete. Because thevide is using the
bus aldress lines, the range of hoslypical addresses
. the device can access is limited by the number of such
Figure 3 - scatter-gather-mapped DMAjines. onthe PCI bus, which has at least 32 address

lines, the device may be able to access the entysi-ph
are combined on the Alpha through the useDMA cal address space of a 32-bit architecture, such as the

windows. The ASIC which implements the PCI bus on 1386. ISA, howe/er,_ only has_ 24 address lineshis

a particular platform has at least dwof these DMA means that the device can directly access only 16MB of

windows. Eachwindow may be configured for direct- physical address space.

mapped or scatteggathermapped DMA. Windows are A common solution to the limited-address-lines

chosen based on the type of DMA transfer being pemproblem is a technique known B8A bouncing. This

formed, the bs type, and the physical address range ofechnique imolves a second memory area, located in

the host memory being accessed. the physical address range accessible by thvicale
These concepts apply to platforms other thaHmcwn as abounce buffer. In a memory-to-device

those listed ab@ axd busses other than PC&imilar transfer the data is copied .by t_he CPU to the bounce
buffer, and the DMA operation is startedCorversely,

The second and third DMA mechanisms \abo



in a device-to-memory transfehe DMA operation is space of a specific process. It is most commonly used
started, and the CPU then copies the data from thiey the read(2) and write(2) system calls. While it
bounce bffer once the DMA operation has completed.would be possible for the device i to treat the tvo
more complg buffer structures as sets of multiple sim-
not the most efgant way to sole the limited-address- ple Iinear_ luffers, this is undesirable in terms of source
line problem. On the Alpha, forxample, scatter code maintenance; the code to_handle these défer b
gahermapped DMA may be used to translate the Out_struct_ures can be compleespecially in terms of error
of-range memory physical addresses to in-range DmA1andling.

addresses that the device may u$his solution tends In addition to the olious need to DMA to and

to offer better performance due to eliminated datdrom memory mapped intoeknel address space, it is
copies, and is lesxpensve in terms of memory usage. common in modern operating systems to implement an
optimized I/O interface for user processes which pro-

Returning to the BusLogic SCSkample, it is ! . )
undesirable to place intimate knowledge of direct-mapY!d€s @ method for devices to DMA directly to or from

ping, scattegathermapping, and DMA bouncing in MEMOry r@ions mapped into a processtdress space.
the core device drér. Clearly, an dstraction that hides Wh_|le this facility is part|a_lly provided for_ character
these details and presents a consistent auerfrgard- ~ d€vice /O by double-mapping the userfier into ler-

less of the DMA mechanism being used, is needed. nel address space, the ingaé is not sufficiently gen-
eral, and consumes kernel resources. This is wbate

related to thauio structure, in that theio is capable of
e o addressing Wffers in a process’aldress spaceHow-

~ Hiding host and bus details is actuallery  eyq it may be desirable to use an alternate data format,
straightforvard.  Handling WYSIWYG and direct-  gch as a lineandffer, in some applications. In order to
mapped DMA mechanisms iswial. Handlingscatter- implement this, the DMA mapping framerk must

gahermapped DMA is also very easyith the help of  p36 acess to processes’ virtual memory structures.
state kept in machine-dependent code layers. The pres-

ence and semantics of caches are also easy to handle |t may also be desirable to DMA to or from
with a set of four "synchronization” operations, andPufférs not mapped into wreddress space. The b
once caches are handled, DMA bouncing is concept/2US €xample is frame grabberghese devices, which
ally trivial if viewed as a non-DMA-coherent cache. C@Pture video images, often requiregiar plysically
Unfortunately while these operations are quite easy to=°NtiguoUs memory gons to store the captured image
do individually, traditional kernels do not provide a suf- 9ata. On some architectures, mapping of virtual
ficiently abstract intedice to the operationsThis 2address space iggensve. An goplication may wish to

means that device ®grs in these traditionalemels 9V @ Brge hiffer to the device, alio the device to
must handle each case explicitly. continuously update theuffer, and then only map small

N ] ] regions of the bffer at ay given time. Sincethe entire
In addition to the interface to these operations, &) ffer need not be mapped into virtual address space,

comprehense DMA framework must also consider e pMA framavork should provide an interface for
data luffer structures and DMA-safe memory handllng.using rav, tnmapped buffers in DMA transfers.

While simple to implement, DMA bouncing is

2. Designconsiderations

2.1. Databuffer structures 2.2. DMA-safememory handling

The BSD kernel has essentially threefedint A comprehensie DMA framework must also
structures used to represent dauffebs. Thefirstis a  proide seeral memory handlingacilities. Themost
simple linear biffer in virtual space, for example the o ioys of these is a method of allocating (and freeing)
data areas used to implement the file systefdfieb p\a-safe memory The term "DMA-safe" is a way of
cache, and miscellaneousfters allocated by the gen- describing a set of attiites the memory will he.
eral purpose é&rnel memory allocatorThe second is  First DMA-safe memory must be addressable within
the mbuf chain. Mbufs are typically used by code e constraints of theus. Itmust also be allocated in

which implements inter-process communication a”dsuchaway as to not exceed the number péiphl sg-
networking. Their structure, small ifers chained

together reduces memory fragmentation and abo
paclet headers to be prepended easilige third is the

uio structure. Thisstructure describes software scatter
gaher to the kernel address space or to the address



ments specified by the caller. 3.1. Datatypes

In order for the &rnel to access the DMA-safe The first of the tw data types shared with the
memory a method must xist to map this memory into bus_space interface is thebus addr_t type, which rep-
kernel virtual address space. This is a fairly straightfor resents device bus addresses to be used for CPU access
ward operation, with one xeeption. Onsome plat- Of DMA, and must be lge enough to specify the
forms which do not ha& cache-coherent DMA, cache largest possible bus address on the systéhe second
flushes are ery expensie. Howeva, it is sometimes IS the bus size t type, which represents sizes afisb
possible to mark virtual mappings of memory as cacheaddress ranges.

inhibited, or access phical memory though a cache- The implementation of DMA on a\gin host/bus
inhibited direct-mapped addressgseent. Inorder to  combination is described by thieis dma tag t. This

accommodate these situations, a hint may beiged  opaque type is passed to ask aitoconfiguration
to the memory mapping function which specifies thatmachinery by machine-dependent codde bus layer
the user of this memory wishes teoll expensve cata i turn passes it down to the devicevers. Thistag is

cache flushes. the first argument tovery function in the interface.

To facilitate optimized 1/O to process address Individual DMA seyments are described by the
spaces, it is necessary to yio® processes a way of pus dma_segment_t. This type is a structure with tw
mapping a DMA-safe memory area. The most conpublicly accessible members. The first member
venient way to do this is via a device \i's mmap()  ds addr, is a bus addr_t containing the address of a
entry point. Thus, a DMA mapping framerk must DMA segment. Thesecond,ds len, is a bus size t
have a way to communicate with the VM systesn’ containing the length of the segment.

; 4
device pager”. The third, and probably most important, data type

All of these requirements must be considered ins thebus dmamap_t. This type is a pointer to a struc-
the design of a complete DMA framerk. Whenpos-  ture which describes an imitlual DMA mapping. The
sible, the framwork may merge semantically similar structure has three public membefhe first member
operations or concepts, but it must address all of thes#m mapsize is abus _size t describing the length of the
issues. Thenext section describes the intace pro- mapping, whenalid. A dm mapsize of 0 indicates that

vided by such a frameork. the mapping is walid. Thesecond membgdm nsegs,
is anint which contains the number of DMA @®ents
3. Thebus_dma interface that comprise the mapping. The third public member

What follows is a description dfus dma, the M Segs is an aray or a pointer to an array of
DMA portion of the machine-independent bus accesfUS_dma_segment_t structures.

interface in NetBSD, commonly referred to lags.h°. In addition to data types, thaus dma interface
The DMA portion of the integfce is comprised of three also defines a set of flags which are passed to some of
DMA-specific data types and thirteen function calls.the interhces functions. Wo o these flags,
The bus_dma interface also shares ondata types with BUS_DMA_WAITOK and BUS_DMA_NOWAIT,
thebus_space interface. indicate to the function that aiting for resources to
Thebus_dma functional interce is split into tw become wailable is or is not allwed. There are also
cateories: mapping calls and memory handling callsfour placeholder flags BUS_DMA_BUS1 through
The function calls themsetg may be implemented as BUS_DMA_BUS4 These flags are resed for the -
cpp(1) macros. |nd|V|du§1I kus Iaygrs, which may need to defl'ne_ special
semantics specific to thatids Anexample of this is the
ability of VESA local bus déces to use 32-bit DMA
*This is somewhat misleading. The actual constraint is on theadc_jresseS; while thesknel considers such dewf:e; to be
number of DMA segments the memory may map kowever, this |Oglca||y connected to the |SAUB, thq are not limited
usually corresponds directly to the number of physical memay se to the addressing constraints of other ISAides. The

ments which makup he allocated memory. placeholder flags alo such special cases to be handled

“The device pager provides support for memory mapping de-
vices into a processaddress space.

5The name is deréd from the name of the include file thate
ports the interface.



on a bus-by-bus basis. memory which is not mapped into grvirtual address
space. AIIDMA maps loaded with these functions are
3.2. Mappingfunctions unloaded with théus dmamap_unload() function.

There are eight functions in th®is dma inter- Finally, the map synchronization sub-cagoey
face that operate on DMA map3hese can be sub-cat- includes one functiorbus_dmamap_sync(). This func-
egorized into functions that create and degtmaps, tion performs the four DMA synchronization operations
functions that load and unload mappings, and functionsecessary to handle caches and DMA bouncifige

that synchronize maps. four operations are:

The first two functions &ll into the create/destyo BUS DMASYNC_PREREAD
sub-category The bus dmamap_create() function cre- BUS DMASYNC_POSTREAD
ates a DMA map and initializes it according to the BUS DMASYNC_PREWRITE
parameters praded. Theparameters include the maxi- BUS DMASYNC_POSTWRITE

mum DMA transfer size the DMA map will map, the e girection is expressed from the perspectf the
maximum number of DMA segments, the maximumy, ot memory In other vords, a deice-to-memory

size of ay given ssgment, and anDMA boundary lim- o hefer is a read, and a memory-teide transfer is a

itations.  In addition to the standard flags, \ e Thesynchronization operations are expressed as
bus dmamap create() also  tales the flag g4 5o it is possible to combiREAD and WRITE
BUS_DMA_ALLOCNOW . This flag indicates that all ,erations in a single calllhis is especially useful for
resources necessary to map the maximum size ransfgf,hronizing mappings of device control descriptors.

should be allocated when the map is created, and is ”sﬁﬁxing of PRE andPOST operations is not allowed.
ful in case the dvier must load the DMA map at a time

where blocking is not allowed, such as in interrupt con- In addition to the map and operatiog@ments,

text. The bus dmamap_destroy() function destroys a Pus dmamap_sync() also tales offset and length gur-
DMA map, and frees anresources that may be ments. Thisis done in order to support partial syncs.
assigned to it. In the case where a control descriptor is Dilfo a
) _ _ device, it may be undesirable to synchronize the entire
The next fie functions fall into the load/unload mapping, as doing so may be inefficient orere

sub-category ~The two basic functions are yegurcive 1o ather control descriptorsSynchronizing
bus_dmamap_load() and bus dmamap_unload(). The  he entire mapping is supported by passing &ebbf

former maps a DMA transfer to or from a lineaffer. 5 44 the length specified by the magfa_mapsize
This linear lnffer may be mapped into either kernel or a - '

proce_sss virtugl address space. The latter unloads the; 5 Memory handling functions

mappings préously loaded into the DMA map. If the ) _

BUS_DMA_ALLOCNOW flag was specified when There are tw sub-catgories of functions that

the aap was createdyus dmamap_load() will not handle DMA-safe memory in thbus dma interface:

block or fail on resource allocatiorSimilarly, when ~ memory allocation and memory mapping.

the map is unloaded, the mapping resources will not be  The first function in the memory allocation sub-

freed. category, bus dmamem alloc(), dlocates memory
In addition to linear bffers handled by the basic which has the specified attites. Theattributes that

bus dmamap_load(), there are three alternate data My be specified are: the size of the memory region to
buffer structures handled by the intmé. The allocate, the alignment of eachgsgent in the alloca-
bus_dmamap_load mbuf() function operates on rub tion, ary boundary limitations, and the maximum num-
chains. Thendividual data bffers are assumed to be Per of DMA segments that may meakp he allocation.

in kernel  virtual address  space. The The function fills in a provided array bbis_ dma_seg-

bus dmamap_load uio() function operates onuio ment_ts and indicates the number of valid segments in
structures, from which iberacts information about the the array .Mgmory aIIocated_ by this !ntesrdie IS rav
address space in which the data residemally, the ~memory; it is not mapped into anvirtual address
bus_dmamap_load raw() function operates on wa Space. Oncé is no longer in use, it may be freed with

SWaiting (also called "blocking”) is allowed only if thesinel
is running in a process context, as opposed to the interruptxtonte
used when handling device interrupts.



thebus_dmamem free() function. 4.1. Platiorm requirements

In order for the kernel or a user process to access NetBSD/alpha currently supports six implemen-
the memoryit must be mapped either into therkel tations of the PCI us, each of which implement DMA
address space or the procesaldress spaceThese differently. In order to understand the design approach
operations are performed by the memory mapping sulfor NetBSD/alphas fairly complex bus_dma implemen-
catgory of DMA-safe memory handling functions. tation, it is necessary to understand thefed#nces
The bus_dmamem map() function maps the specified between the bus adapteraNhile some of these
DMA-safe rav memory into the &rnel address space. adapters hae gmilar descriptions and features, the soft-
The address of the mapping is returned by filling in avare interbice to each one is quite féifent. (Inaddi-
pointer passed by reference. Memory mapped in thison to PCI, NetBSD/alpha also supportsotwur-
manner may be unmapped by  callingboChannel DMA implementations on the DEC 3000
bus_dmamem_unmap(). models. Br simplicity’s sake, we will limit the discus-

DMA-safe rav memory may be mapped into a sion to the PCI and related busses.)

process address space via adee driver's mmap() The first PCI implementation to be supported by
entry point. In order to do this, the VM systamkvice  NetBSD/alpha was the DECchip 21071/21072
pager repeatedly calls the \a, once for each page (APECS)[1]. Itis designed to be used with the DEC-
that is to be mappedThe drver translates the user chip 21064 (EV4) and 21064A (EV45) processors.
specified mmap €det into a DMA memory offset, and Systems in which this PCI hostud adapter is found
calls thebus_dmamem_mmap() function to translate the include the AlphaStation 200, AlphaStation 400, and
memory ofset into an opaque value to be interpreted byAlphaPC 64 systems, as well as some AlphaVME sys-
the pmap module®. The device pager wokes the pmap tems. TheAPECS supports up to swDMA windows,
module to translate the mmap cookie into gsital ~ Which may be configured for direct-mapped or scatter

page address which is then mapped into the pracesgg@hermapped operation, and uses host RAM for
address space. scatter-gather page tables.

There are currently no methods for the virtual The second PCI implementation to be supported
memory system to specify that an mmﬂaﬂ’ea is being by NetBSD/aIpha was theultt-in 1/0 controller found
unmapped, or for the device i to ecify to the vir ~ on the DECchip 21066[2] and DECchip 210@#nfly
tual memory system that a mmdp‘eg'on must be of Low Cost Alpha (LCA) processors. This processor
forcibly unmapped (for example, if a hotapable family was used in the AXPpci33 and Multia AXP sys-
device has been remed from the system).This is tems, as well as some AlphaVME systenifie LCA
widely regarded as a bug, and may be addressed in 8upports up to tae DMA windows, which may be con-
future version of the NetBSD virtual memory system.figured for direct-mapped or scatgather-mapped
If a change to this effect is made, thes dma interface ~ operation, and uses host RAM for scagather page
will have © be aljusted accordingly. tables.

The third PCI implementation to be supported by

4, Implementation of bus_dma in NetBSD/alpha and NetBSD/alpha was the DECchip 21171 (ALCOR)[3],
NetBSD/i386 21172 (ALCOR?2), and 21174 (Pyds)These PCI host

This section is a description of thaus dma  bus adapters are found in systems based on the DEC-
implementation in tw NetBSD ports, NetBSD/alpha chip 21164 (EV5), 21164A (EV56), and 21164PC
and NetBSD/i386. It is presented as a side-by-sidéPCA56) processors, including the AlphaStation 500,
comparison in order to g te reader a better feel for AlphaStation 600, and AlphaPC 164, and Digital-Per
the types of details that are being abstracted by thsonal Wirkstation. TheALCOR, ALCOR2, and Pyxis
interface. support up to four DMA windes, which may be con-
figured for direct-mapped or scatgather-mapped
operation, and uses host RAM for scagiather page
tables.

"This implies thatous dmamap_load raw() is an appropriate
interface for mapping a DMA transfer to or from memory allocated
by this interface. *While these chipsets are sontet different from one another
the software integice is similar enough that thehare a common de-

s . .
Thg pmap module is the machine-dependent layer of thevice driver in the NetBSD/alpha kernel.
NetBSD virtual memory system.




The fourth PCI implementation to be supportedMCPCIA has four DMA windows which may be con-
by NetBSD/alpha was the DigitaMILPA/DWLPB[4].  figured for direct-mapped or scatigather-mapped

This is a TrboLaser-to-PCP bridge found on operation, and uses host RAM for scagiather page
AlphaSerer 8200 and 8400 systemdhe bridge is tables.

connected to the TurbolLaser systeus lvia a KFTIA In sharp contrast to the Alpha, the i386 platform
(internal) or KFTHA (external) I/O adaptefThe for  has a very simple PCI implementation; the PG$ s

mer supports one built-in and on&ternal DNLPX.  capable of addressing the entire 32-bit physical address
The latter supports up to fouxternal DVLPxs. Multi-  space of the PC architecture, and, in general, all PCI
ple I/O adapters may be present on thebdLaser sys- host bus adapters are software compatifiilee 386

tem hus. EactDWLPx supports up to four primary PCI platform also has WYSIWYG DMA, so no windo
busses and has three DMA wing® which may be con-  translations are necessaffhe i386 platform, hoever,
figured for direct-mapped or scatgather-mapped must contend with DMA bouncing on the ISAg) due

DMA. Thesethree windows are shared by all PCl o |SAs 24-bit address limitation and lack of scatter
busses attached to theAPx. TheDWLPx does not  ggher-mapped DMA.

use host RAM for scattagather page tablesinstead,
the DNLPx uses on-board SRAM, which must be 4.2. Datastructures
shared by all PClusses attached to theAILPx. This The DMA tags used by NetBSD/alpha and

is because the store-and-famd architecture of these ; o : .
NetBSD/i386 are very similarBoth contain thirteen
systems would cause latgnan DMA page table access function pointers for the thirteen functional methods in

to be too high. The WLPA has 32K of page table .
SRAM and the DWLPB has 128K. Since thevppx € bus dma interface. TheNetBSD/alpha DMA tag,
however, dso has a function pointer used to obtain the

can snoop access to the page table SRAM,xpticé ; :
scatter-gther TLB irvalidation is necessary on this PCI DMA tag for.ch|ldren. of the primary 1/O bu; and an
opaque cookie to be interpreted by the-level imple-

implementation. mentation of these methods.
The fifth PCI implementation to be supported by

NetBSD/alpha was the A12C PCu$ on the &aon
Al12 Scalable Parallel Processor[SThis PCI bus is a

secondary 1/0 s, has only a single PCI slot in mez-

zanine form-actor and is used solely for Ethernet 1/0. alpha_sgmap contains all of the state information for a

This PCI bgs is not able to directly access host RAMsingIe DMA windav to perform scattegather-mapped
Instead, deices DMA to and from a 128K SRAM pyia including pointers to the scattgather page ta-

buffer. This is, in essence, a haraie implementation 13
of DMA bouncing. This is not considered a limitation RIIZ’ Sﬁmﬂtdmast:at manages the page table, and
of the architecture gen the target application of the ' _

Al12 system (parallel computation applications which The DMA map structure contains all of the

communicate via MPF over the crossbar). parameters used to create the map. (This iairdy f
, i i standard practice among all current implementations of
The sixth PCI implementation to be supported byy,e 1,5 gma interface.) In addition to the creation

NetBSD/alpha \&s the MCPCIA MCBS-0-PCl o ameters, the vimplementations contain additional
bridge found on the AlphaServer 4100 (Rawhide) sySgiate variables specific to their particular DMA quirks.
tems. The Rawhide architecture is made up of a For example, the NetBSD/alpha DMA map contains

“horse” (the central backplane) andtgaddies” (pri-  gq/erg) state variables related to scaiather-mapped
mary PCI lus adapters on either side of the backplane)DMA_ The i386 ports DMA map, on the other hand
The saddles may also contain ElS#stadaptersEach . iains a pointer to a map-specific cookiEhis

cookie holds state information for ISA DMA bouncing.
This state is stored in a separate cookie because DMA

The opaque cookie used by NetBSD/algha’
DMA tag is a pointer to the chipsgetYatically-allo-
cated state informationThis state information includes
one or more alpha sgmap structures. The

™TurboLaser" is the name of the systemsbon the Al-
phaServer 8200 and 8400 systems.

YUThe primary 1/0 bus on the A12 is a crossherich is used

13 . . .
to communicate with other nodes in the parallel processor. An extent map is a data structure which manages an arbitrary

) i ) number range, providing w&al resource allocation primigs.
?MPI, or the Message Passing Interface, is a standardized ARNetBSD has a general-purposeeamt map manager which is used by
for passing data and control within a parallel program. several kernel subsystems.



bouncing is far less common on the i386 then seatteredirect thebus dma function calls to the common
gahermapped DMA is on the Alpha, since the Alphaimplementation.

must also do scattggathermapped DMA for PCI if the

system has a large amount of physical memory. 4.4. Autoconfiguration

In both the NetBSD/alpha and NetBSD/i386 The NetBSD krnels autoconfiguration system
bus_dma implementations, the DMA segment structureemploys a depth-first trgersal of the nodes (devices) in
contains only the public members defined by the interthe device tree. This process is started by machine-

face. dependent code telling the machine-independent auto-
configuration frameork that it has "found" the root
4.3. Codestructure "bus”. Inthe two platforms described here, this root

Both the NetBSD/alpha and NetBSD/i386 bus, calledmainbus, is a vrtual device; it does not
bus dma implementations use a simple inheritancediréctly correspond to gnphysical bus in the system.

scheme for code reus@his is achieed by dlowing  1he device duer for mainbus is implemented in
the chipset- or lis-specific code layers (i.e. the "mas- Machine-dependent code. Thisverls responsibility is
ter” layers) to assemble the DMA tag. When the tag i4C configure the primary /O bus or busses.
assembled, the master layer inserts its own methods in  In NetBSD/alpha, the chipset which implements
the function pointer slots where special handling at thathe primary 1/O bus is considered to be the primary I/O
layer is required. For those methods which do not bus by hemainbus layer Platform-specific code speci-
require special handling, the slots are initialized withfies the name of the chipset, and thainbus driver
pointers to common code. configures it by "finding" it. When the chipset’'device
The Alphabus dma code is broken down into driver is dtached, it initializes its DMA windows and

four basic categories: chipset-specific code, code th&lata structuresOnce this is complete, it *finds” the pri-
implements common direct-mapped operations, cod8'ay PCl bus or busses logically attached to the
that implements common scatgathermapped opera- ChiPSet, and passes the DMA tag for thesesbs den
tions, and code that implements operations common # the PCI bus device dgr. This driver in turn finds
both direct-mapped and scattgthermapped DMA. and configures each device on the PCI bus, and so on.
Some of the common functions are not called directly In the eent that the PCI s driver encounters a
via the tags function switch. These functions are PCI-to-PCI bridge (PPB), the DMA tag is passed
helper functions, and are for use only by chipset frontunchanged to the PPB \dee driver, which in turn
ends. Anexample of such a helper is the set of com-passes it to the secondary PCI bus instance attached to
mon direct-mapped DMA load functionghese func- the other side of the bridgddowever, intervention by
tions tale dl of the same @uments as the inteife- machine-dependent code is required if the PQs$ b
defined methods, plus arxtea argument: the DMA driver encounters a bridge to a different bus type, such
window’s base DMA address. as EISA or ISA; this bus may require a different DMA

The i386bus_dma implementation, on the other t@d- For this reason, all PCl-to-<otherus> bridge
hand, is brokn down into three basic categories: com-(PCXB) drvers are implemented in machine-dependent

mon implementations obus_dma methods, common code. Whilethe PCxB dnrers could be implemented in
helper functions, and ISA TDMA front-en’&s Al of machine-independent code using machine-dependent

: : hooks to obtain DMA tags, this is not done as the sec-
the common intedce methods may be called directly ondary bus mav require special machine-dependent
from the DMA tags function switch. Both the PCl and . y y requl P P

: i . interrupt setup and routingOnce all of the call-backs
EISA DMA tags use this feature; therovide no lus- . o .
o to handle the machine-dependens liransition details
specific DMA methods. The ISA DMA front-ends pro- .
: L were implemented, the amount of code that would be
vide support for DMA bouncing if the system has more - red would hardlv be worth the effort
than 16MB of physical memarylf the system has y '

16MB of physical memory or less, no DMA bouncing When a device drer is associated with a particu-
is required, and the ISA DMA front-ends simply lar hardware device that the busverihas found, it is

given sveaal pieces of information needed to initialize

YSA is currently the only bus supported by NetBSD/i386 with and communicate with the dee. Oneof these pieces
special DMA requirements. This may change in future versions ofof information is the DMA tag. If the drér wishes to
the system. perform DMA, it must remember this tag, which, as
noted preiously, is used in gery call to thebus dma
interface.




While the procedure for configuringuéses and [Alpha/ISA]

devices is essentially identical to the NetBSD/alpha [Alpha/PCI]

case, NetBSD/i386 configures the primary |/@sdes [1386/I1SA]

quite diferently The PC platform was designed from [i386/PCI]

the ground up around the ISAih EISAand PCI are, . i

in mary ways, very similar to ISA from a diee We will assume that th@386/ISA] platform has

driver's perspectie. All three hae the concept of I/0- More than 16MB of RAM, so transfers mighvea be
bounced if DMA-safe memory is not usexpkcitly.
We will also assume that the direct-mapped DMA win-
dow on the [Alpha/PCIl] platform is capable of
addressing all of system RAM.

mapped® and memory-mapped space. The handw
and firmware in PCs typically map theseskes in such
a way that initialization of the us’s adapter by operat-
ing system software is not necessdargr this reason, it

is possible to consider PCI, EISA, and ISA to all be pri- Please note that in the description of map syn-
mary 1/0O lusses, from the autoconfiguration perspecchronization, only cases which require special handing
tive. will be described. In both the [Alpha/ISA] and

[Alpha/PCI] cases, all synchronizations cause the
CPU’'s write huffer to be drained using the Alpka’
mb[6] instruction. All synchronizations in the
[i386/PCI] case are no-ops, as are synchronizations of
DMA-safe memory in th@i386/ISA] case.

The NetBSD/i386mainbus driver configures the
primary 1/O busses in order of descending priority: PCI
first, then EISA, and finallySA. Themainbus driver
has direct access to eachsls DMA tags, and passes
them down to the I/O bus directlyn the case of EISA
and ISA, themainbus layer only attempts to configure
these busses if thevere not found during the PCu®
configuration phase; NetBSD/i386, as a matter of cor The card is a bus mastend operates by reading
rectness, identifies PCI-to-EISA (PCEB) and PCl-to-a fixed-length command block via DMAThere are
ISA (PCIB) bridges, and assigns autoconfigurationthree commands:SET KEY, ENCRYPT, and
nodes in the device tree to them. The EISA and ISADECRYPT. Commands are initiated by filling in the
busses are logically attached to these nodes, imya w command block, and writing the DMA address of the
very similar to that of NetBSD/alphaThe bridge di- ~ command block to the casldmaAddr register The
ers also hee drect access to theub's DMA tags, and command block contains 6 32-bibvds: cbCommand,

4.5.1. Hardvare overview

pass them down to the 1/O bus accordingly. chStatus, cbinAddr, cbinCount, chOutAddr, and cbOut-
Count. The cbinAddr and cbOutAddr members are the
4.5. Exampleof underlying operation DMA addresses of software scatgather lists used by

the cards DMA engine. The cbinCount and chOut-

This subsection describes the operation of theCount members are the number of scatiather entries
machine-dependent code which implements the ga

bus_dma interface as used by a device véri for a in their respectie lists. Eachscatter-gther entry con-
hyp_othetical DES encryption cardVhile this is not the tains a DMA address and a length, both 32'bft words.
original application obus_dma, it provides an gample When the card processes a request, it reads the
which is much easier to understand; the application foeommand block via DMA. It thenxamines the com-
which the interface as deeloped is a high-perfer ~mand block to determine which action toeakin the
mance hierarchical mass storage system, the details efse of all three supported commands, it reads the input
which are eerwhelming. scatter-gther list at DMA addressbinAddr for length
Not all of the details of a NetBSD dee driver cbinCount * 8. It then switches the input to the appro-

will be described here,ub rather only those details priate processing engine. In the case of3kd KEY

: : o command, the scattgather list is used to DMA the
which are important within the scope of DMA. DES ley into SRAM located on the cardror al other

For the purpose of ourxample, the card comes commands, the input is directed at the pipelined DES
in both PCI and ISA models. Since we describe tw engine, switched into either encrypt or decrypt mode.
platforms, there are four permutations of actu@ne-  The DES engine then reads the output scg#trer list
ples. Thg will be tagged with the follwing indicators:  specified bycbhOutAddr for cbOutCount * 8 bytes.
Once the DES engine has all of the DMA addresses, it

¥1/0-mapped space is accessed with special instructions on Inthen bgins the cycle of input-process-output until all
tel processors. data has been consumed. Oncg esmmand is fin-

ished, a status word is written thSatus, and an




interrupt is deliered to the host. The der software  Alpha’s drect-mapped kernel segment; no use arhiel
must read this word to determine if the command comvirtual address space is required.

pleted successfully. Finally, the drier loads the control structure

DMA map by passing the kernel virtual address of the

memory tobus dmamap _load(). To make it easier to
The deice drver for this DES card prades  start transactions, the der caches the DMA addresses

open(), close(), andioctl() entry points. The dvier uses  of the various control structures (by adding theisets

DMA to the user address space for high performanceo the memorys DMA address). In all cases, the under

When a user issues a request via the ioctl correspondiriging load function steps through each page in the vir

to the requested operation, thevdriplaces it on awrk  tual address range, extracting the physical address from

queue. Theioctl() system call returns immediately the pmap module and compacting thgrsents where

allowing the application to run or block visigsus- possible. Sincghe memory was allocated as a single

pend(). If the card is currently idle, the der immedi-  segment, it maps to a single DMA segment.

ately issues the command to the card. When the job is

finished, the card interrupts, and theverinotifies the  4.5.4. Exampletransaction

user that the request has completed viaS#@O sig- Let's wppose that the user has already set the

_nal._ If there are more jobs on the work queue, _the ne key, and nav wishes to use it to encrypt a dataffer.

job is remcveq from the queue and started, until there|pq calling program packages up the requestigireg

are no more jobs. a pointer to the input Wffer, output huffer, and status

word, all in user space, and issues the "encryffed

ioctl.

4.5.2. Deice driver overview

4.5.3. Driver initialization

When the drer instance is created (attached), it Upon entry into the kernel, the def locks the

must create and initialize the data structures necessaf)a s pfrer to prevent the data from being paged out
for operation. This dver uses multiple DMA maps: | hile the DMA is in progressA job queue entry is
one for the control structures (control block and scatter, | cated. and tar DMA maps are created for the job

gaher lists), and manfor data submitted by user ,,0.e entryone for the input bffer and one for the

requests. Thedata maps are kept in thedn job 10t ffer. In 4l cases, this allocates the standard
queue entries, which are created when jobs are submigy1a map structure. In thdi386/ISA] case, an ISA
ted. DMA cookie for each map is also allocated.

Next the driver must allocate DMA-safe memory
for the control structuresThe drver will allocate three

pages of memory vigus_dmamem_alloc(). For sim- e DA maps for the input and outputfers. Since

plicity, the drver will request a single memoryg®ent.  yhis hrocess is essentially identical for input and output,
For al platforms and busses in this example, this operabmy the actions for the inputitier's map are described
tion simply calls a function in the virtual memory sys- .o

tem that allocates memory with the requested con- ] )
straints. Inthe [i386/ISA] case, the ISA layer inserts On [Alpha/PCl] a’nd[|386/PC|],_ the underlying
itself into the call graph to specify a range of 0 - 16MB.C0de traerses the uses’luffer, extracting the pisical

All other cases simply specify the entire presenysph addresses for each pageor [Alpha/PCl], the DMA
cal memory range. window base is added to this address. The address and

length of the sgment are placed into the ma@®MA

A small piece of this memory will be used _for the sgment list. Segments are concatenated when possi-
command block. The rest of the memory will be o

divided evenly between the tav scatter-gather lists. o
This memory is then mapped into kernel virtual address ~ On [Alpha/ISA], a very similar process occurs.
space  using bus dmamem map() with  the However, rather than placing the physical addresses into

BUS_DMA_COHERENT flag, and the kernel pointers e maps sgment list, some scattgrather-mapped

to the three structures are initialized. When the memPMA address space is allocated and the addresses
ory is mapped on the 386, tlBJS_DMA_COHER- plgced into th(_a corresponding page table entr@:scg

ENT flag causes the cache-inhibit bits to be set in th&iS Process is complete, a single DMAgisent is
PTEs. Nospecial handing of this flag is required on thePlaced in the map’ssgment list, indicating the fggn-
Alpha. Hawvever, in the Alpha case, since there is only Ning of the scatter-gather-mapped area.

a dngle sg@ment, the memory is mapped via the

Once the queue entry has been allocated, it must
be initialized. The first step in this process is to load



The [i386/ISA] case also traerses the uses’ The first task to perform is to synchronize the
buffer, but twice. In the first pass, thauffer is checkd input tuffer map. This is aPOSTWRITE. Next we
to ensure that it does notueaany @ages abee the  synchronize the output ufer map. This is a
16MB threshold. If it does not, then the procedure is POSTREAD. In the [i386/ISA] case, the contents of
identical to thdi386/PCI] case. Hwever, for the sak  the output bounce uffer are copied to the usser’
of example, the Wiffer has pages outside the thresholdbuffer'’”. Finally, we synchronize the control maprhis
so the transfer must be bounced. At this point, 3s aPOSTREAD|POSTWRITE.
bounce hffer is allocated. Since we are still in the Now that the DMA maps he teen synchro-

process mntext, this allocation may blockA pointer nized, thy must be unloaded. In tHlpha/PCI] and

to the bounce uffer is stored in the ISA DMA cookie, . .
and the phvsical address of the bounafie is placed [i386/PClI] cases, there are no resources to be freed; the
in the ma?[:syse ent list P mapping is simply markedvalid. In the [Alpha/ISA]

gn ' case, the scattgrathermapped DMA resources are

The next order of business is to enqueue girbe released. Irthe [i386/ISA] case, the bounceuffer is
the transfer To keep the example simple, we will freed.

assume that no other transfers are pending. The first
step in this process is to initialize the control block with
t_he cached .DMA addres_sg_s (.)f the (_mmatter-gather signaled that 1/O has completed. The last task te per
lists. Thesdists are also initialized with the contents of : :

, . form is to destrg the input and outputuifer DMA
the DMA maps’ segment list. Before we tell the card toma s and the iob queue entr
begin transferring data, we must synchronize the DMA P j0bq Y-
maps.

Since the uses’ tuffer is no longer in use, it is
unlocked by the device drér. Now the process may be

5. Conclusions
The first map to be synchronized is the input

buffer map. This is #REWRITE operation. Inthe
[(386/ISA] case, the usex'tuffer is copied from the

users aldress space into the bounasgfér'®. The net

The bus_dma interface was introduced into the
NetBSD kernel at delopment version 1.2G, just
before the release cycle for NetBSD 1.8dme When

. . A the code was committed to the NetBSD master sources,
map to be synchronized is the outpuffér map. This  gq/era| drivers, mostly for SCSI controllers, were con-

is aPREREAD operation. Finallythe control map is  \gteq o the interface at the same time. (All of these
synchronized. Sincthe status will be read back from drivers had been previously omated to use the
the control block after the transaction is complete, thig, ¢ space interface.) Notonly did these dviers pro-
synchronization is RREREAD|PREWRITE. vide an example of the correct useba dma, but they

At this point the DMA transaction may occur provided functionality that had not previously existed in
The card is started by writing the cached DMA addresshe NetBSD kernel: support for bus mastering ISA
of the control block into the casidmaAddr register.  devices in PCs with more than 16MB of RAM.
The driver returns to user space, and the procesigsw The first real test of the intede on the Alpha

for the signal indicating that the transaction has Complatform came by installing ais mastering ISA déce

pleted. (an Adaptec 1542 SCSI controller) in an AXPpci33
Once the transaction has completed, the cardomputer After addressing a small bug in the Alpha

interrupts the host. The interrupt handler is mo implementation of bus dmamap load(), the de&ice

responsible for finishing the DMA sequence and notify-worked flawlessly.

ing the requesting process that the operation is com-

ot When conerting device dwers to use the ne
plete.

interface, deelopers discoered that a fair amount of

mostly-similar code could be rewenl from each drier
18This is not currently implemented, as it required substantialCOTverted. Thecode in question as the loop thatublt .

changes to the virtual memory systeffhis is because theopyin() the software scattagather list. In some cases, thewvdri

andcopyout() functions only operate on the current processhtext, ers performed noticeably bettelue to the fact that the

which may not be\ailable at the time of the bounce. Those changes. . . s
to the virtual memory system ¥v& row been made, so support for |mplementat|on of this |00p Wlthlbus—d “E'“Ellc—load()

bouncing to and from user space will appear in a future release df more efficient and supports segment concatenation.

NetBSD. Supporfor bouncing from kernel space is currently sup-

ported, howeer. "The same omat applies here as to th@386/ISA]
PREWRITE case for the input map.




Most of the machine-independentwirs that use
DMA have keen comerted to the ne& interface, and

more platforms hae implemented the necessary back-

ends. Theesults hae been ery encouragingNearly

the NetBSD operating system itself, may be found at
http://www.NetBSD.org/.

Updates to this paper may appear periodically
and can be found dtttp://www.NetBSD.org/Docu-

evay device/platform combination that has been tested,,antation/research!

has worked without additional modifications to the

device driver. The fav exceptions to this hee generally

been to handle ddrences in host and device byte-

order and are not directly related to DMA.
Thebus_dma interface has also ped the way for

additional machine-independent bus autoconfiguration . Ross Hamy,

framavorks, such as for VME.Eventually this will
help support PCI-to-VME bridges, and aloSun,

Motorola, and Intel systems to share common VME

device drvers.

We have found thebus dma interface to be a
major architectural benefit in the NetBSDerkel,

greatly simplifying the process of porting the kernel to

new platforms, and making portable device wvari

development considerably easiem short, the abstrac-

tion has deliered what it was designed to deli: a

8. Acknowledgments

I would like to hank the folleving individuals for
their very constructe input and insight during the
bus dma design phase: Chris Demetriou, Charles Han-
Matthev Jacob, Jonathan Stone, and
Matt Thomas.

I would also lile to extend special thanks to Chris
Demetriou, Lonhyn Jasinskyj, ékin Lahey, Yvonne
Malloy, David McNab, and Harry Waddell for the time
they spent r@iewing and helping me to polish this
paper.

9. Aboutthe author
Jason R. Thorpe is a Network Systems Engineer

means of supporting a wide range of platforms withdt the Numerical Aerospace SimulatioracHity at

maximum code reuse.

6. References

[1] Digital Equipment CorporationDECchip
21071 and DECchip 21072 Core Logic Chipsets Data
Sheet, DEC order number EC-QAEMA-TE, Nember
1994.

[2] Digital Equipment CorporationDECchip
21066 Alpha AXP Microprocessor Data Sheet, DEC
order number EC-N0617-72, May 1994.

[3] Digital Equipment CorporationDECchip
21171 Core Logic Chipset Technical Reference Manual,

DEC order number EC-QE18B-TE, September 1995.

[4] Digital Equipment CorporatiorDWLPA and
DWLPB PCl Adapter Technical Manual, DEC order
number EK-DWLPX-TM, July 1996.

[5] H. Ross Harey, Avalon A12 Parallel Super-
computer Theory of Operation, Avalon Computer Sys-
tems, Inc., October 1997.

[6] Richard L. Sites and Richard Witek, Alpha
AXP Architecture Reference Manual, Second Edition,
Digital Press, 1995.

7. Obtaining NetBSD

More information about NetBSD,

including

NASAs Ames Research Centdrlis professional inter
ests include design and implementation of portable
operating systems, high-speed computer networks, and
network protocols. In addition to his work on the
NetBSD operating system in support of network and
mass storage systemveépment projects at the Ab
facility, he is an ative participant in the Internet Engi-
neering Task érce. Hehas been a contuilor to the
NetBSD Project since mid-1993, and has run nearly
evay port at one time or anotheHe aurrently main-
tains NetBSDs hp300 port, and is a member of the
NetBSD Core Group.

The author may be reached at: Numerical Aero-
space Simulation deility, Mail Stop 258-5, WSA
Ames Research Cenjénoffett Field, CA 94035, or via
electronic mail athorpegj @nas.nasa.gov.

information on where to obtain sources and binaries for



