

eXecute In Place support in NetBSD

Masao “uebs” Uebayashi
<uebayasi@tombi.co.jp>

BSDCan 2010

2010.5.13

mailto:uebayasi@tombi.co.jp

Who am I

NetBSD developer
Japanese
Living in Yokohama
Self-employed

Since Dec. 15 2008
Tombi Inc.

Agenda

Demonstration
Introduction
Program execution
VM

Virtual memory management
Physical memory management
Fault handler, pager
:

Design of XIP

Demonstration

XIP on NetBSD/arm (i.MX35)

Introduction

What is XIP?
Execute programs directly from devices
No memory copy
Only about userland programs

(Kernel XIP is another story)

Introduction

Who needs XIP?
Embedded devices

Memory saving for less power consumption
Boot time

Mainframes (Linux)
Memory saving for virtualized instances

:
“Nothing in between”

Introduction

How to achieve XIP?
Don't copy programs to memory when
executing it
“Execute” == mmap()
:
:
:
:
:
What does that *actually* mean?

Goals

No hacks
Keep code cleanliness
Keep abstraction

Including device handling
:
:

Performance
Latency
Memory efficiency

Program execution

execve(2) → sys_execve()
Prepare

Read program header using I/O
Map sections
Set program entry point

Execute
Page fault is triggered

Load pages using VM
Execution is resumed

Program execution

I/O part needs no changes
If block device interface (d_strategy()) is
provided

VM part needs changes!!!

Virtual memory management

http://en.wikipedia.org/wiki/Virtual_memory
Virtual memory is a computer system technique which gives an
application program the impression that it has contiguous
working memory (an address space), while in fact it may be
physically fragmented and may even overflow on to disk
storage.

Developed for multitasking kernels, virtual memory provides
two primary functions:

Each process has its own address space, thereby not
required to be relocated nor required to use relative
addressing mode.
Each process sees one contiguous block of free memory
upon launch. Fragmentation is hidden.

Virtual memory management

http://en.wikipedia.org/wiki/Virtual_memory
All implementations (excluding emulators) require hardware
support. This is typically in the form of a memory management
unit built into the CPU.

Virtual memory management

Resource management
Virtual address space
Physical memory

On-demand paging
Limited resource
Slow operation (I/O)

Object abstraction
Linear mapping
Page cache

Virtual memory management

Behavior == object oriented + event driven
Preparation

API
Kernel API
User API (== syscall)

Resolution
Fault handler
VM objects -> pager

Physical memory management

Structure
vm_physseg

Continuous physical memory segment
Registered at bootstrap
(hotplug is not yet)

vm_page
Per-page metadata
Page's state
MI vs. MD (vm_page_md)
CPU cache vs. page cache

Fault handler

On-demand operations
Paging (page cache <-> backing store)

getpages() returning *vm_page[]
H/W mapping (TLB <-> page table)

pmap_enter() with vm_page->phys_addr
Optimizations

Pre-fault
Copy-on-write

Relying on H/W assistance (MMU)

Fault handler

Behavior
Suspend the faulting context
Resolve things

Paging (== I/O == slow)
*** do dirty things here ***
H/W mapping

Resume the faulted context

Pager

Object-oriented abstraction
Linear space
PAGE_SIZE wise
Any backing store

Vnode
Swap (aobj)

VM object's operation
“get pages”
“put pages”

Pager

Device pager
Character device
mmap(2)'ing /dev/XXX
“Unmanaged”
Its own “special” handler

“Steal” the handling onto its region
No generic support
No copy-on-write, etc.
Its own pmap_enter(9) callsite (ugly)

Pager

Vnode pager
Glue file/filesystem into VM

Represent file as VM object
Address space vs. filesystem / block address
Paging vs. filesystem state
“genfs” functions
:

:
Filesystem is complex but useful component

Pager

Vnode pager for XIP
Return physical address back
to the fault handler
But can't use vm_page because the physical
address is specific to the “activation”
->Return the physical address

by encoding it in “struct vm_page *”
(struct vm_page *)((intptr_t)phys_addr | MAGIC)

->”This is part of a device's segment,
the offset to it is XXX”

“Device segment” and “device page”

Exist on devices
Memory-addressable device region
Attached during device configuration

“Managed”
Which virtual address is mapped to which
physical address?
Track P->V mapping

Paging?
Depend on usage? XXX to be considered

Design

Introduce “device segment” and “device page”
Switch XIP by mount point

Mark mount point as XIP
vnode pager checks if vnode is on XIP mount
If yes, return “device pages” back to generic
fault handler

Teach (generic) fault handler and vnode pager
about “device page” handling

Design

Device driver interface for “device page”
bus_space_physload(9)
bus_space_physload_device(9)
Device drivers *must* register their “possibly
managed” bus address space

VM allocates “context” internally to keep track of
the “managed” device pages

Design

Mount and device driver
-> Interfaced using “device segment”

Device driver registers its segment and gets
“device segment” as a cookie (to VM)
When mounting the device, the “device
segment” is associated with the mount point
Vnode pager refers to the “device segment”
cookie

Implementation

uebayasi-xip branch on anoncvs.NetBSD.org

TODO

More tests, measurements, and tuning
Write more FlashROM device drivers (glues)
Explicit mount option or not
Optimized filesystem (Linux's AXFS)
xmd(4) - XIP memory disk
Memory hotplug, NUMA, ...
Convert framebuffers to use bus_space_physload(9)

Summary

Basic XIP support for NetBSD is implemented
Available in netbsd-6 (hopefully)

A new concept “device page” is introduced and
driver API is provided

bus_space_physload_device(9)
Clean design

No special MD code
No special device drivers
No hacks

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43

