
Operation Guide for
Smart-Snmpd

Jens Rehsack

Contents

1 Introduction 2

1.1 Audience . 2

2 Operate a Smart-Snmpd Server 2

2.1 Set up and Run a Simple Smart-Snmpd . 2

2.1.1 Basic daemon settings . 3

2.1.2 Logging settings . 4

2.1.3 Statgrab settings . 5

2.1.4 Basic MIB Settings . 6

2.1.5 Interval MIB Settings . 6

2.1.6 Setting up External Command MIBs . 7

2.1.7 Built-In Mibs and their Names . 8

2.1.8 Setting up External AgentX Satelites . 8

2.1.9 Setting up External MIBs in Shared Libraries 8

2.1.10 Setting up Access Control . 8

2.2 Invoking the Smart-Snmpd . 11

2.2.1 Command Line Interaction . 11

2.2.2 Overriding Configuration Settings . 11

2.2.3 Requirements to start a Smart-Snmpd . 12

2.3 Run a Smart-Snmpd in the Build Environment 12

3 Platform Specific Issues 12

3.1 Windows NT . 12

3.2 VMS . 13

3.3 MacOS X . 13

4 Language Bindings 13

1

1 Introduction

1.1 Audience

This document targets people who have to administer smart-snmpd, either because they operate
machines with smart-snmpd running or they have to configure reasonable default installations
for packaging or automated deployment.

Packagers should read the INSTALL document first.

2 Operate a Smart-Snmpd Server

2.1 Set up and Run a Simple Smart-Snmpd

The build procedure of smart-snmpd creates and installs an example configuration file into
$sysconfdir ($prefix/etc) named smart-snmpd.conf.example. You need to copy this file into
a file named smart-snmpd.conf and modify it to fit your requirements. The task of copying this
configuration file might be allocated to the post-install script of a package.

The file smart-snmpd.conf.example is extensively documented; it is strongly recommended you
keep the comments when editing the configuration file in daily business.

Note that unspecified values are set to reasonable defaults.

2

2.1.1 Basic daemon settings
These settings affect all (or at least multiple) components of the smart-snmpd:

Table 1: Basic Settings

Setting Data Type Restriction Description
daemonize boolean - When set true (default), smart-snmpd will

daemonize when started
port integer > 0 Specifies the port to listen on, but listen on

all available interfaces / addresses
listen-on string must include port Specifies the UDP address to listen on (IPv4

or IPv6 address and port)
status-file string - Specifies the fully qualified path name

(FQPN) to the file to store the status of the
snmpd

pid-file string - Specifies the FQPN to the pid-file to use
job-threads1 integer > 0 Specifies the number of threads which will

be used to answer snmp requests
rlimits struct - Provides settings for the (soft) resource lim-

its of the daemon for core (RLIMIT CORE),
cpu (RLIMIT CPU), data (RLIMIT DATA),
filesize (RLIMIT FSIZE), files

(RLIMIT NOFILE), stack (RLIMIT STACK)

and mem (RLIMIT AS).
Allowed values are: integer (specifying an
absolute limit), ”unlimited”, ”soft” (cur-
rent set soft limit), ”hard (current set hard
limit)”. If not specified, the default is
”soft”.

on-fatal2 enum - defines the action on fatal errors (ERROR LOG

with log-level 0) - possible values: ignore,
raise, kill (default), exit, exit, abort

su-cmd3 string - Command to use to execute an external
command as a specific user

su-args3 string - Arguments for above command
1 only with threadpool support compiled into agent++

2 only relevant when compiled with log4cplus (handler in snmp++ always uses raise(3) sending
a SIGTERM)

ignore ignore the fatal error

raise send the signal SIGTERM using raise(3)

kill send the signal SIGTERM using kill(2) on getpid(2)

exit exits from the currently running process using exit(3), which means some cleanup tasks
are done by the runtime library before the process is reaped by the kernel

exit exits from the currently running process using the exit(2) syscall, which means the
process is reaped immediately

abort exits from the currently running process using abort(3), which means, a core file is
written and after that the process is killed by a SIGABRT signal

Note that the last three actions might not flush all logging messages

3 only with libjson (bundled or separate) and --with-su-cmd enabled in configuration

3

Example:

// listen on extra port

port = 8161

// default:

// status -file = /opt/smart -snmpd/var/db/smart -snmpd/status.db

su -cmd = "/usr/bin/sudo"

su -args = {"-u", "%u", "%c"}

// how many request -threads shall run

job -threads = 24

rlimits {

core = "unlimited" // always write core dumps on SIGSEGV

files = 512 // usually more than enough

}

on -fatal = _exit // rigorous exiting on fatal error

2.1.2 Logging settings
These settings affect the logging behavior of smart-snmpd and are only available when logging
support wasn’t disabled in snmp++.

Table 2: Basic Settings

Setting Data Type Description
log-file1 string Specifies the FQPN of the file to write logs to
log4cplus-property-file2 string Specifies the FQPN of the property file to con-

figure log4cplus
log-profile3 string Specifies the log-profile to use. In addition to the

9 profiles provided by snmp++, a profile named
”individual” is provided which means ”Use the
individual log level configuration in log-class”.

log-class struct Defines each each log-level per class (error,
warning, event, info, debug, user4) individ-
ually.
Permitted values are -1 for disabled and a
threshold value from 0 to 15.

1 only when compiled without log4cplus (using snmp++ logging builtin)

2 only with log4cplus

3 only with log-profiles enabled in snmp++

4 snmp++ log level user is mapped to log4cplus’ log level TRACE when logging via log4cplus.

4

Example:

log4cplus -property -file = /opt/smart -snmpd/etc/log.properties

/**

* log levels

*

* log classes:

* - error

* - warning

* - event

* - info

* - debug

* - user

*

* level can be from 0 .. 15 or -1 for off

* all log entries with a log level lower or equal of the

* configured will be shown

*

* defaults:

* - 15 for error , warning (show all)

* - 10 for event

* - 5 for info

* - 0 for debug , user (only most important)

*/

// reduce log level for less important log classes

log -class {

event = 5

info = 1

debug = -1

}

2.1.3 Statgrab settings
These settings affect the wy statistics are collected with libstatgrab. Currently only file systems
can be filtered.

Table 3: Statgrab Settings

Setting Data Type Description
valid-filesystems list Specifies a list of file system types to collect

statistics for. With a ”!” as first item the speci-
fied list is subtracted from the initial list of valid
file systems

Example:

statgrab {

// filter all kind of networking file systems to

// avoid hanging when the server isn’t available

valid -filesystems = { "!",

"nfs", "nfs3", "nfs4",

"cifs", "smbfs", "samba"

}

}

5

2.1.4 Basic MIB Settings
The built-in basic MIBs are setup using either the mibobject or inrobject. The mibobject structure
initializes the basic configuration settings of all managed smart-snmpd MIBs:

Table 4: Basic MIB Settings

Setting Data Type Description
mib-enabled boolean Specifies whether this MIB object is enabled and

can be requested or not. By default all built-in
mibs are enabled.

async-update boolean Specifies whether this MIB object will be up-
dated asynchronously in a background thread or
synchronously every time when requested. By
default a MIB is updated synchronously.

cache-timeout integer Time in seconds before the data cache of a MIB
object becomes invalid and must be refreshed.
This happens all 30 seconds by default.

Example:

mibobject DaemonStatus {

// mib -enabled = false

async -update = true

cache -timeout = 60 /* update once a minute */

}

2.1.5 Interval MIB Settings
Several MIBs support differences, too. Those MIBs can be configured using the inrobject which
contains all settings of mibobject and extends it with:

Table 5: Interval MIB Settings

Setting Data Type Description
mr-interval integer Time in seconds of the most-recent interval to

calculate the difference. The value must be a
multiple of cache-timeout. Note: If no inter-
val is given, the value of cache-timeout is used
which results in a diff between the most current
value set and the one before.

It is strongly recommended you configure a MIB object which delivers differences to be updated
asynchronously via a background thread. Without this, it is not guaranteed that the difference
time slices are valid. In the case of a synchronous configuration, smart-snmpd will issue out a
warning.
If you do not configure eg. CpuUsage using the inrobject section, but mibobject, the most recent
cache interval is by default set to the value of cache-timeout. This means at least the difference
from the last statistics is kept.

Example:

inrobject CpuUsage {

async -update = true // strongly recommended for

// interval monitoring

cache -timeout = 30 // also: measure interval base

mr-interval = 600 // calculation time difference interval

}

6

2.1.6 Setting up External Command MIBs
smart-snmpd supports MIBs from external commands in addition to the planned AgentX sup-
port. Those external command MIBs are designed for performance - the AgentX protocol slows
down mass data retrieves.
The external command MIBs are below 1.3.6.1.4.1.36539.20 and need to be specified for
each tree separately in the configuration using the extobject group, which extends the mibobject
specification as follows:

Table 6: External Command MIB Settings

Setting Data Type Description
command string Specifies the FQPN to the command to execute

and the full arguments as a shell expression
args list of strings Specifies the arguments passed to the executed

command
user1 string Specifies the name of the user to switch to for

command execution.
sub-oid integer specifies the oid below 1.3.6.1.4.1.36539.20

where the received data should be addressed.
rlimits struct Allows setting the current (soft) re-

source limits for the executed pro-
cess for core (RLIMIT CORE), cpu

(RLIMIT CPU), data (RLIMIT DATA), filesize
(RLIMIT FSIZE), files (RLIMIT NOFILE),
stack (RLIMIT STACK) and mem (RLIMIT AS)

individually.
Allowed values are: absolute limit (integer),
unlimited, soft (soft limit at daemon start),
hard (hard limit at daemon start).

1 only with --with-su-cmd enabled in configuration
If you configure a MIB for an external object using mibobject instead of extobject, no external
command will be known and the MIB will remain empty.

Example:

extobject AppMonitoring {

async -update = true

cache -timeout = 600 # 10 minutes

command = /opt/smart -snmpd/libexec/plugin/appmon

args = { "--output", "json" }

user = "" // must be defined even if no user -switch is wanted

sub -oid = 1

rlimits {

core = "soft"

files = "soft"

}

}

7

2.1.7 Built-In Mibs and their Names
The following built-in MIB objects need settings from . . .

Table 7: Settings for built-in MIBs

MIB Object OID Setting Structure
DaemonStatus 1.3.6.1.4.1.36539.10.1 mibobject
HostInfo 1.3.6.1.4.1.36539.10.2 mibobject
CpuUsage 1.3.6.1.4.1.36539.10.3 inrobject
MemoryUsage 1.3.6.1.4.1.36539.10.4 mibobject
SystemLoad 1.3.6.1.4.1.36539.10.5 mibobject
UserLogins 1.3.6.1.4.1.36539.10.6 mibobject
ProcessStatus 1.3.6.1.4.1.36539.10.7 mibobject
FileSystemUsage 1.3.6.1.4.1.36539.10.8 mibobject
DiskIO 1.3.6.1.4.1.36539.10.20 inrobject
NetworkIO 1.3.6.1.4.1.36539.10.21 inrobject
SwapIO 1.3.6.1.4.1.36539.10.22 inrobject
AppMonitoring 1.3.6.1.4.1.36539.20.1 extobject

Memorize that

mibobject ProcessStatus {

...

}

is the same as

mibobject 1.3.6.1.4.1.36539.10.7 {

...

}

2.1.8 Setting up External AgentX Satelites

Future Task (Unimplemented)

2.1.9 Setting up External MIBs in Shared Libraries

Future Task (Unimplemented)

2.1.10 Setting up Access Control

smart-snmpd implements full SNMPv3 access control via embedded agent++ library. For the
specification see http://www.ietf.org/rfc/rfc3415.txt.

To configure SNMPv3 VACM, the following structures should be used:

Table 8: user : USM Configuration

Setting Data Type Values Description
auth-proto enum none, md5, sha hash algorithm for auth-key
auth-key string the authentication key
priv-proto enum none, des,

3des*, idea*,
aes1, aes128,
aes192*,
aes256*,

encryption algorithm for priv-key

priv-key string the private key
* not supported by all clients

1 alias for aes128

8

http://www.ietf.org/rfc/rfc3415.txt

The security name is taken from the section title of the individual user sections specified in the
configuration file.

Table 9: group: Group Table Configuration

Setting Data Type Values Description
security-model enum usm Currently the one and only valid secu-

rity model is USM
security-name list of strings Name of de-

fined user
List of users (mapped to security name)
valid for this group

storage-type enum other,
volatile,
nonvolatile,
permanent,
readonly

storage type for this entry

The group name is taken from the section title of the individual group sections specified in the
configuration file.

Table 10: access: View Table Configuration

Setting Data Type Values Description
sub-tree OID OID1 Valid, managed OID or a parent of any
mask Hex Integer Bitmask as

hexadecimal
string

See ViewTreeFamily description in RFC-3415

view-type enum included,
excluded

include or exclude this view tree

storage-type enum other,
volatile,
nonvolatile,
permanent,
readonly

storage type for this entry

1 OID: Object IDentifier - also known as a ”MIB object identifier” or ”MIB variable” in the
SNMP network management protocol. See http://www.pcmag.com/encyclopedia_term/

0,2542,t=OID&i=48334,00.asp or http://www.paessler.com/support/kb/questions/

49 for details.

9

http://www.pcmag.com/encyclopedia_term/0,2542,t=OID&i=48334,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t=OID&i=48334,00.asp
http://www.paessler.com/support/kb/questions/49
http://www.paessler.com/support/kb/questions/49

Table 11: access: Access Table Configuration

Setting Data Type Values Description
group-name string Name of de-

fined group
Name of group whose access configu-
ration is done here

context string Context name for this configuration
security-model enum usm Currently the one and only valid se-

curity model is USM
security-level enum none,

noauth1,2,
nopriv1,2,
auth1,2,
priv1,2

Security level for this access entry

match enum . . .
read-view string / reference Name of de-

fined view
Read view for this access entry

write-view string / reference Name of de-
fined view

Write view for this access entry

notify-view string / reference Name of de-
fined view

Notify view for this access entry

storage-type enum other,
volatile,
nonvolatile,
permanent,
readonly

storage type for this entry

1 when not ”none” used, the specified combination must be in the order of first auth/noauth
and then priv/nopriv

2 noauth,priv is an invalid combination

10

2.2 Invoking the Smart-Snmpd

2.2.1 Command Line Interaction

The available command line arguments are displayed when smart-snmpd is called using the ”-h”
switch. The one which will be discussed here in detail is -k. Using the -k command line switch
allows you to choose the action to run from start (default), stop, restart, graceful, reload,
check, kill.

Table 12: Actions on command line

Action Name Action Description
start starts the Smart-SNMP-Daemon
stop Stops the currently running Smart-SNMP-Daemon. Requests in the

queue are answered (up to 2 seconds*).
restart Restarts1 the currently running Smart-SNMP-Daemon. Requests in the

queue aren’t answered.
graceful Gracefully restarts the currently running Smart-SNMP-Daemon. Re-

quests in the queue are answered (up to 2 seconds*).
reload Reloads2 the configuration of the currently running Smart-SNMP-

Daemon
check Performs a check of the configuration file of the Smart-SNMP-Daemon
kill Kills1 the currently running Smart-SNMP-Daemon

* On small powered systems with heavy load a massive tailback of requests can result in
dropping requests even when restarting gracefully. This is a limitation of UDP and cannot
be fixed without forcing a denial of service for new requests.

1 sends a SIGKILL instead of the usually sent SIGTERM which should force the operating system
to remove the process.

2 Reload (via sending the signal SIGHUP to the daemon process) the configuration does neither
affect the community/authentication entries nor log4cplus configuration due locking bug in
current versions

Runtime settings, which are refreshed when the smart-snmpd catches a SIGHUP signal, are:

• log-file

• log-profile (when snmp++ is compiled with –with-log-profile)

• log-class (for log-profile = ”individual”)

• all mibobject, inrobject and extobject definitions

• su-cmd and su-args

2.2.2 Overriding Configuration Settings

In some circumstances it is reasonable to temporarily override some configuration settings. You
can do this from the command line when starting the daemon (and only then) by specifying one
or more of following options:

-f loads config from specified file

-p uses specified pid-file

-s use specified status file

-l logs into specified file

-L uses specified log-profile

An already running daemon cannot be forced to reload into the foreground (or vice versa), you
need to restart the daemon with appropriate -d or -D switch.

11

Note: command line switches are valid until the daemon ends or gets restarted with different
command line switches. There is no way to override such settings without stopping the daemon
at least for a moment.

2.2.3 Requirements to start a Smart-Snmpd

The Smart-Snmpd has temporary and permanent requirements to operate.

The permanent requirements are:

• The directories to store the log-file, the status-file and the pid-file must exist and the
operating user must have write permissions to those directories and the optional existing
files from the last run.

• The file system(s) containing above mentioned directories must have enough free space to
modify the named files.

• No other process must operate on the configured UDP port

• The system must have enough resources to start the configured job-threads, the config-
ured async-threads, the configured thread for asynchronous logging and the thread for
the signal handler.

• Limits for the process must be large enough:

– at least 64MB virtual memory,

– at least the permission to open up to 16 files - more when multiple external MIBs are
configured

– a stack size of at least 16KB

The temporary requirements are:

• The system must have enough resources (eg. free process table entries) so the smart-snmpd
process can be forked twice.

• The system must have at least one available System V Semaphore.

• The operating user must have read permissions to the specified (either on command line
or during build configuration) configuration file

2.3 Run a Smart-Snmpd in the Build Environment

Command line arguments always override configuration file settings and default behaviours as
described in ”Setting up and Run a Simple Smart-Snmpd” (Section 2.1).

Usually you do not want to run a local smart-snmpd using elevated privileges. That implies,
the daemon can neither bind to port 161 nor modify $prefix/var/run/smart-snmpd.pid nor any
other required status file (as the boot counter). It implies further, that some statistics might be
incomplete or unavailable, depending on the underlying operating system.

Thus you need to override those file locations using

$./src/smart-snmpd -f ‘pwd‘/etc/smart-snmpd-test.conf \

-p ‘pwd‘/smart-snmpd.pid \

-s ‘pwd‘/smart-snmpd.db \

-l ‘pwd‘/smart-snmpd.log

3 Platform Specific Issues

3.1 Windows NT

Unimplemented.

12

3.2 VMS

Unimplemented.

3.3 MacOS X

Partial working.

4 Language Bindings

Future Task

13

	Introduction
	Audience

	Operate a Smart-Snmpd Server
	Set up and Run a Simple Smart-Snmpd
	Basic daemon settings
	Logging settings
	Statgrab settings
	Basic MIB Settings
	Interval MIB Settings
	Setting up External Command MIBs
	Built-In Mibs and their Names
	Setting up External AgentX Satelites
	Setting up External MIBs in Shared Libraries
	Setting up Access Control

	Invoking the Smart-Snmpd
	Command Line Interaction
	Overriding Configuration Settings
	Requirements to start a Smart-Snmpd

	Run a Smart-Snmpd in the Build Environment

	Platform Specific Issues
	Windows NT
	VMS
	MacOS X

	Language Bindings

