
A brief overview of DRM/KMS and its status in
NetBSD

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

AsiaBSDcon 2015
Tokyo, Japan

March 13, 2015

No, not that DRM!

I DRM: Direct rendering manager: Linux kernel interface for
commanding GPU to render directly into framebuffer for
display.

I Originally, DRM was only a kernel interface for mapping
graphics card MMIO registers and waiting for vertical blank
interrupts.

I Actual driver for display lived in userland: used DRM to
disable kernel’s idea of VGA console and grant exclusive
access to display registers to X server, peeked and poked them
in userland to detect and configure displays.

I Userland used legacy /dev/agp device to allocate physical
memory for graphics and program it into the GPU’s page
tables.

DRM/KMS: DRM with a real kernel display driver

I Maybe userland shouldn’t be mapping the device’s MMIO
registers, handling mode-setting, etc.: ‘user mode-setting’, or
UMS.

I Would be nice if kernel could suspend/resume display without
X’s help.

I DRM/KMS: DRM with kernel mode-setting.

GEM and TTM: Graphics buffer management

I GEM: Graphics Extent Manager

I TTM: Texture and Tiling Manager

I Fancy names for two different sets of ioctls to manage
swappable buffers shared by CPU and GPU.

DRM portability

I DRM implementation maintained in Linux.

I Used to be a coordinated porting effort to BSDs.

I Lost coordination in switch from UMS to KMS.

I New ports to *BSD all different now!

I NetBSD: shims to make most Linux code run unmodified and
updates less painful.

I FreeBSD: modify all the Linux code, including indentation.

I OpenBSD and DragonflyBSD: somewhere in the middle.

Problems

I Userland can still wedge GPU.

I Linux kernel code is very large:

% wc -l drm/*.c

29149 total

% wc -l drm/i915/*.c

76242 total

% wc -l drm/nouveau/**/*.c

95675 total

% wc -l drm/radeon/*.c

152315 total

I . . . and I made some stupid mistakes porting it.

Status

I Intel graphics: works, minor bugs in display detection on some
devices, minor rendering glitches on some devices.

I Radeon: works.

I Nouveau: compiles but does not work yet.

I Everything is much better as of this month after I fixed three
stupid bugs I caused ages ago. . .

Bug 1: Timed waits: Linux code

I Linux has no easy API for interlocked waits.

unsigned long start = jiffies;

unsigned long end = start + timeout

unsigned long now;

DEFINE_WAIT(wait);

int ret;

for (;;) {

prepare_to_wait(&dev->waitq, &wait,

TASK_INTERRUPTIBLE);

if (signal_pending(current)) {

ret = -ERESTARTSYS;

break;

}

...

Bug 1: Timed waits: Linux code

...

now = jiffies;

if (now > end) {

ret = (CONDITION) ? 1 : 0;

break;

}

if (CONDITION) {

ret = MAX(end - now, 1);

break;

}

...

Bug 1: Timed waits: Linux code

...

ret = schedule_timeout(timeout);

if (ret < 0)

break;

timeout = ret;

}

finish_wait(&dev->waitq, &wait);

return ret;

I Where’s the lock to read dev->done excluding interrupts?

I You’re on your own.

I Every driver does it differently, usually with a complicated
(read: wrong) dance involving atomics.

Bug 1: Timed waits: Linux code simplified

I Linux has a collection of macros to do this for you:

ret = wait_event(dev->waitq, dev->done)

ret = wait_event_interruptible(dev->waitq,

dev->done);

ret = wait_event_timeout(dev->waitq, dev->done,

timeout);

I Return negative error on interrupt.

I Return zero on success. . . if no timeout.

I Return positive on success if there is a timeout.

I Return zero on timeout.

I (What about lock for dev->done? Still on your own.)

Bug 1: Timed waits: Linux DRM code

I Old DRM code from last decade used a portability macro
DRM WAIT ON:

DRM_WAIT_ON(ret, dev->waitq, timeout, dev->done);

I Return negative error on interrupt.

I Return negative error -ETIME on timeout.

I Return zero on success.

I (Also: poll every tick, just for good measure.)

I (What about lock for dev->done? Still on your own.)

Bug 1: Timed waits: NetBSD code

I NetBSD has:

while (!dev->done) {

error = cv_timedwait_sig(&dev->waitq,

&dev->lock, timeout);

if (error)

return error;

now = hardclock_ticks;

timeout -= now - start;

start = now;

}

Bug 1: Timed waits: NetBSD code

I No non-interlocked timed waits: no dances with atomics and
no race conditions.

I Required putting in device interrupt spin locks where
appropriate, since Linux doesn’t have them.

I Return EINTR/ERESTART on interrupt.

I Return EWOULDBLOCK on timeout.

I Return zero on success.

Bug 1: Timed waits

I I focussed on getting locks correct for interlocked waits.

I Didn’t pay enough attention to the return codes.

I Totally mixed them all up.

I Waits for i2c commands, graphics commands – always timed
out or returned early.

I Sometimes worked by accident, hard to diagnose.

I Oops.

Bug 2: Cache-flushing needs memory barriers

I Intel CLFLUSH instruction flushes cache lines.

size_t clflush_size =

cpu_info_primary.ci_cflush_lsize;

vaddr_t p;

for (p = start; p < end; p += clflush_size)

x86_clflush(p);

I That should do it, right?

Bug 2: Cache-flushing needs memory barriers

I Intel CLFLUSH instruction flushes cache lines.

size_t clflush_size =

cpu_info_primary.ci_cflush_lsize;

vaddr_t p;

x86_mfence();

for (p = start; p < end; p += clflush_size)

x86_clflush(p);

x86_mfence();

I Except it is not instruction-ordered. It is ordered only by
MFENCE. I forgot MFENCE. Oops.

Bug 3: Cacheability flags

I Entries in the GPU page table, or graphics translation table
‘GTT’, have cacheability flags.

I Everything should correct – but slow – if we disable caching,
right?

Bug 3: Cacheability flags

I Held off turning on these bits for months while trying to find
the source of unusable rendering glitches.

I Figured turning on caching would make things worse.

I Turned on the bits. Everything worked.

I Oops.

