
Cross-compilation in pkgsrc

Taylor R. Campbell
riastradh@NetBSD.org

February 13, 2015

Abstract
When you want to compile applications for your feeble
PowerPC network appliance, you don’t want to run the
compiler on the appliance: you want to use your 32-
core Intel Xeon build machine.

Pkgsrc, the portable package build system, supports
cross-compiling thousands of packages on NetBSD
between any two CPU architectures. Provided a
basic cross-compilation toolchain built by NetBSD’s
build.sh tools, pkgsrc cross-compiles the pack-
ages you ask it to build, natively compiling and in-
stalling any additional tools it needs.

Future work will enable cross-compiling between op-
erating systems, not just between CPU architectures of
a single operating system, and automatic building of the
target OS’s toolchain in the pkgsrc build process.

1 Introduction
Pkgsrc is a portable package build system: a reposi-
tory of machine-executable descriptions of how to build
various pieces of software from source and put them
together into packages that can be installed and dein-
stalled, in the same way on a variety of Unix-like oper-
ating systems.

Normally, if you use pkgsrc on, for example, an x86
server running NetBSD 6.1, it will yield packages that
can be installed on x86 machines running NetBSD 6.1.
But building packages for the same CPU architecture
and operating system as the compiler runs on makes for
a painfully slow task of getting the packages you want
for your tiny embedded PowerPC network appliance,
which takes eons to run a C++ compiler.

NetBSD has supported cross-compilation as a first-
class citizen for many years [2]: by default, when
you want to build NetBSD, you first build a cross-
compilation toolchain and then you compile NetBSD

with it. The same process, of building a cross-toolchain
and then compiling NetBSD with it, happens whether
you are building NetBSD/amd64 on NetBSD/amd64 or
building NetBSD/vax on an Apple PowerPC laptop run-
ning Debian. All builds of NetBSD published by the
NetBSD release engineering team, for all CPU architec-
tures and machine ports, are made on large x86 servers,
so generating a new build of NetBSD/vax does not need
to wait for an emulated or physical VAX machine.

2 Packages and dependencies

Pkgsrc consists of a large collection of package descrip-
tions organized into categories, and some infrastructure
to build packages out of them. A package description
consists of a directory with a few files:

DESCR A human-readable description of the package.

Makefile A makefile, using pkgsrc’s infrastructure,
describing the package to a machine: what it is
called, where its source distribution is located, how
to build it, what other packages it needs, and so on.

distinfo Names, sizes, and hashes of all the files
that pkgsrc must download in order to build the
package.

PLIST A packling list, listing the files that the package
installs.

There may be more files, such as a
Makefile.common included by the makefiles
in multiple package descriptions. From within a
package description’s directory, one can build and
install the package with make install:

1

$NetBSD: Makefile,v 1.7 2014/10/03 11:51:54 obache Exp $
#

DISTNAME= libbind-6.0
PKGREVISION= 1
CATEGORIES= net
MASTER_SITES= ftp://ftp.isc.org/isc/libbind/6.0/

MAINTAINER= pkgsrc-users@NetBSD.org
HOMEPAGE= https://www.isc.org/software/libbind
COMMENT= ISC Standard Resolver Library
LICENSE= isc

CONFLICTS= man-pages-[0-9]*

GNU_CONFIGURE= yes
USE_LIBTOOL= yes

.include "../../mk/bsd.prefs.mk"

.if !empty(USE_CROSS_COMPILE:M[yY][eE][sS]) && ${OPSYS} == "NetBSD"
Yes, we’ll have /dev/random on NetBSD, even autoconf you can’t detect
it by compiling and running a program when cross-compiling.
CONFIGURE_ENV+= ac_cv_file__dev_random=yes
.endif

CONFIGURE_ARGS+= --with-libtool=yes

MAKE_JOBS_SAFE= no

.include "options.mk"

.include "../../mk/bsd.pkg.mk"

Figure 1: An example pkgsrc makefile, with a workaround for a cross-compilation bug in the package.

2

which scrypt
scrypt not found
cd /usr/pkgsrc/security/scrypt
make install
=> Bootstrap dependency digest>=...
=> Fetching scrypt-1.1.6.tgz
....
===> Install binary package...
which scrypt
/usr/pkg/bin/scrypt

To avoid duplicating the work of building the same soft-
ware over and over again on different computers, one
can instead create a binary package from the package
description with the make package command:

which tmux
tmux not found
cd /usr/pkgsrc/misc/tmux
make package
=> Bootstrap dependency digest>=...
=> Fetching tmux-1.9a.tar.gz
...
which tmux
tmux not found
cd /usr/pkgsrc/packages/All
ls tmux-1.9a.tgz
tmux-1.9a.tgz
pkg_add ./tmux-1.9a.tgz
which tmux
/usr/pkg/bin/tmux

The file tmux-1.9a.tgz is a binary package which
can be installed without pkgsrc using the pkg add
command, on the same machine or another one. How-
ever, if on another machine, the devel/libevent
package must be installed too, because the tmux pro-
gram uses the library libevent.

Thus, misc/tmux is said to depend on
devel/libevent, specifically as a run depen-
dency because the latter must be installed at run-time
if tmux is to function. Dependencies fall into one of
three categories:

Run dependencies, or full dependencies, of a package
are those that it needs installed at run-time in or-
der to function. For example, software written in
Python requires a Python interpreter to be installed
in order run. A C program such as tmux that calls
routines from a C library such as libevent re-
quires the C library to be installed in order to run.

Build dependencies of a package are those that need
to be installed at build-time as if for the target in
order to build the package. A C program such
as xkbcomp whose source code includes header
files from a package such as x11/xproto sel-
dom needs the header files to be installed in order
for the program to function. If there is a library,
such as x11/libX11, the C program will usually
have a build and run dependency on the library, but
it need not have a run dependency on a package
containing only header files.

Tool dependencies of a package are those that need
to be executed when building the package. For
example, building x11/libxcb requires execut-
ing xsltproc to transform XML descriptions
of the X11 protocol, so it has a tool dependency
on textproc/libxslt. Programs that use
libxcb need not transform XML, however, so
there is no need for textproc/libxslt to be
installed when these programs run.

(There are also bootstrap dependencies, for packages
required in the operation of the pkgsrc infrastructure,
but they are functionally little different from tool de-
pendencies.)

When the user asks pkgsrc to build a package, pkgsrc
will automatically build and install the tool, build, and
run dependencies first, and when the user asks pkgsrc
to install a package, pkgsrc will automatically install
the run dependencies.

In addition to requiring that run dependencies be
installed, if tmux-1.9a.tar.gz was built on an
amd64 machine, it may be installed only on another
amd64 machine — most binary packages contain com-
piled machine code for only one CPU architecture.

3 Cross-compiling packages

By default, binary packages built on a machine of
one CPU architecture are fit to be installed only
on other machines of the same CPU architecture,
and the pkg add tool will reject attempts to install
them on others. However, pkgsrc can be config-
ured so that instead of using the native C compiler, it
uses a cross-compiler toolchain to build binary pack-
ages for a different CPU architecture. Pkgsrc relies
on the NetBSD cross-toolchain, built with NetBSD’s

3

build.sh tools.1

Normally, the make variable MACHINE ARCH in
a pkgsrc makefile refers to the CPU architecture of
the machine on which one is using pkgsrc, e.g. to
run make install. When cross-compiling a pack-
age, MACHINE ARCH is set to another CPU architec-
ture, TOOLDIR is set to the NetBSD cross-compiler
toolchain, and the resulting package will contain code
for the specified CPU architecture.

If all package dependencies were run dependen-
cies, that would be the whole story: if you ask
pkgsrc to build a package on an x86 server with
MACHINE ARCH=powerpc, pkgsrc would simply
build it and all its dependencies for PowerPC, and noth-
ing would need to be installed until the system opera-
tor runs pkg add. But build dependencies need to be
installed, and tool dependencies include programs that
need to be executed — building x11/libxcb requires
processing XML documents with the xsltproc com-
mand from the textproc/libxslt package.

In that case, textproc/libxslt must be com-
piled natively, to run on the amd64 server, and in-
stalled before x11/libxcb can be built. And
textproc/libxslt requires libgcrypt and
libxml2 to be installed before it can be built or run,
and requires them to be natively compiled too.

To accommodate these cases, when cross-building a
package, pkgsrc will natively build its tool dependen-
cies, and natively build any of the tool dependencies’
dependencies, and so on recursively. Pkgsrc will also
install cross-built packages not in their normal loca-
tions, but in a subdirectory called CROSS DESTDIR,
so that they do not interfere with the native packages:
consider if the user asked to cross-build x11/libxcb
and a package depending on textproc/libxml2,
the first of which requires a native libxml2 and the
second of which requires a cross-built libxml2.

A further complication arises when one of the tool
dependencies is a compiler. Many compilers are capa-
ble of generating machine code for multiple different
CPU architectures, but not at one time: when you build
and install lang/gcc48, it will be configured for a
particular CPU architecture, usually the one on which
it was built. But to cross-compile one needs a compiler
configured for a different CPU architecture.

To satisfy this, when building a tool dependency
of a cross-built package for some CPU architecture,

1Pkgsrc works on many operating systems, but the cross-
compilation support is currently limited to NetBSD.

say PowerPC, pkgsrc will pass an additional setting
TARGET ARCH=powerpc to the tool dependency.
Not all tool dependencies are configurable like this —
for instance, xsltproc is the same whether you are
going to use the XML for x86 or powerpc or arm — but
packages have the option of paying heed to the target
architecture.

In brief, before cross-building a package for, say,
PowerPC, pkgsrc will:

• cross-build, but not install, all of its run dependen-
cies;

• cross-build all of its build dependencies and install
them relative to CROSS DESTDIR; and

• natively build all of its tool dependencies,
configured with TARGET ARCH=powerpc and
MACHINE ARCH set to the native machine archi-
tecture, and install them relative to /.

4 Problematic packages
Many packages cross-build out of the box, especially
ones that make simple uses of a C compiler. Some,
however, do not. Common reasons for failing to cross-
build include:

• A tool dependency recorded as a build depen-
dency.

In native pkgsrc builds, there is no difference be-
tween tool dependencies and build dependencies:
in both cases, a package’s dependency is built and
installed before the package can be built. But for
cross-builds, tool dependencies must be natively
built and installed relative to /, while build depen-
dencies must be cross-built and installed relative to
CROSS DESTDIR.

• The package’s build system expects the same
toolchain to generate programs that run natively
during the build and to generate programs that can
be packaged up for the target.

But if you run a C compiler generating MIPS code
on your x86 workstation, your x86 workstation
will not natively run the resulting program.

These cases can often be resolved by providing
two C compilers to the package’s build system:
one that generates code that can run natively dur-
ing the build, often called CC FOR BUILD, and

4

one that generates code that can be packaged up
for the target, often called CC.

Some packages’ build systems already support
this, and it is a matter of teaching the pkgsrc make-
file to set CC FOR BUILD:

CONFIGURE_ENV+= \
CC_FOR_BUILD=${NATIVE_CC:Q}

Other packages need to be patched to distinguish
native and target objects. The same principle ap-
plies to langauges other than C, of course.

• The package’s build system expects to be able to
run programs that query information about the tar-
get system, such as the existence of files, the order
of bytes, and so on.

Many programs configured with GNU autoconf do
this. Since the target system is only a hypothetical
while building a package, obviously this does not
work in general, and if applied naively may yield
the wrong answers: your x86 build machine’s byte
order is little-endian, but the PowerPC network ap-
pliance you’re building packages for is big-endian!

Fortunately, most of these queries can be answered
in advance. For example, if you are building for
NetBSD, the file /dev/urandom will exist, and
if you are targeting PowerPC, the byte order will
be big-endian. Many packages, especially ones
written with GNU autoconf, can have these ques-
tions answered with environment variable settings
such as ac cv file dev urandom=yes:

CONFIGURE_ENV+= \
ac_cv_file__dev_urandom=yes

Some especially large and complicated build systems
make disentangling these issues difficult, however. Perl
and Python are two notorious examples of this, and are
not yet cross-compilable in pkgsrc — although one can
simply natively compile them on a machine of the target
architecture, and then copy the resulting binary pack-
ages over to another machine to cross-build packages
that depend on them.

5 Related work
A cross-toolchain is not the only way to cross-build
packages: pkgsrc also supports using distcc, in which a

machine of the target architecture runs the pkgsrc make-
files and talks to a usually much faster build machine
to ask it to run a C compiler. This requires a machine
of the target architecture and more administrative over-
head, and is usually much slower since it still requires
much work to be done on the target system and incurs
the overhead of network communication.

Many commercially supported embedded platforms
are developed with cross-compilers. Google’s Android
operating system for phones and tablets normally runs
on ARM and MIPS systems, but the toolchain is a cross-
toolchain that runs on x86. Android is not a general-
purpose Unix system, though, and the software devel-
oped for it is not general-purpose Unix software.

OpenWrt [3] is a Linux distribution for a variety em-
bedded platforms, particularly for many off-the-shelf
consumer routers with MIPS and PowerPC CPUs and
a small amount of RAM. OpenWrt has a repository of
general-purpose Unix software that be cross-compiled
and installed on the embedded platforms, including dif-
ficult but popular packages like Python and Perl. How-
ever, it is not intended as a general-purpose Linux dis-
tribution outside embedded platforms, so it does not
share maintenance effort with, e.g., Debian. In contrast,
pkgsrc works on a variety of operating systems and for
a variety of purposes.

Various efforts have been put into cross-compiling
FreeBSD ports [1], including running a native toolchain
in the QEMU emulator. Recent work has been done
to cross-compile FreeBSD ports to ARM, not with a
cross-toolchain but by running a native toolchain in the
QEMU emulator. Although running under QEMU may
be faster on a large x86 machine than running natively
on a tiny ARM board, it is much faster and more conve-
nient still to run a cross-toolchain natively on the large
x86 machine. None of these approaches appears to be
supported well in the FreeBSD ports system.

6 Future work
Pkgsrc cross-compilation currently only works between
different CPU architectures, not different operating sys-
tems or even different versions of the same operating
system: you can set MACHINE ARCH on NetBSD to
compile for NetBSD on another CPU architecture, but
you cannot set OPSYS and run pkgsrc on GNU/Linux
to compile for NetBSD. Work is in progress to general-
ize pkgsrc cross-compilation from cross-CPU builds to
cross-OS builds, but it is not yet in the main pkgsrc tree.

5

The user interface for asking pkgsrc to cross-build
is klunky. For example, it requires the user to explic-
itly invoke NetBSD’s build.sh tools to produce
a cross-compilation toolchain. In principle, there is no
reason it should not suffice to run

make package \
MACHINE_PLATFORM=NetBSD-7.1-powerpc

and have pkgsrc automatically build the toolchain, but
this is not yet implemented.

Many, but not all, packages are cross-compilable.
Many of the ones that are not cross-compilable are easy
to fix with relatively simple patches. But there are a few
major packages, such as Python and Perl, whose build
systems make it actively difficult to cross-compile.

Pkgsrc’s infrastructure for building many packages
in bulk, pbulk, does not currently understand the differ-
ence between build and tool dependencies, so it is not
yet easy to cross-build the entire pkgsrc tree at once on
a fast, multi-core machine.

References
[1] Various ideas and attempts to cross build ports.

FreeBSD Wiki page. https://wiki.
freebsd.org/CrossBuildingPorts
(retrieved 2014-12-05).

[2] Luke Mewburn and Matthew Green. build.sh:
Cross-building NetBSD. Proceedings of BSDCon
’03, 2003.

[3] OpenWrt. https://openwrt.org/.

6

