Introducing NPF in NetBSD 6.0

Mindaugas Rasiukevicius
The NetBSD Project
rmind@netbsd.org

October 17, 2012

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Introduction
What is NPF?

NPF - is a NetBSD packet filter, which can do TCP/IP traffic
filtering, stateful inspection and network address translation.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Introduction

Motivation: multi-core world

Rapid growth of multi-core systems demands improvements to
network stack and packet filtering.
> NetBSD and other systems are innovating into the network
stack parallelisation. Packet filters become a bottleneck.
» There was no SMP optimised packet filter in *BSD.

» In 2009, Linux Netfilter project invents nftables, with one of
the main features: “the core is completely lockless ...".

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Introduction

Motivation: 3rd party extensions

Users and vendors often need custom solutions.

» There was no packet filter in *BSD with an emphasis on
modaularity.

» Linux Netfilter provided the most convenient framework for
custom extensions.

» GPL might be an issue. There are known GPL-related legal
disputes with vendors using Netfilter /iptables.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Features
Highlights

Hence, NPF:

» Written from scratch with a focus on high performance and
SMP optimisations.

» Stateful packet filtering and network address translation.
» Modularity and support for extensions.
» Protocol independence in the NPF core engine.

» Support for “tables”: storage designed for large IP sets and
frequent updates.

» 2-clause BSD license: liberal and vendor-friendly.

> IPv6 support, extensions for normalisation, logging and more!

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Technical points

Packet classification

NPF packet classification engine is based on instruction processing.

> Inspired by the original Berkeley Packet Filter (BPF), NPF
uses its own n-code. It consists of CISC-like instructions for
the common patterns to reduce the processing overhead.

» BPF byte-code with just-in-time (JIT) compiler support is
planned for a future release.

> This design allows us to have protocol independence, e.g.
support for a new protocol can be added without any
modifications to the kernel part.

Similar approach was taken by Linux nftables.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Technical points

Multi-processing and performance

Approach to performance and concurrency on SMP.

> Ruleset reload is performed as a single, one step commit with
minimum performance impact on the packet processing.

» Tracked connections are stored in a hashed tree, with
distributed locks and thus minimised lock contention.

» Various other components are lockless.

» Large IP sets can be stored in NPF tables for very efficient
lookups. Storage can be chosen to be either a hash table or
a Patricia radix tree.

NPF tables are similar to the “ipset” module of Linux Netfilter.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Technical points
Modularity

» NPF is modular, each component is abstracted and has its
own strict interface.

» Rule procedures in NPF are the main interface to implement
custom extensions. The syntax of npf.conf supports arbitrary
procedures with their parameters, as supplied by the modules.

» An extension consists of two parts: a dynamic module (.so
file) supplementing the npfctl(8) utility and a kernel module.

» Just ~160 lines of code for a demo extension, which blocks an
arbitrary percentage of traffic. No modifications to the NPF
core.

> API will be fully available in NetBSD 6.1 release and is
already available in NetBSD -current tree.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Technical points
Stateful inspection and NAT

» NPF implements stateful filtering. It performs full tracking of
TCP connections. This means not only tracking of source and
destination IP addresses with port numbers, but also TCP
state, sequence numbers and window sizes.

» Currently, NPF supports dynamic NAT: network address port
translation (NAPT or also known as masquerading), port
forwarding and bi-directional NAT.

> Patches for preliminary support of NPTv6 and NAT64 were
developed as part of Google Summer of Code 2012.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Testing

Running and debugging NPF in the userspace

» For testing, NPF uses NetBSD's RUMP (Runnable Userspace
Meta Programs) framework — a kernel virtualisation and
isolation technique, which enables running of the NetBSD
kernel or parts of it in the userspace, like a regular program.

» Makes debugging or profiling significantly easier due to
availability of tools such as gdb(1).

> NPF regression tests are integrated into NetBSD's test suite
and thus are part of periodic automated runs.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Testing
Debugging

> For every NPF subsystem, unit tests are implemented and
available within npftest(8) — a program containing both the
tests and NPF kernel part running as a userspace program.

» npftest(8) can also read and process tcpdump pcap files with
a passed npf.conf configuration. This enables analysis of a
particular stream in the userspace.

» The npfctl(8) utility has a 'debug’ command which can print
disassembled n-code and write the configuration in the format
sent to the kernel.

» Development, debugging and testing becomes much easier.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



Future directions

> More testing: improving stability and reliability. Expect API
and ABI changes for some time period.

» NPTv6 and NAT64 support in a future NetBSD release.
» BPF byte-code with just-in-time (JIT) compilation.
» High availability, load balancing.

» More extensions.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0



End

The NetBSD Project
http://www.NetBSD.org/

2012

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

Introducing NPF in NetBSD 6.0


http://www.NetBSD.org/

