
Fs-utils: File Systems Access Tools for Userland

Arnaud Ysmal (stacktic@NetBSD.org) and Antti Kantee (pooka@cs.hut.fi)

September 2009

Abstract

Currently, file system access is done either through
a kernel driver or a specialized userspace program.
In the former case the file system is mounted with
the mount utility and then accessed with standard
userspace tools such as cat. An example of the latter
case is the mtools utility suite which allows to access
msdos file systems.

The NetBSD Runnable Userspace Meta Program
(RUMP) framework enables the use of kernel file sys-
tem drivers as part of userspace programs. By building
upon RUMP and NetBSD base system utilities such as
ls and cp, we have created the fs-utils application suite.
It provides mtools-like file system access without re-
quiring mount privileges or an in-kernel driver. In con-
trast to mtools, fs-utils reuses the kernel file system
drivers instead of relying on a userspace reimplemen-
tation, supports a total of 12 file systems from NetBSD
plus FUSE file systems, and offers the same usage as
the well-known tools (e.g. all of the flags of ls are sup-
ported). In addition to running on NetBSD, there has
been initial success in running fs-utils on Linux.

This paper explains how these programs were writ-
ten and recounts the evolution of the project. It also
shows the benefits and use-cases of fs-utils.

1 Introduction

A file system is a mechanism that allows a user to or-
ganize his or hers data with files and directories. It
enables to read a file “foo” in the directory “bar” in-
stead of having to remember the block and sector of
the data.

A file system image contains the file system’s in-
ternal representation of the file system’s state. A file
system image can either be a regular file or it can be
contained on a mass media partition. Additionally, in
the case of NFS or another networked file system, we

consider the connection to the server to be the file sys-
tem image.

File systems can be accessed by kernel drivers (what
we do when using mount) or by userland tools. In this
paper, we focus on the latter, or more precisely on user-
land tools using the file system code from the NetBSD
kernel. This principle is implemented on NetBSD and
known as RUMP (Runnable Userspace Meta Program)
[1]. We can also use NetBSD kernel code in userspace
on non-NetBSD operating systems, as we show later
in this paper.

The rest of this paper is organized as follows. The
remainder of this Section will present fs-utils and ex-
plain what we wanted to achieve by creating this new
set of tools. Section 2 focuses on the way it was de-
veloped, discover possible use cases and point out its
benefits. Section 3 analyses our approach and Section
4 presents some common use cases. Section 5 presents
some recent developments and finally Section 6 con-
cludes.

1.1 What is fs-utils?
fs-utils is a set of utilities (including commands like
cat, chflags, chmod, cp, du, find, ln, ls, mkdir, mkfifo,
mv, rm, rmdir, touch) that give access to a file system
image. It was developed on top of RUMP and UKFS
libraries. With this, it is possible to use commands
like:

$ fsu_ls ffs.img /etc/defaults
daily.conf pf.boot.conf security.conf
monthly.conf rc.conf weekly.conf
$ fsu_cat ffs.img /etc/defaults/weekly.conf
$ echo "foo" | fsu_write ffs.img bar
$ fsu_cat ffs.img bar
foo

1.2 Why fs-utils?

The aim of this project is to provide a set of tools to
manipulate file systems, like mtools[2], e2fsprogs[3].

Mtools opens the possibility of accessing and/or
modifying FAT file systems by offering a set of com-
mands. For instance, it is possible to use the command
mdir to list a directory or mren to rename a file.

fs-utils wants to achieve the same main goal. How-
ever, unlike mtools, the purpose of fs-utils is to pro-
vide a generic set of commands which could be used
on many different file systems instead of focusing on a
particular one.

That is why fs-utils has been designed to handle ev-
ery file system supported by RUMP.

With this set of tools, anyone can manipulate a file
system image he has access to without having to mount
it. Mounting is, by default, an operation only allowed
to root user. However with this type of access, there is
no need to be root.

Possible operations depend on the file system image
permissions. The user will be able to read file contents
and browse directories with read access and modify
the files contained in the image if he or she has write
permissions to the image. Permissions of files inside
the image do not have any effect as the user running
a utility from fs-utils is considered root for operations
on the file system image.

1.3 RUMP and UKFS

fs-utils was developed on top of the UKFS library
(User-Kernel File System Library) [4] and RUMP
(Runnable Userspace Meta Programs) [5].

kernel

user
application

syscall entry

vfs

kernel fs

kernel (runtime)

Regular
File System

application

librump

kernel fs

libukfs

Standalone Userspace
File System Using ukfs

UKFS is a library which uses RUMP. The UKFS
interface is based on pathnames and each call is self-
contained for ease of use. This means that it is not
necessary to e.g. open a file before reading it. The file
system image is mounted internally within the process
using UKFS. The kernel mount system call is not used,

and the mountpoint is accessible only within the pro-
cess which is did the mounting.

The following is an example of a program using
UKFS. It mounts an ffs image, creates a directory
called “dir” and reads 11 bytes from a file. The file
system is then unmounted.

fs = ukfs_mount("ffs", "/ffs.img", "/", 0,
&args, sizeof(args));

ukfs_mkdir(fs, "/dir", 0777);
ukfs_read(fs, "/a/file", 0, buf, 11);
ukfs_release(fs, 0);

2 Development

2.1 Origin of fs-utils

fs-utils started as a NetBSD project for the Google
Summer of Code 2008[6]. It was written as a proof
that file systems servers can work in userland.

2.2 Development

The first step was to start writing some tools to get in
touch with the UKFS library and see what should be
added in it to ease its usage.

Few functions were added, mostly about files status
like changing the owner, setting permissions and get-
ting information. These commands were needed due
to their use in a large number of commands that were
planned.

The attempt was to write commands completely
from scratch. This created problems in terms of main-
tainability since a new set of commands had to be
maintained, although it was quite similar to the stan-
dards commands.

While writing these commands, some functions ap-
peared to be generic enough to be shared in libraries.
In these functions, we can find file handling and di-
rectory opening and reading and virtually mounting
and unmounting. It was clear that we needed at least
two libraries, the first one, called fsu mount, takes care
of the mounting and unmounting and the second one,
called fsu utils, replaces functions from the libc that
access file systems.

After writing both libraries, and doing some exper-
imentation, the decision to base future versions on ex-
isting utility code was made. This means that fs-utils
mkdir would use the same code as the base system
mkdir, and so forth.

2.2.1 fsu mount

fsu mount takes care of everything needed to mount
a file system. It is able to test all supported file sys-
tems until it finds one that match the file system used
for the current device. The algorithm used to do this
is quite simple. It tries to mount the image with each
supported file system, one by one, until it find a file
system which is able to parse the command line argu-
ments and mount returns successfully. With this, the
user does not have to give the file system type of the
image.

Code needed to mount a file system image with this
library:

#include <fsu_mount.h>

DECLARE_UKFS(ukfs)

int main(int argc, char *argv[])
{

...
FSU_MOUNT(argc, argv, ukfs);
...

}

DECLARE_UKFS(ukfs) means that the program
will use a struct ukfs which is called ukfs. Then
FSU_MOUNT(argc, argv, ukfs); will use the
standard command line arguments to process the
mount. For example, the arguments “-o ro /dev/wd1a”
might be given. This would result in a read-only mount
of /dev/wd1a with the mount handle stored in “ukfs”.

2.2.2 fsu utils

fsu utils is a library which takes care of three aspects.

• The first one is implementing functions from the
libc that manage file operations to pass through
UKFS, like opening, reading, writing and closing.
All of these functions are prefixed with “fsu ”, for
instance: fsu fopen, fsu fread, etc...

• The second is replacing function that manage di-
rectories like opening and reading a directory.
They are also prefixed with “fsu ”.

• The last one is fts(3). It is a set of functions which
allows the user to recursively get the files and/or
directories within a directory. It is used by pro-
grams like ls, chmod, chown, etc... A modified
version of fts(3) was written so as to use the code
that exists and is well tested. By doing this, we
were able to use most of the code from ls, chmod
and so on with less modifications as possible.

2.2.3 Commands

The remaining work was to modify classic programs
to use these libraries. These modifications consist in:

• Adding a ukfs declaration
(DECLARE_UKFS(ukfs))
and call to the virtual mount
(FSU_MOUNT(argc, argv, ukfs)),
provided by the fsu mount library.

• Replacing the calls to libc functions to their coun-
terparts in the fsu utils library or in ukfs:

#define stat(path, sb) ukfs_stat(ukfs, path, sb)
#define lstat(path, sb) ukfs_lstat(ukfs, path, sb)

• Updating the usage to contain the file system im-
age path argument

These changes were added to the code using ifdef so
as to be able to compile the programs with file sys-
tem access through RUMP or through libc and system
calls.

So far, updates of these programs are done manually.

2.2.4 Installing

As of now, there are two ways of installing these pro-
grams for NetBSD 5.0. The first one is to use the pack-
age available in pkgsrc[7] under filesystems/fs-utils.
pkgsrc is the NetBSD packages collection framework.
The second one, which is the version with the newest
code, consists in getting the code directly from the
NetBSD othersrc cvs repository and compiling it. The
former will install the binaries in your pkgbase/bin; the
latter will install the binaries in /usr/local/bin.

3 Benefits

3.1 Analysis of mtools-like approaches
GNU mtools[2] is a set of tools to access/modify a FAT
file system. It is composed of tools prefixed with a m
like mcat, mdu, mren, ... Their approach consists in
entirely rewriting the code of the commands and fo-
cusing on one specific file system.

There are two main drawbacks in this approach.
The first one is that the code for the file system has

to be written from scratch. The new code to handle file
systems can contains bugs as this code is not as well

tested as existing implementations which have been in
use for a long time, such as kernel drivers.

While these programs have the main functionality of
their POSIX counterparts (mcat and cat, mdu and du),
they do not follow the entire specification (for instance,
not all flags are supported).

The other disadvantage is that, in general, these pro-
grams support only one file system. This means that
you need to have one program for each command and
for each file system you want to access this way. We
can see examples in Minix, with mtools for accessing
FAT file systems, isoinfo, isodir and isoread for ac-
cessing ISO9660 file systems and ext2tools[8] for ac-
cessing ext2fs. In these cases, a different set of tools
must be used for each file system, which also means a
different usage for the same command.

3.2 Analysis of our approach
3.2.1 Our approach

Our approach consists in trying to avoid writing totally
new code, so far as we can, in order to reduce the ef-
fort needed to maintain it. That is why we decided
to reuse code from the NetBSD kernel. Furthermore,
since the code comes from the very base of the system,
it is therefore well tested.

In the NetBSD kernel, the file system section con-
sists in two parts : generic file system handling and
specific code for each file system.

RUMP reuses them to create a generic library called
rumpvfs and a specific library for each file system sup-
ported in the kernel.

As the kernel code is used in a way than is not usual,
it could be possible to detect new bugs in it and fix
them in the NetBSD kernel code.

3.2.2 Benefits of RUMP

RUMP also allows to improve maintainability. The
code of each file system is held in a library which can
be updated (rebuild) with patches added to the file sys-
tem code in the kernel since the compilation of these
programs. This means that rebuilding the RUMP li-
braries is enough to get the benefits of a newly added
patch in the kernel code.

Each file system is held in a library called li-
brumpfs <fs>. These libraries are loaded dynami-
cally so that we can support new file systems without
recompiling the tools.

3.2.3 Portability

A clear advantage of userspace reimplementations
such as mtools is that the same codebase works on
multiple operating systems. For fs-utils to be a viable
alternative, it must be usable on operating systems be-
yond NetBSD. This requires running NetBSD kernel
code in userspace on other operating systems.

We investigated running fs-utils on a i386 Gen-
too Linux machine and found that we could com-
pile RUMP, UKFS and fs-utils on Linux and success-
fully access a file system image. However, support
is in a very early stage and it will require a lot more
work before fs-utils is ready for public use on non-
NetBSD machines. The major problem is that Linux
and NetBSD ABIs do not match: struct stat, struct
timeval and struct dirent are of different binary lay-
out. For fs-utils to be fully functional on other op-
erating systems, translation to and from the NetBSD
ABI needs to be written. Since translation is limited
to the structures mentioned above, we argue that this
is a reasonable task even for supporting all the major
operating systems.

3.2.4 Available commands

There are three kind of tools: the standard tools, the fs-
utils specific tools and the console tool. They can also
be seen as in-image tools, tools to transfer files from/to
the image to the host file system and a mini shell that
uses previous commands.

The standards POSIX tools which were adapted to
use RUMP are: chflags, chmod, chown, cp, du, ln, ls,
mkdir, mkfifo, mknod, rm, rmdir.

$ fsu_mkdir ffs.img /foo
$ fsu_ls ffs.img -ld /foo
drwxr-xr-x 2 root wsrc 512 Aug 30 17:02 /foo
$ fsu_chmod ffs.img 740 /foo
$ fsu_chown ffs.img stacktic:users /foo
$ fsu_ls ffs.img -ld /foo
drwxr----- 2 stacktic users 512 Aug 30 17:02 /foo
$ fsu_mkfifo ffs.img /foo/pipe
$ fsu_mknod ffs.img /foo/block b 0
$ fsu_cp ffs.img -R /foo /bar
$ fsu_ls ffs.img -l /bar
brw-r--r-- 1 root wsrc 0, 0 Aug 30 17:11 block
prw-r--r-- 1 root wsrc 0 Aug 30 17:11 pipe
$ fsu_rm ffs.img -r /bar
$ fsu_ls ffs.img /bar
fsu_ls: /bar: No such file or directory

The following tools had to be rewritten: cat, diff,
find, mv, touch.

$ fsu_cat
usage: fsu_cat [-o mnt_args] [[-t] fstype]

[-f] fsdevice [-benstv] [-] filename

$ fsu_cat ffs.img /txtfile
foo bar
$ fsu_mv ffs.img /txtfile /txtfile2
$ fsu_cat ffs.img /txtfile2
foo bar
$ fsu_diff /txtfile /txtfile2 && echo same
same

3.2.5 fs-utils specific tools

These tools were written specifically for fs-utils:

• fsu console: command line tool acting as a shell
to help browsing the image

$ fsu_console ffs.img
ffs.img(ffs):/ # ls
altroot boot.cfg etc libdata mnt root stand usr
bin dev lib libexec rescue sbin tmp var
ffs.img(ffs):/ # cd /root
ffs.img(ffs):/root # ls -l .shrc
-rw-r--r-- 1 root wheel 221 Aug 29 13:38 .shrc
ffs.img(ffs):/root # chmod u+x .shrc
ffs.img(ffs):/root # ls -l .shrc
-rwxr--r-- 1 root wheel 221 Aug 29 13:38 .shrc

• fsu ecp: command allowing the user to transfer
files from/to the image to/from the host file sys-
tem (it is also called fsu put and fsu get). fsu put
is also used to import files to an image by a new
version of makefs[1]

• fsu exec: command allowing the user to execute
a local program on a file contained in the image.
For instance, “fsu exec an image $EDITOR foo”
enables you to edit the file named foo contained
on the image an image with your favorite editor
(which is not on the image)

• fsu write: command writing its
input to a file in the image
(ls foo | fsu_write image /bar
will write the output of the ls foo to a file called
bar in the image root directory)

3.2.6 Supported file systems

At the very time of writing this paper, this set of
tools can interact with 12 file systems (iso9660, efs,
ext2fs, ffs, hfs, lfs, msdos, nfs, ntfs, sysvbfs, tmpfs,
udf) plus file systems written for fuse[9], thanks to
the refuse[10] library. It has been successfully tested
on the fuse-ntfs-3g file system, which is available on
pkgsrc[7] in filesystems/fuse-ntfs-3g.

Moreover, it was written so as to facilitate the addi-
tion of new file systems. It is not necessary to recom-
pile the commands to support new file systems.

3.3 Benefits of userland file system server
• Security as the file system code runs in userland

• Allows users to manipulate their own images
without having to mount them with a system com-
mand

• Easier file system code debugging

• Easier file system code development

This kind of access avoids problems due to mal-
formed file systems which can lead to kernel crashes.
Instead of a kernel crash, there will only be a crash
of the application and the generation of a core dump
which helps debugging to debug the file system imple-
mentation.

4 Use cases
In these use cases, the term mount can have two mean-
ings, the first one is mount as a kernel mount which is
the standard way of mounting. The second meaning is
a rump mount or per-process mounting which is a user
space mount.

• The first use case we thought about was the ac-
cess to a file system image, so that any one own-
ing an image with read and/or write permission on
it can access the image without having to mount
it. Thanks to this, it is possible to manipulate file
system images without having to be root and hav-
ing to use vnconfig and mount but also without
any special option in the kernel.

• It also works for non-image based file systems.
As an example, the Network File System is sup-
ported by RUMP. For example, it allows a non-
root user to get/put files from/to a NFS server he
has access to, with the fsu ecp command.

• A user can also use these tools on a real block de-
vice he has access to, even if the current kernel
was not built with the support for the correspond-
ing file system or if he does not trust the partition,
which can be the case for removable devices like
USB sticks.

• It is possible to use these tools to make file system
development easier. While developing a generic
file system mounting protocol this year, we were

able to use these programs to test the code written
some minutes before without having to reboot or
load a module that could panic the kernel (in this
project, using module was not possible). After re-
compiling RUMP libraries, it was possible to do
a: fsu_ls -t ffs ffs.img (print the list
of files contained in the ffs image named ffs.img).
As said before, if the application crashed due to a
bug, running gdb was possible to help fixing the
bug that gave the error. The only bug encoun-
tered that was not found while using RUMP was a
memory space error (saying that a chunk of mem-
ory is in user space when it is in kernel space).
This is understandable as everything in RUMP is
in user space. Without this memory space issue,
it was possible to run the code written in a real
kernel without doing changes.

• These tools can also be used by the command line
console tools (fsu console). It makes file system
browsing easier.

These commands allow a user to access file systems
which are not supported by the kernel or are in devel-
opment. In the latter case, it can avoid a crash of the
whole system. It also provides access to file systems in
a secure way that does not compromise the system if
the file system has been corrupted - intentionally or not
- and that could have crashed the kernel. These com-
mands add privileges to non-root user (browsing their
own images) without decreasing the system security.

5 Evolutions since NetBSD 5.0
In this section, we are taking NetBSD 5.0 as reference.
This is the first stable version on which RUMP and
UKFS were integrated.

5.1 The RUMP pseudo system call way

Since NetBSD 5.0, the implementation of RUMP
evolved and is still evolving. The idea of RUMP
pseudo system call was added. It allows the user to use
functionality equivalent to the real system calls with-
out going to the kernel space. Most file systems related
system calls are supported.

A pseudo system call is a function which is not a
real system call. The function catching this call is
in userland, as opposed to real system calls where

the handler is on the kernel side. With these sys-
tem calls we can get even closer from original pro-
grams. This is due to the fact that we do not have
to handle a struct representing the virtual mount. In-
stead of writing : ukfs_chdir(ukfs, path);,
we use rump_sys_chdir(path);. The re-
moval of this struct allows the function to have
the same prototype as the system call (in this case
int chdir(const char *path);).

With this, programs that use file systems access can
use two arrays of functions. The first one with real
system calls and the second one with RUMP system
calls, so that we can choose when we start the program
which one we want to use.

Doing so, the UKFS library is no longer needed as
the RUMP system calls can do the same. Using these
pseudo-system calls makes it easier to handle both ac-
cess types in the same compiled command. For exam-
ple, adding RUMP support to ls with this method con-
sists of a unified diff of less than 160 lines (33 lines
added and 10 lines changed). The size of original ls is
1692 lines.

6 Conclusions and Future Work
The fs-utils project and its evolution were presented in
depth. The main benefits provided by this set of tools
are:

• Support for several file systems

• No specific kernel option needed

• Allows users to manipulate their own images
without having to mount them with a system com-
mand

• Security as the file system code runs in userland

• Use of robust code from the NetBSD kernel

• Easier file system code development

• Easier file system code debugging

One idea of what can be done in the near future is to
merge commands from the base system and commands
from fs-utils, so as to be able to use a switch to easily
choose whether to use the command through RUMP or
through standard system calls. As a proof of concept,
ls has been implemented. The user can use ls normally

or set an environment variable to use ls through RUMP
system calls.

The fsu utils library is composed of rewritten func-
tions of the libc. It could be a good idea to use code
from the libc to do this.

The fsu mount library needs to have specific code
for each supported file system. A project that will lead
to the removal of this is in development. This project
consists in developing a unified mounting protocol. Its
aim is to avoid the use of file system specific code dur-
ing the mounting process.

We could consider installing tools from fs-utils as
a part of the base system. It could also be possible
to merge the fs-utils utilities and the POSIX ones. To
do so, we would have to choose how to use RUMP
instead of standard libc/system calls for file system ac-
cess. It would require the RUMP system calls which
were added since NetBSD 5.0.

References

[1] Antti Kantee. Rump File Systems: Kernel Code
Reborn. In USENIX Annual Technical Confer-
ence, 2009.

[2] GNU mtools .
http://www.gnu.org/software/mtools/intro.html.

[3] Theodore Ts’o. E2fsprogs: Ext2/3/4 Filesystem
Utilities. http://e2fsprogs.sourceforge.net/, 2008.

[4] Antti Kantee. User-Kernel
File System Library (UKFS).
http://www.NetBSD.org/docs/rump/ukfs.html.

[5] Antti Kantee. Runnable Userspace Meta Pro-
grams. http://www.NetBSD.org/docs/rump/.

[6] Arnaud Ysmal. File system access utilities
(fs-utils). http://www.NetBSD.org/∼stacktic/fs-
utils.html.

[7] pkgsrc: The NetBSD Packages Collection.
http://www.pkgsrc.org.

[8] Terry McConnell. ext2 file system access tools.
http://barnyard.syr.edu/software.shtml.

[9] Filesystem in Userspace.
http://fuse.sourceforge.net.

[10] A. Kantee and A. Crooks. ReFUSE: Userspace
FUSE Reimplementation Using puffs. In EuroB-
SDCon, 2007.

