
Devsummit – Notes on wapbl

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

EuroBSDcon 2015
Stockholm, Sweden

October 2, 2015



WAPBL — Write-Ahead Physical Block Logging

I Write-ahead physical block logging.

I Reduces metadata write latency.

I Reduces time to mount after crash.

I Generic framework, used only by ffs at the moment.



Traditional ffs

I Synchronous metadata block writes:
I Find data blocks in freelist, mark as allocated.
I Set inode’s data block pointers.

I Every step keeps the file system state consistent but not clean.

I If crash happens in middle, fsck globally analyzes file system
to find allocated-but-unreferenced data blocks, etc.

I Problem: synchronous metadata has high latency.

I Problem: fsck must globally analyze file system—slow to pick
up again after crash.



Logging

I Asynchronous metadata block writes, but serialized via
write-ahead log.

I Write metadata blocks to write-ahead log first.

I Flush log blocks to disk.

I Write flushed log blocks to real location in disk.

I Mark log blocks committed.

I If crash happens in middle, replay uncommitted log blocks.



Not all physical block logging

I Mostly log has just physical blocks: verbatim copy of block to
write elsewhere.

I Some operations too complex to handle this way.

I Inode allocation: log a record marking inode number as
pending allocation; then do complex inode allocation logic;
then log a record marking it as allocated.

I If crash in middle: undo all pending-allocation inode records
on mount.

I Block deallocation: can’t reallocate blocks until log flush
happens.



Problem: tentacles

I Needed tentacles inside buf(9) abstraction, vfs bio.c.

I Needed tentacles inside UVM unified buffer cache
getpages/putpages, genfs io.c.

I Every ufs write happens inside a single transaction. (Data
blocks not logged—but wapbl transaction lock held across all
data writes via putpages anyway.)



Problem: truncation

I Log is bounded size.

I Log transactions are bounded size.

I Truncate large file: need to deallocate each block and
truncate inode.

I So ufs truncate truncates one indirect block at a time.

I But a 1 TB file has a lot of indirect blocks—and truncation is
one block at a time even if file is sparse!

I Patch floating around to do as much in a single transaction as
possible.

I Better algorithm: truncate only allocated blocks. (But
requires some bookkeeping to get right.)



Problem: appending data

I To append to a file:
I Allocate data blocks (logged metadata write).
I Increase inode size (logged metadata write).
I Write data blocks (asynchronous data writes).

I No ordering between metadata and data blocks.

I If crash after metadata writes before data writes, file may
appear to have garbage data from free blocks appended!


