
CMDB Driven by Perl
Road to a Perl ”driven” Configuration Management Database

Jens Rehsack

Niederrhein Perl Mongers

The Perl Conference in Amsterdam

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 1 / 44

Overview

Part I

Introduction

1 Introduction
Motivation

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 2 / 44

Introduction Motivation

Motivation

Progress
Progress isn’t made by early risers. It’s made by lazy men trying to

find easier ways to do something.
(Robert A. Heinlein)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 3 / 44

Introduction Motivation

Motivation

Efficiency
Business success is because of Perl. It enables us to deliver right

solutions in days instead of months.
(Elizabeth Mattijsen)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 4 / 44

Introduction Motivation

Goal

Automation
Full flavoured systems management

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 5 / 44

Introduction Motivation

Goal

Automation
Full flavoured systems management

Installation without Administrator interaction

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 5 / 44

Introduction Motivation

Goal

Automation
Full flavoured systems management

Installation without Administrator interaction

Control sensors and alarming

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 5 / 44

Introduction Motivation

Goal

Automation
Full flavoured systems management

Installation without Administrator interaction

Control sensors and alarming

Ensured system state by actual-theoretical comparison

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 5 / 44

Introduction Motivation

Goal

Automation
Full flavoured systems management

Installation without Administrator interaction

Control sensors and alarming

Ensured system state by actual-theoretical comparison

Faster reaction in emergency cases by organized component moving

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 5 / 44

Introduction Motivation

Goal

Automation
Full flavoured systems management

Installation without Administrator interaction

Control sensors and alarming

Ensured system state by actual-theoretical comparison

Faster reaction in emergency cases by organized component moving

Have an up-to-date ”Operation Handbook” as well as archiving them

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 5 / 44

Overview

Part II

Challenge

2 Beginning
Taking over
After reporting
Mine Sweeper
Baby Steps

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 6 / 44

Beginning Taking over

Begin with reporting

Begin with reporting

In the beginning was the (Installation-)Report

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 7 / 44

Beginning Taking over

Begin with reporting

Begin with reporting

In the beginning was the (Installation-)Report

Technical Sales defined an XML Document for Change Requests and Status
Reports

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 7 / 44

Beginning Taking over

Begin with reporting

Begin with reporting

In the beginning was the (Installation-)Report

Technical Sales defined an XML Document for Change Requests and Status
Reports

Based on work of forerunner a 70% solution could be delivered

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 7 / 44

Beginning Taking over

Begin with reporting

Begin with reporting

In the beginning was the (Installation-)Report

Technical Sales defined an XML Document for Change Requests and Status
Reports

Based on work of forerunner a 70% solution could be delivered

Document Definition lacks entity-relations

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 7 / 44

Beginning Taking over

Begin with reporting

Begin with reporting

In the beginning was the (Installation-)Report

Technical Sales defined an XML Document for Change Requests and Status
Reports

Based on work of forerunner a 70% solution could be delivered

Document Definition lacks entity-relations

Document Definition misses technolgy requirements

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 7 / 44

Beginning Taking over

Begin with reporting

Begin with reporting

In the beginning was the (Installation-)Report

Technical Sales defined an XML Document for Change Requests and Status
Reports

Based on work of forerunner a 70% solution could be delivered

Document Definition lacks entity-relations

Document Definition misses technolgy requirements

⇒ Appears to be a dead end

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 7 / 44

Beginning After reporting

From reporting to . . .

Mind the goal
Alice: Would you tell me, please, which way I ought to go from here?
The Cheshire Cat: That depends a good deal on where you want to

get to.
(Lewis Carroll)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 8 / 44

Beginning Mine Sweeper

Where do I begin

To write the workflow how great Perl 5 can be
The project was in a state where a developer created a particular Report
based on the existing snapshot.

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 9 / 44

Beginning Mine Sweeper

Where do I begin

To write the workflow how great Perl 5 can be
The project was in a state where a developer created a particular Report
based on the existing snapshot.

This solution did not maintain an abstraction layer for gathered data - every
time when the report needs an extension, an end-to-end (snapshot to
XML-Tag) enhancement had to be created.

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 9 / 44

Beginning Mine Sweeper

Where do I begin

To write the workflow how great Perl 5 can be
The project was in a state where a developer created a particular Report
based on the existing snapshot.

This solution did not maintain an abstraction layer for gathered data - every
time when the report needs an extension, an end-to-end (snapshot to
XML-Tag) enhancement had to be created.

Changes shall be deployed from the same report format as installations are
reported.

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 9 / 44

Beginning Mine Sweeper

Where do I begin

To write the workflow how great Perl 5 can be
The project was in a state where a developer created a particular Report
based on the existing snapshot.

This solution did not maintain an abstraction layer for gathered data - every
time when the report needs an extension, an end-to-end (snapshot to
XML-Tag) enhancement had to be created.

Changes shall be deployed from the same report format as installations are
reported.

We have to be able to say at any moment what is operated on the platform.

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 9 / 44

Beginning Baby Steps

Baby Steps

Improve knowledge
Based on identified issues the first goal had to be to identify all entities and their
relations together

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 10 / 44

Beginning Baby Steps

Baby Steps

Improve knowledge
Based on identified issues the first goal had to be to identify all entities and their
relations together

Surrounded
Problem: The entire platform was completely unstructured

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 10 / 44

Beginning Baby Steps

Baby Steps

Multiple Beginnings

The already known ”(Installation-)Report”

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 11 / 44

Beginning Baby Steps

Baby Steps

Multiple Beginnings

The already known ”(Installation-)Report”

Platform Snapshot (SCM Repository of selected configuration files)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 11 / 44

Beginning Baby Steps

Baby Steps

Multiple Beginnings

The already known ”(Installation-)Report”

Platform Snapshot (SCM Repository of selected configuration files)

Puppet Classes (without Hiera) mixed with Configuration Items (within
Hiera) and prepared configuration files (unsupervised)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 11 / 44

Beginning Baby Steps

Baby Steps

Multiple Beginnings

The already known ”(Installation-)Report”

Platform Snapshot (SCM Repository of selected configuration files)

Puppet Classes (without Hiera) mixed with Configuration Items (within
Hiera) and prepared configuration files (unsupervised)

Hiera is Puppet’s built-in key/value data lookup system. By default, it uses
simple YAML or JSON files, although one can extend it to work with
almost any data source.

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 11 / 44

Overview
Part III

Sweat

3 World Domination
Separation

4 Concerns
Identifying

5 Tuck In!
MI:5
Home Improvement
Clean Picture
Control
Reflecting Relationships
Meanwhile
Merging Pictures
Future and Past
Features
Meanwhile IIJens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 12 / 44

World Domination Separation

Circle in the Sand

:platform

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

collect

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

:scan db

collect

scan

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

:scan db:cmdb

collect

scan

process-scan

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

:scan db:cmdb

:hiera

collect

scan

process-scan

yaml-gen

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

:scan db:cmdb

:hiera

collect

scan

process-scan

yaml-gen

puppet run

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

:scan db:cmdb

:hiera

collect

scan

process-scan

yaml-gen

puppet run

CRQ

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

World Domination Separation

Circle in the Sand

:platform

:snapshot

:scan db:cmdb

:hiera

:report

collect

scan

process-scan

yaml-gen

puppet run

CRQ

export

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 13 / 44

Concerns Identifying

Technical Concerns

Rough

Collecting platform parameters (to query them in structured way)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 14 / 44

Concerns Identifying

Technical Concerns

Rough

Collecting platform parameters (to query them in structured way)

Identify coherences of Configuration Items (CI)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 14 / 44

Concerns Identifying

Technical Concerns

Rough

Collecting platform parameters (to query them in structured way)

Identify coherences of Configuration Items (CI)

Define a data model

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 14 / 44

Concerns Identifying

Technical Concerns

Rough

Collecting platform parameters (to query them in structured way)

Identify coherences of Configuration Items (CI)

Define a data model

Define technical requirements

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 14 / 44

Concerns Identifying

Practical Concerns

Practical
Validity of CI’s

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 15 / 44

Concerns Identifying

Practical Concerns

Practical
Validity of CI’s

Limits of our CI’s

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 15 / 44

Concerns Identifying

Practical Concerns

Practical
Validity of CI’s

Limits of our CI’s

Data ownership of CI’s

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 15 / 44

Concerns Identifying

Practical Concerns

Practical
Validity of CI’s

Limits of our CI’s

Data ownership of CI’s

Methods to persist CI’s

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 15 / 44

Concerns Identifying

Practical Concerns

Practical
Validity of CI’s

Limits of our CI’s

Data ownership of CI’s

Methods to persist CI’s

Methods to access CI’s

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 15 / 44

Concerns Identifying

Practical Concerns

Practical
Validity of CI’s

Limits of our CI’s

Data ownership of CI’s

Methods to persist CI’s

Methods to access CI’s

Permission management

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 15 / 44

Tuck In!

Overview
Part III

Sweat

3 World Domination
Separation

4 Concerns
Identifying

5 Tuck In!
MI:5
Home Improvement
Clean Picture
Control
Reflecting Relationships
Meanwhile
Merging Pictures
Future and Past
Features
Meanwhile IIJens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 16 / 44

Tuck In! MI:5

Impossible Things

Impossible Things
Alice laughed. ”There’s no use trying,” she said: ”one can’t believe

impossible things.”

”I daresay you haven’t had much practice,” said the Queen. ”When I
was your age, I always did it for half-an-hour a day. Why, sometimes I’ve
believed as many as six impossible things before
breakfast.” (Lewis Carroll)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 17 / 44

Tuck In! Home Improvement

The Fool with a Tool

Try again

So we closed our eyes, took a deep breath (multiple times) and looked around for
tools to store serialized data and read in structured way . . .

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 18 / 44

Tuck In! Home Improvement

The Fool with a Tool

Try again

So we closed our eyes, took a deep breath (multiple times) and looked around for
tools to store serialized data and read in structured way . . .

Tool Time
MongoDB allows easy storing in any format - but lacks structured querying

dedicated entities (configuration items)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 18 / 44

Tuck In! Home Improvement

The Fool with a Tool

Try again

So we closed our eyes, took a deep breath (multiple times) and looked around for
tools to store serialized data and read in structured way . . .

Tool Time
MongoDB allows easy storing in any format - but lacks structured querying

dedicated entities (configuration items)

Data Files delegate relationship handling completely to business logic

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 18 / 44

Tuck In! Home Improvement

The Fool with a Tool

Try again

So we closed our eyes, took a deep breath (multiple times) and looked around for
tools to store serialized data and read in structured way . . .

Tool Time
MongoDB allows easy storing in any format - but lacks structured querying

dedicated entities (configuration items)

Data Files delegate relationship handling completely to business logic

AnyData2 gotcha - allows reading most confusing stuff and could be queried in
structured way

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 18 / 44

Tuck In! Home Improvement

. . . is still a Fool

Volatile Structure
Persist structured data using SQLite

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 19 / 44

Tuck In! Home Improvement

. . . is still a Fool

Volatile Structure
Persist structured data using SQLite

Define a data model representing existing relations

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 19 / 44

Tuck In! Home Improvement

. . . is still a Fool

Volatile Structure
Persist structured data using SQLite

Define a data model representing existing relations

Develop AnyData2::Format classes representing defined ER (Entity
Relationship) model

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 19 / 44

Tuck In! Home Improvement

. . . is still a Fool

Volatile Structure
Persist structured data using SQLite

Define a data model representing existing relations

Develop AnyData2::Format classes representing defined ER (Entity
Relationship) model

Develop simple MOP inside this AnyData2 instance to manage attributes vs.
columns

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 19 / 44

Tuck In! Home Improvement

. . . is still a Fool

Volatile Structure
Persist structured data using SQLite

Define a data model representing existing relations

Develop AnyData2::Format classes representing defined ER (Entity
Relationship) model

Develop simple MOP inside this AnyData2 instance to manage attributes vs.
columns

Glue everything together using SQL

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 19 / 44

Tuck In! Home Improvement

. . . is still a Fool

Volatile Structure
Persist structured data using SQLite

Define a data model representing existing relations

Develop AnyData2::Format classes representing defined ER (Entity
Relationship) model

Develop simple MOP inside this AnyData2 instance to manage attributes vs.
columns

Glue everything together using SQL

The entire ER model remains a moving target

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 19 / 44

Tuck In! Clean Picture

Abstraction Layer

. . . of configured components
Focus the goal to know what is operated

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 20 / 44

Tuck In! Clean Picture

Abstraction Layer

. . . of configured components
Focus the goal to know what is operated

Depth first search over all component configuration files

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 20 / 44

Tuck In! Clean Picture

Abstraction Layer

. . . of configured components
Focus the goal to know what is operated

Depth first search over all component configuration files

Identify relationships (remember: there is no operation model at all)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 20 / 44

Tuck In! Clean Picture

Abstraction Layer

. . . of configured components
Focus the goal to know what is operated

Depth first search over all component configuration files

Identify relationships (remember: there is no operation model at all)

Clean up configuration when no reasonable relationships can be resolved or
relationships are conflicting

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 20 / 44

Tuck In! Control

Moo in practice

Moo in practice
It appears that the tools helping to do safe IoT device updating are the same tools
helping to coordinate CI determining:

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 21 / 44

Tuck In! Control

Moo in practice

Moo in practice
It appears that the tools helping to do safe IoT device updating are the same tools
helping to coordinate CI determining:

MooX::Cmd helps separating concerns

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 21 / 44

Tuck In! Control

Moo in practice

Moo in practice
It appears that the tools helping to do safe IoT device updating are the same tools
helping to coordinate CI determining:

MooX::Cmd helps separating concerns

MooX::ConfigFromFile helps contribute ”divine wisdom”

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 21 / 44

Tuck In! Control

Moo in practice

Moo in practice
It appears that the tools helping to do safe IoT device updating are the same tools
helping to coordinate CI determining:

MooX::Cmd helps separating concerns

MooX::ConfigFromFile helps contribute ”divine wisdom”

MooX::Options allow overriding ”divine wisdom” by ”individual
wisdom”

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 21 / 44

Tuck In! Control

Moo in practice

Moo in practice
It appears that the tools helping to do safe IoT device updating are the same tools
helping to coordinate CI determining:

MooX::Cmd helps separating concerns

MooX::ConfigFromFile helps contribute ”divine wisdom”

MooX::Options allow overriding ”divine wisdom” by ”individual
wisdom”

MooX::Log::Any feeds DBIx::LogAny

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 21 / 44

Tuck In! Control

Moo in background

Moo in background
Manage database connections based on concerns

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 22 / 44

Tuck In! Control

Moo in background

Moo in background
Manage database connections based on concerns

Manage CI structures based on relations

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 22 / 44

Tuck In! Control

Moo in background

Moo in background
Manage database connections based on concerns

Manage CI structures based on relations

Manage Web-API integration

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 22 / 44

Tuck In! Reflecting Relationships

Craziness

Crazy
I’m not crazy. My reality is just different than yours.

The Cheshire Cat
(Lewis Carroll)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 23 / 44

Tuck In! Reflecting Relationships

Harmonization

Harmonize Craziness
Practically any administrator had a different background regarding to the
platform components thus a different picture of their relationships

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 24 / 44

Tuck In! Reflecting Relationships

Harmonization

Harmonize Craziness
Practically any administrator had a different background regarding to the
platform components thus a different picture of their relationships

EPIC battles leads to common craziness

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 24 / 44

Tuck In! Reflecting Relationships

Harmonization

Harmonize Craziness
Practically any administrator had a different background regarding to the
platform components thus a different picture of their relationships

EPIC battles leads to common craziness

ER model analysis sessions uncovered holes in picture

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 24 / 44

Tuck In! Meanwhile

Civilized

March Hare: Have some wine.
(Alice looked all round the table, but there was nothing on it but tea.)
Alice: I don’t see any wine.

March Hare: There isn’t any.
Alice: Then it wasn’t very civil of you to offer it.
March Hare: It wasn’t very civil of you to sit down without being invited.

(Lewis Carroll)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 25 / 44

Tuck In! Meanwhile

Adding a Goal

CentOS 5 ends its maintenance
Many of existing tools need to be upgraded

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 26 / 44

Tuck In! Meanwhile

Adding a Goal

CentOS 5 ends its maintenance
Many of existing tools need to be upgraded

Upgraded tools don’t support existing hacks anymore

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 26 / 44

Tuck In! Meanwhile

Adding a Goal

CentOS 5 ends its maintenance
Many of existing tools need to be upgraded

Upgraded tools don’t support existing hacks anymore

Existing hacks must be replaced by a reasonable configuration structure

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 26 / 44

Tuck In! Meanwhile

Adding a Goal

CentOS 5 ends its maintenance
Many of existing tools need to be upgraded

Upgraded tools don’t support existing hacks anymore

Existing hacks must be replaced by a reasonable configuration structure

Same problem like the report format:

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 26 / 44

Tuck In! Meanwhile

Adding a Goal

CentOS 5 ends its maintenance
Many of existing tools need to be upgraded

Upgraded tools don’t support existing hacks anymore

Existing hacks must be replaced by a reasonable configuration structure

Same problem like the report format:
! neither the ER model of platform components nor issues of platform where

known

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 26 / 44

Tuck In! Meanwhile

Adding a Goal

CentOS 5 ends its maintenance
Many of existing tools need to be upgraded

Upgraded tools don’t support existing hacks anymore

Existing hacks must be replaced by a reasonable configuration structure

Same problem like the report format:
! neither the ER model of platform components nor issues of platform where

known
! nor cared about

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 26 / 44

Tuck In! Meanwhile

Self Protection

Delegation
We learned from mistakes of past:

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 27 / 44

Tuck In! Meanwhile

Self Protection

Delegation
We learned from mistakes of past:

No responsibility taken for filling weird puppet templates

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 27 / 44

Tuck In! Meanwhile

Self Protection

Delegation
We learned from mistakes of past:

No responsibility taken for filling weird puppet templates

No external data will be managed

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 27 / 44

Tuck In! Meanwhile

Self Protection

Delegation
We learned from mistakes of past:

No responsibility taken for filling weird puppet templates

No external data will be managed

No precompiled/puzzled resources are prepared

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 27 / 44

Tuck In! Meanwhile

Self Protection

Delegation
We learned from mistakes of past:

No responsibility taken for filling weird puppet templates

No external data will be managed

No precompiled/puzzled resources are prepared

⇒ ER model of CMDB is presented via RESTful API

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 27 / 44

Tuck In! Merging Pictures

Scan completed
Early implementation of above mentioned RESTful API run against ScanDB

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 28 / 44

Tuck In! Merging Pictures

Scan completed
Early implementation of above mentioned RESTful API run against ScanDB

ScanDB represents just a view of the configuration snapshot

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 28 / 44

Tuck In! Merging Pictures

Scan completed
Early implementation of above mentioned RESTful API run against ScanDB

ScanDB represents just a view of the configuration snapshot

There is no future

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 28 / 44

Tuck In! Merging Pictures

Scan completed
Early implementation of above mentioned RESTful API run against ScanDB

ScanDB represents just a view of the configuration snapshot

There is no future, nor past

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 28 / 44

Tuck In! Merging Pictures

Scan completed
Early implementation of above mentioned RESTful API run against ScanDB

ScanDB represents just a view of the configuration snapshot

There is no future, nor past

Time for CMDB to enter the stage

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 28 / 44

Tuck In! Future and Past

Customers . . .

CREATE TABLE customer_t
(

customer _id INTEGER PRIMARY KEY
-- entity stuff
, customer_name VARCHAR (80) UNIQUE NOT NULL
-- cmdb stuff
, valid _from DATETIME NOT NULL
, valid _to DATETIME
, modified _at DATETIME NOT NULL
, modified _by VARCHAR (32) NOT NULL

);

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 29 / 44

Tuck In! Future and Past

Customers . . .

CREATE TABLE customer_t
(

customer _id INTEGER PRIMARY KEY
-- entity stuff
, customer_name VARCHAR (80) UNIQUE NOT NULL
-- cmdb stuff
, valid _from DATETIME NOT NULL
, valid _to DATETIME
, modified _at DATETIME NOT NULL
, modified _by VARCHAR (32) NOT NULL

);

primary key and global identifier for this data type

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 29 / 44

Tuck In! Future and Past

Customers . . .

CREATE TABLE customer_t
(

customer _id INTEGER PRIMARY KEY
-- entity stuff
, customer_name VARCHAR (80) UNIQUE NOT NULL
-- cmdb stuff
, valid _from DATETIME NOT NULL
, valid _to DATETIME
, modified _at DATETIME NOT NULL
, modified _by VARCHAR (32) NOT NULL

);

primary key and global identifier for this data type

the payload of this data type, automatically indexed

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 29 / 44

Tuck In! Future and Past

Customers . . .

CREATE TABLE customer_t
(

customer _id INTEGER PRIMARY KEY
-- entity stuff
, customer_name VARCHAR (80) UNIQUE NOT NULL
-- cmdb stuff
, valid _from DATETIME NOT NULL
, valid _to DATETIME
, modified _at DATETIME NOT NULL
, modified _by VARCHAR (32) NOT NULL

);

primary key and global identifier for this data type

the payload of this data type, automatically indexed

CMDB manages history and updates using these columns

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 29 / 44

Tuck In! Future and Past

VPN links to customers . . .

CREATE TABLE vpn_link_t
(

vpn_link_id INTEGER PRIMARY KEY
-- entity stuff
, customer_id INTEGER NOT NULL
, vpn_link_type VARCHAR (12)
, custom er_net VARCHAR (64) UNIQUE NOT NULL
, servic es_net VARCHAR (64) UNIQUE NOT NULL
-- cmdb stuff
, valid_from DATETIME NOT NULL
, valid_to DATETIME
, modified_at DATETIME NOT NULL
, modified_by VARCHAR (32) NOT NULL
-- FK
, FOREIGN KEY (customer_id) REFERENCES customer_t(customer_id)

ON UPDATE CASCADE ON DELETE CASCADE
);

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 30 / 44

Tuck In! Future and Past

VPN links to customers . . .

CREATE TABLE vpn_link_t
(

vpn_link_id INTEGER PRIMARY KEY
-- entity stuff
, customer_id INTEGER NOT NULL
, vpn_link_type VARCHAR (12)
, custom er_net VARCHAR (64) UNIQUE NOT NULL
, servic es_net VARCHAR (64) UNIQUE NOT NULL
-- cmdb stuff
, valid_from DATETIME NOT NULL
, valid_to DATETIME
, modified_at DATETIME NOT NULL
, modified_by VARCHAR (32) NOT NULL
-- FK
, FOREIGN KEY (customer_id) REFERENCES customer_t(customer_id)

ON UPDATE CASCADE ON DELETE CASCADE
);

refer the customer

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 30 / 44

Tuck In! Future and Past

VPN links to customers . . .

CREATE TABLE vpn_link_t
(

vpn_link_id INTEGER PRIMARY KEY
-- entity stuff
, customer_id INTEGER NOT NULL
, vpn_link_type VARCHAR (12)
, custom er_net VARCHAR (64) UNIQUE NOT NULL
, servic es_net VARCHAR (64) UNIQUE NOT NULL
-- cmdb stuff
, valid_from DATETIME NOT NULL
, valid_to DATETIME
, modified_at DATETIME NOT NULL
, modified_by VARCHAR (32) NOT NULL
-- FK
, FOREIGN KEY (customer_id) REFERENCES customer_t(customer_id)

ON UPDATE CASCADE ON DELETE CASCADE
);

refer the customer

support Cisco, Juniper, Paolo Alto, . . .

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 30 / 44

Tuck In! Future and Past

VPN links to customers . . .

CREATE TABLE vpn_link_t
(

vpn_link_id INTEGER PRIMARY KEY
-- entity stuff
, customer_id INTEGER NOT NULL
, vpn_link_type VARCHAR (12)
, custom er_net VARCHAR (64) UNIQUE NOT NULL
, servic es_net VARCHAR (64) UNIQUE NOT NULL
-- cmdb stuff
, valid_from DATETIME NOT NULL
, valid_to DATETIME
, modified_at DATETIME NOT NULL
, modified_by VARCHAR (32) NOT NULL
-- FK
, FOREIGN KEY (customer_id) REFERENCES customer_t(customer_id)

ON UPDATE CASCADE ON DELETE CASCADE
);

refer the customer

support Cisco, Juniper, Paolo Alto, . . .

networks must be unique or network admins kill you

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 30 / 44

Tuck In! Future and Past

Moo Interception

package Foo::Role:: Database ::CMDB;
use Moo::Role;
requires "log";

has cmdb => (
is => "ro",
required => 1,
handles => "Foo::Role:: Database",
isa => sub {

_INSTANCE_OF($_[0], "Foo:: Helper::CMDB") and $_[0]->DOES("Foo::Role:: Dat
and return;

die "Insufficient initialisation parameter for cmdb";
},
coerce => sub {

HASH($[0]) and return Foo:: Helper::CMDB ->new(%{$_ [0]});
$_[0];

},
);

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 31 / 44

Tuck In! Future and Past

Moo Interception

package Foo::Role:: Database ::CMDB;
use Moo::Role;
requires "log";

has cmdb => (
is => "ro",
required => 1,
handles => "Foo::Role:: Database",
isa => sub {

_INSTANCE_OF($_[0], "Foo:: Helper::CMDB") and $_[0]->DOES("Foo::Role:: Dat
and return;

die "Insufficient initialisation parameter for cmdb";
},
coerce => sub {

HASH($[0]) and return Foo:: Helper::CMDB ->new(%{$_ [0]});
$_[0];

},
);

role can be consumed by any class needing access to CMDB

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 31 / 44

Tuck In! Future and Past

Moo Interception

package Foo::Role:: Database ::CMDB;
use Moo::Role;
requires "log";

has cmdb => (
is => "ro",
required => 1,
handles => "Foo::Role:: Database",
isa => sub {

_INSTANCE_OF($_[0], "Foo:: Helper::CMDB") and $_[0]->DOES("Foo::Role:: Dat
and return;

die "Insufficient initialisation parameter for cmdb";
},
coerce => sub {

HASH($[0]) and return Foo:: Helper::CMDB ->new(%{$_ [0]});
$_[0];

},
);

role can be consumed by any class needing access to CMDB

transform hash initializer into object

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 31 / 44

Tuck In! Future and Past

Hard work

package Foo:: Helper::CMDB;
use Moo; extends "Foo:: Helper:: DatabaseClass";
has config _tables => (is => "lazy", ...);
has history_tabl es => (is => "lazy", ...);
around deploy => sub { ...
my @tables = @{$self ->config_tables };
foreach my $tbl (@tables) {

my @h ist_coldefs =
map { my $default = defined $_ ->[4] ? " DEFAULT $_ ->[4]" : "";

$pure_cols{$_ - >[1]} ? ("$_ ->[1] $_ ->[2] $default")
: ("old_$_ ->[1] $_ ->[2] $default", "new_$_ ->[1] $_ ->[2] $default")

} @table_info;
}
unshift @hist_coldefs , "${base_name}_hist_id INTEGER PRIMARY KEY";
my $hist_defs = join("\n , ", @hist_coldefs);
my $hist_tbl = <<EOCHT;
CREATE TABLE ${base_name}_hist (

${hist_defs}
);
EOCHT

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 32 / 44

Tuck In! Future and Past

Hard work

package Foo:: Helper::CMDB;
use Moo; extends "Foo:: Helper:: DatabaseClass";
has config _tables => (is => "lazy", ...);
has history_tabl es => (is => "lazy", ...);
around deploy => sub { ...
my @tables = @{$self ->config_tables };
foreach my $tbl (@tables) {

my @h ist_coldefs =
map { my $default = defined $_ ->[4] ? " DEFAULT $_ ->[4]" : "";

$pure_cols{$_ - >[1]} ? ("$_ ->[1] $_ ->[2] $default")
: ("old_$_ ->[1] $_ ->[2] $default", "new_$_ ->[1] $_ ->[2] $default")

} @table_info;
}
unshift @hist_coldefs , "${base_name}_hist_id INTEGER PRIMARY KEY";
my $hist_defs = join("\n , ", @hist_coldefs);
my $hist_tbl = <<EOCHT;
CREATE TABLE ${base_name}_hist (

${hist_defs}
);
EOCHT

that are all tables with trailing t in their names

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 32 / 44

Tuck In! Future and Past

Hard work

package Foo:: Helper::CMDB;
use Moo; extends "Foo:: Helper:: DatabaseClass";
has config _tables => (is => "lazy", ...);
has history_tabl es => (is => "lazy", ...);
around deploy => sub { ...
my @tables = @{$self ->config_tables };
foreach my $tbl (@tables) {

my @h ist_coldefs =
map { my $default = defined $_ ->[4] ? " DEFAULT $_ ->[4]" : "";

$pure_cols{$_ - >[1]} ? ("$_ ->[1] $_ ->[2] $default")
: ("old_$_ ->[1] $_ ->[2] $default", "new_$_ ->[1] $_ ->[2] $default")

} @table_info;
}
unshift @hist_coldefs , "${base_name}_hist_id INTEGER PRIMARY KEY";
my $hist_defs = join("\n , ", @hist_coldefs);
my $hist_tbl = <<EOCHT;
CREATE TABLE ${base_name}_hist (

${hist_defs}
);
EOCHT

that are all tables with trailing t in their names
create history table for each config table

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 32 / 44

Tuck In! Future and Past

Hard work

package Foo:: Helper::CMDB;
use Moo; extends "Foo:: Helper:: DatabaseClass";
has config _tables => (is => "lazy", ...);
has history_tabl es => (is => "lazy", ...);
around deploy => sub { ...
my @tables = @{$self ->config_tables };
foreach my $tbl (@tables) {

my @h ist_coldefs =
map { my $default = defined $_ ->[4] ? " DEFAULT $_ ->[4]" : "";

$pure_cols{$_ - >[1]} ? ("$_ ->[1] $_ ->[2] $default")
: ("old_$_ ->[1] $_ ->[2] $default", "new_$_ ->[1] $_ ->[2] $default")

} @table_info;
}
unshift @hist_coldefs , "${base_name}_hist_id INTEGER PRIMARY KEY";
my $hist_defs = join("\n , ", @hist_coldefs);
my $hist_tbl = <<EOCHT;
CREATE TABLE ${base_name}_hist (

${hist_defs}
);
EOCHT

that are all tables with trailing t in their names
create history table for each config table
memoizing old and new values on updating payload

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 32 / 44

Tuck In! Future and Past

Hard work (continued) - INSERT

my $new_cols = join(", ", map { $pure_cols{$_} ? $_ : "new_$_" }
grep { !$skipped{$_} } @table_cols);

my $new_vals = join(", ", map {"NEW.$_"} grep { !$skipped{$_} } @table_cols);

my $new_trgr = <<EONT;
CREATE TRIGGER new_${base_name}_row AFTER INSERT ON ${base_name}_t
BEGIN

INSERT INTO ${base_name}_hist ($new_cols)
VALUES ($new_vals);

END;
EONT

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 33 / 44

Tuck In! Future and Past

Hard work (continued) - INSERT

my $new_cols = join(", ", map { $pure_cols{$_} ? $_ : "new_$_" }
grep { !$skipped{$_} } @table_cols);

my $new_vals = join(", ", map {"NEW.$_"} grep { !$skipped{$_} } @table_cols);

my $new_trgr = <<EONT;
CREATE TRIGGER new_${base_name}_row AFTER INSERT ON ${base_name}_t
BEGIN

INSERT INTO ${base_name}_hist ($new_cols)
VALUES ($new_vals);

END;
EONT

⇒ ON INSERT fill history rows without filling ”OLD ” columns

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 33 / 44

Tuck In! Future and Past

Hard work (continued) - UPDATE

my (@updt_cols , @rfrs_cond , @updt_vals);
foreach my $colnm (grep { !$skipped{$_} } @table_cols) {

my @lcd = $pure_cols{$colnm} ? $colnm : ("old_${colnm}", "new_${colnm}");
push @updt_cols , @lcd;
push @rfrs_cond , $pure_cols{$colnm}

? _cmp_if_nullable("existing.${colnm}", "NEW.${colnm}")
: (_cmp_if_nullable("existing.old_${colnm}", "OLD.${colnm}"),

_cmp_if_nullable("existing.new_${colnm}", "NEW.${colnm}"));
push @updt_vals , $pure_cols{$colnm }?("NEW.$colnm"):("OLD.$colnm","NEW.$colnm")

}
my $updt_cols = join(", ", @updt_cols);
my $updt_refreshed_cols = join(", ", map { "refreshed.$_" } @updt_cols);
my $updt_vals = join(", ", @updt_vals);

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 34 / 44

Tuck In! Future and Past

Hard work (continued) - UPDATE

my (@updt_cols , @rfrs_cond , @updt_vals);
foreach my $colnm (grep { !$skipped{$_} } @table_cols) {

my @lcd = $pure_cols{$colnm} ? $colnm : ("old_${colnm}", "new_${colnm}");
push @updt_cols , @lcd;
push @rfrs_cond , $pure_cols{$colnm}

? _cmp_if_nullable("existing.${colnm}", "NEW.${colnm}")
: (_cmp_if_nullable("existing.old_${colnm}", "OLD.${colnm}"),

_cmp_if_nullable("existing.new_${colnm}", "NEW.${colnm}"));
push @updt_vals , $pure_cols{$colnm }?("NEW.$colnm"):("OLD.$colnm","NEW.$colnm")

}
my $updt_cols = join(", ", @updt_cols);
my $updt_refreshed_cols = join(", ", map { "refreshed.$_" } @updt_cols);
my $updt_vals = join(", ", @updt_vals);

⇒ Prepare for a bit complexer trigger

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 34 / 44

Tuck In! Future and Past

Hard work (continued) - UPDATE

my (@updt_cols , @rfrs_cond , @updt_vals);
foreach my $colnm (grep { !$skipped{$_} } @table_cols) {

my @lcd = $pure_cols{$colnm} ? $colnm : ("old_${colnm}", "new_${colnm}");
push @updt_cols , @lcd;
push @rfrs_cond , $pure_cols{$colnm}

? _cmp_if_nullable("existing.${colnm}", "NEW.${colnm}")
: (_cmp_if_nullable("existing.old_${colnm}", "OLD.${colnm}"),

_cmp_if_nullable("existing.new_${colnm}", "NEW.${colnm}"));
push @updt_vals , $pure_cols{$colnm }?("NEW.$colnm"):("OLD.$colnm","NEW.$colnm")

}
my $updt_cols = join(", ", @updt_cols);
my $updt_refreshed_cols = join(", ", map { "refreshed.$_" } @updt_cols);
my $updt_vals = join(", ", @updt_vals);

⇒ Prepare for a bit complexer trigger

⇒ Distinguish between real updates and just ”touches”

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 34 / 44

Tuck In! Future and Past

Hard work (continued) - UPDATE

my $updt_trgr = <<EONT;
CREATE TRIGGER updt_${base_name}_row AFTER UPDATE ON ${base_name}_t
BEGIN

INSERT OR REPLACE INTO ${base_name}_hist (${base_name}_hist_id , $updt_cols)
VALUES (

(SELECT MAX(existing.${base_name}_hist_id) ${base_name}_hist_id
FROM ${base_name}_hist existing WHERE $updt_refreshed_cond),

$updt_vals);
END;
EONT

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 35 / 44

Tuck In! Future and Past

Hard work (continued) - UPDATE

my $updt_trgr = <<EONT;
CREATE TRIGGER updt_${base_name}_row AFTER UPDATE ON ${base_name}_t
BEGIN

INSERT OR REPLACE INTO ${base_name}_hist (${base_name}_hist_id , $updt_cols)
VALUES (

(SELECT MAX(existing.${base_name}_hist_id) ${base_name}_hist_id
FROM ${base_name}_hist existing WHERE $updt_refreshed_cond),

$updt_vals);
END;
EONT

⇒ ON UPDATE create history (INSERT) rows with ”OLD ” and ”NEW ”
columns

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 35 / 44

Tuck In! Future and Past

Hard work (continued) - UPDATE

my $updt_trgr = <<EONT;
CREATE TRIGGER updt_${base_name}_row AFTER UPDATE ON ${base_name}_t
BEGIN

INSERT OR REPLACE INTO ${base_name}_hist (${base_name}_hist_id , $updt_cols)
VALUES (

(SELECT MAX(existing.${base_name}_hist_id) ${base_name}_hist_id
FROM ${base_name}_hist existing WHERE $updt_refreshed_cond),

$updt_vals);
END;
EONT

⇒ ON UPDATE create history (INSERT) rows with ”OLD ” and ”NEW ”
columns
except nothing changes (REPLACE)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 35 / 44

Tuck In! Features

”UPSERT”

MERGE INTO tablename USING table_reference ON (condition)
WHEN MATCHED THEN
UPDATE SET column1 = value1 [, column2 = value2 ...]
WHEN NOT MATCHED THEN
INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...]);

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 36 / 44

Tuck In! Features

”UPSERT”

MERGE INTO tablename USING table_reference ON (condition)
WHEN MATCHED THEN
UPDATE SET column1 = value1 [, column2 = value2 ...]
WHEN NOT MATCHED THEN
INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...]);

SQLite
Unsupported by SQLite

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 36 / 44

Tuck In! Features

”UPSERT”

MERGE INTO tablename USING table_reference ON (condition)
WHEN MATCHED THEN
UPDATE SET column1 = value1 [, column2 = value2 ...]
WHEN NOT MATCHED THEN
INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...]);

SQLite
Unsupported by SQLite

INSERT OR REPLACE deletes before insert

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 36 / 44

Tuck In! Features

”UPSERT”

MERGE INTO tablename USING table_reference ON (condition)
WHEN MATCHED THEN
UPDATE SET column1 = value1 [, column2 = value2 ...]
WHEN NOT MATCHED THEN
INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...]);

SQLite
Unsupported by SQLite

INSERT OR REPLACE deletes before insert

→ Kills UPDATE Trigger

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 36 / 44

Tuck In! Features

Perl helps out

$self ->cmdb ->upsert(customer_t => {
customer_name => "Foo Enterprises", });

$self ->cmdb ->upsert(vpn_link_t => {
customer_name => "Foo Enterprises",
vpn_link_type => "Juniper",
customer_net => "10.116.47.8/29",
services_net => "10.126.47.8/29" });

SQL created . . .

INSERT OR IGNORE INTO vpn_link_t (
customer_id , vpn_link_type , customer_net , services_net , modified_by

) VALUES (
(SELECT customer_id FROM customer_t WHERE customer_name =?),
?, ?, ?, ?);

UPDATE vpn_link_t SET vpn_link_type =?, customer_net=?, services_net=?,
modified_by =?, touched_at=CURRENT_TIMESTAMP

WHERE changes ()=0 AND customer_id =(
SELECT customer_id FROM customer_t WHERE customer_name =?);

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 37 / 44

Tuck In! Features

Known limitations
Restricted to CMDB

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 38 / 44

Tuck In! Features

Known limitations
Restricted to CMDB

Refuse updates of identifying columns (UNIQUE constraints)

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 38 / 44

Tuck In! Features

Known limitations
Restricted to CMDB

Refuse updates of identifying columns (UNIQUE constraints)

WHERE clause derived from UNIQUE constraints

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 38 / 44

Tuck In! Meanwhile II

CMDB to Hiera

YAML Generator
Development team read via RESTful API the theoretical configuration set

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 39 / 44

Tuck In! Meanwhile II

CMDB to Hiera

YAML Generator
Development team read via RESTful API the theoretical configuration set

Hiera YAML files are written

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 39 / 44

Tuck In! Meanwhile II

CMDB to Hiera

YAML Generator
Development team read via RESTful API the theoretical configuration set

Hiera YAML files are written

Additional exports are managed via Hiera

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 39 / 44

Tuck In! Meanwhile II

CMDB to Hiera

YAML Generator
Development team read via RESTful API the theoretical configuration set

Hiera YAML files are written

Additional exports are managed via Hiera

Puppet classes are rewritten to understand new ER model

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 39 / 44

Overview

Part IV

Finish

6 Goals reached
Circle closed

7 Conclusion

8 Thank you
Thank you

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 40 / 44

Goals reached Circle closed

Circle closed

:platform

:snapshot

:scan db:cmdb

:hiera

:report

collect

scan

process-scan

yaml-gen

puppet run

CRQ

export

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 41 / 44

Goals reached Circle closed

Circle closed

:platform

:snapshot

:scan db:cmdb

:hiera

:report

collect

scan

process-scan

yaml-gen

puppet run

CRQ

export

scan

process-scan

yaml-gen

CRQ

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 41 / 44

Goals reached Circle closed

Goals reached
→ Actual-theoretical comparison done via processing scan database

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 42 / 44

Goals reached Circle closed

Goals reached
→ Actual-theoretical comparison done via processing scan database

→ Unmaintainted installation via cronjob possible

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 42 / 44

Goals reached Circle closed

Goals reached
→ Actual-theoretical comparison done via processing scan database

→ Unmaintainted installation via cronjob possible

→ Reaction in emergency cases by organized component moving done multiple
times

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 42 / 44

Goals reached Circle closed

Goals reached
→ Actual-theoretical comparison done via processing scan database

→ Unmaintainted installation via cronjob possible

→ Reaction in emergency cases by organized component moving done multiple
times

→ Monitoring, sensors, alarming open

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 42 / 44

Conclusion

Conclusion

Can a programming language save a life
Yes, it can - but here it saves our business

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 43 / 44

Thank you Thank you

Thank You For Listening

Questions?
Jens Rehsack <rehsack@cpan.org>
Cologne

Jens Rehsack (Niederrhein.PM) CMDB Driven by Perl The Perl Conference in Amsterdam 44 / 44

mailto:rehsack@cpan.org

	Introduction
	Introduction
	Motivation

	Challenge
	Beginning
	Taking over
	After reporting
	Mine Sweeper
	Baby Steps

	Sweat
	World Domination
	Separation

	Concerns
	Identifying

	Tuck In!
	MI:5
	Home Improvement
	Clean Picture
	Control
	Reflecting Relationships
	Meanwhile
	Merging Pictures
	Future and Past
	Features
	Meanwhile II

	Finish
	Goals reached
	Circle closed

	Conclusion
	Thank you
	Thank you

