
NPF — progress and perspective

Mindaugas Rasiukevicius
The NetBSD Project

rmind@netbsd.org

AsiaBSDCon 2014, Japan
15 March 2014

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Introduction
What is NPF?

NPF – is a NetBSD packet filter, which can do TCP/IP traffic
filtering, stateful inspection and network address translation.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Introduction
Motivation: multi-core world and 3rd party extensions

Multi-core world:

I There was no SMP optimised packet filter in *BSD.

I The code base of other packet filters seemed unsatisfactory.

I NPF idea was partly a response to nftables developed under
the Linux Netfilter project.

Users and vendors often need custom solutions.

I There was no packet filter in *BSD with an emphasis on
modularity.

I Linux Netfilter provided the most convenient framework for
custom extensions. GPL is an issue: there are known
GPL-related legal disputes with vendors using Netfilter.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Features
Highlights

Hence, NPF:

I Written from scratch with a focus on performance, scalability
and modularity.

I Supports stateful packet filtering and network address
translation.

I Convenient support for extensions.

I Protocol independence in the NPF core engine.

I Support for “tables”: storage designed for large IP sets and
frequent updates.

I 2-clause BSD license: liberal and vendor-friendly.

I IPv6 support, extensions for normalisation, logging and more!

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Packet classification engine – BPF

NPF packet classification engine i.e. rule processing is based on
byte-code instruction processing.

I NPF uses BPF byte-code with JIT compilation.

I This design allows us to have protocol independence, e.g.
support for a new protocol can be added without any
modifications to the kernel part.

I sljit1 is used for JIT compilation. The compiler supports
various architectures, is also used by the PCRE library and is
reasonably tested and benchmarked.

I However, the original BPF instruction set is limited: it cannot
perform complex operations, e.g. table lookup.

1http://sljit.sourceforge.net/
Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
BPF COP

BPF was extended with ”coprocessor” support for offloading
complex operations.

I BPF coprocessor honours the tradition of RISC-like instruction
sets, but the debate whether BPF should grow some complex
instructions (e.g. to handle IPv6 headers) is still on.

I Two new instructions in the misc category: BPF COP and
BPF COPX. They call a predetermined function using an
array index. The functions can only be set by the kernel.

I They can read the packet in a read-only manner, use the
memstore and return a value. They cannot change the flow,
so BPF byte-code does not become Turing-complete.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
BPF everywhere

I Additionally, NPF also supports pcap(3) – its syntax and
capabilities. Virtually any filter pattern can be constructed.
An example:

block out final pcap-filter "dst 10.1.1.252 and ip[2:2] > 576"

I By the way: the idea of unifying all packet classification
engines under BPF is not new. It has been floating around
for, at least, few decades...

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Rules

I There are static rules and dynamic rules. The former are
loaded together with the configuration. The latter can be
added/removed on the fly.

I A group is a rule which has sub-rules. Therefore, the rules in
NPF can be nested (there is an artificial limit, though).

I In the kernel, the list of static rules is represented as an array
with jump/skip marks. Therefore, rule inspection is a simple
non-recursive iteration which, as a side note, is also
cache-friendly.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Ruleset

I Ruleset reload is performed as a single one step commit with
a minimum performance impact on the packet processing.

I The ruleset is protected using passive serialisation2. Hence,
the ruleset inspection is lockless.

2Similar concept to RCU, but patent-free
Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Dynamic rules

Dynamic rules can be added/removed on the fly, without reloading
the entire configuration. Some notes:

I Each rule gets a unique identifier which is returned on
addition.

I Also, SHA1 hash is calculated on rule meta data and therefore
rule can be removed given its definition/filter criteria.

I The rule can be reliably removed using the unique ID. This is
the more efficient and recommended way.

I While rule inspection is lockless, rule addition or removal has
significant overhead.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Dynamic rules

Example:

$ npfctl rule "test-set" add block proto tcp from 192.168.0.6

OK 1

$ npfctl rule "test-set" list

block proto tcp from 192.168.0.6

$ npfctl rule "test-set" add block from 192.168.0.7

OK 2

$ npfctl rule "test-set" list

block proto tcp from 192.168.0.6

block from 192.168.0.7

$ npfctl rule "test-set" rem block from 192.168.0.7

$ npfctl rule "test-set" rem-id 1

$ npfctl rule "test-set" list

$

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Stateful inspection

NPF supports stateful filtering – costly, but demanded feature.

I It performs full tracking of TCP connections. This means not
only tracking of source and destination IP addresses with port
numbers, but also TCP state, sequence numbers and window
sizes.

I Tracked connections are stored in a hash table with a
red-black tree per bucket, protected by a read-write lock.

I The hash table distributes the locks and thus significantly
reduces the lock contention.

I The tree prevents from DoS attacks exploiting hash collisions
and O(n) behaviour.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Stateful inspection

I In NPF, the state is uniquely identified by a 6-tuple.

I Bypassing the ruleset on other interfaces can have undesirable
effects, e.g. a packet with a spoofed IP address might bypass
ingress filtering.

I However, there are legitimate cases when bypassing on other
interfaces is safe and can increase the performance.

I Therefore, stateful-ends keyword was added to perform the
state lookup on other interfaces as well.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Stateful inspection

The current performance of state lookup is ”good enough”, but
not optimal.

I State inspection involves 6-tuple lookup. Performing both the
hash calculation and the tree iteration has a cost. Read-write
locks suffer from cache-line bouncing effect.

I The current work is to replace hashed trees with more efficient
data structure – a lockless and cache-aware B+ tree.3

I Very preliminary results indicate ∼2x faster state lookup with
linear scalability!

3Masstree by Y. Mao, E. Kohler and R. Morris
Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Network address translation (NAT)

NPF supports dynamic (stateful) and static (stateless) NAT.

I Inbound/source and outbound/destination NAT.

I Address-port translation (NAPT/masquerading) or just port
translation (forwarding).

I Bi-directional NAT (a combination of inbound and outbound).

I Pretty much any variations can be defined using a single
expressive form of syntax:

map = "map" interface

("static" ["algo" algorithm] | "dynamic")

net-seg ("->" | "<-" | "<->") net-seg

["pass" filtopts]

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
NAT

NPF has also grown support for IPv6 Network Prefix Translation,
as described in RFC 6296:

$net6_inner = fd01:203:405::/48

$net6_outer = 2001:db8:1::/48

map $ext_if static algo npt66 $net6_inner <-> $net6_outer

NPTv6 is a static NAT with a particular algorithm specified.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Tables

Large IP sets can be stored in NPF tables for very efficient lookups.
NPF tables are similar to the “ipset” module of Linux Netfilter.

I Hash: provides amortised O(1) lookup time and lockless
lookup. Obviously, it suffers from collisions and is not suitable
for growing sets. Future work: lockless rehash.

I Tree: implemented using PATRICIA tree, therefore provides
O(k) lookup time and is more suitable for dynamic sets.
However, protected with read-write lock. Future work:
lockless prefix tree.

I CDB: constant database uses perfect hashing and thus
guarantees O(1) and lockless lookup. Ideal for sets which
rarely change.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Design
Modularity

I NPF is modular, each component is abstracted and has its
own strict interface.

I Rule procedures in NPF are a key interface to implement
custom extensions. The syntax of npf.conf supports arbitrary
procedures with their parameters, as supplied by the modules.

I An extension consists of two parts: a dynamic module (.so
file) supplementing the npfctl(8) utility and a kernel module.

I Just ∼160 lines of code for a demo extension, which blocks
an arbitrary percentage of traffic. No modifications required
to the NPF core or npfctl(8)!

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Testing
Running and debugging NPF in the userspace

I For testing, NPF uses NetBSD’s RUMP (Runnable Userspace
Meta Programs) framework – a kernel virtualisation and
isolation technique, which enables running of the NetBSD
kernel or parts of it in the userspace, like a regular program.

I For example, you can run NetBSD’s TCP/IP stack as a
regular program and pass other applications through it.4

I Makes debugging or profiling significantly easier due to
availability of tools such as gdb(1).

I NPF regression tests are integrated into NetBSD’s test suite
and thus are part of periodic automated runs.

4https://github.com/anttikantee/buildrump.sh

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

https://github.com/anttikantee/buildrump.sh

Testing
Testing and debugging

I There are unit tests for every NPF subsystem. They are
available within npftest(8) – a program containing both the
tests and NPF kernel part running as a userspace program.

I npftest(8) can also read and process tcpdump pcap files with
a passed npf.conf configuration. This enables analysis of a
particular stream or connection in the userspace.

I The npfctl(8) utility has a ’debug’ command which can print
disassembled BPF byte-code and dump the configuration in
the format sent to the kernel.

I Development, debugging and testing becomes much easier.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Testing
Testing and playing

I Recently, NPF has gained support in rumprun project.5

I You can spawn RUMP kernels as regular programs and setup
a network amongst them. For example, you can spawn a
bunch of servers and test NAT.

I Can be done in a simple shell script (∼50 lines) and be
spawned in a second!

5https://github.com/rumpkernel/rumprun

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

https://github.com/rumpkernel/rumprun

Scalability

So, can we demonstrate the scalability of NPF?

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Scalability

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Future directions

I Porting to FreeBSD and illumos is under consideration.

I High availability, load balancing.

I QoS: rate limiting, traffic shaping.

I More extensions.

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

Documentation

http://www.netbsd.org/~rmind/npf/

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

http://www.netbsd.org/~rmind/npf/

End
TH FIN

The NetBSD Project

http://www.NetBSD.org/

2014

Mindaugas Rasiukevicius The NetBSD Project rmind@netbsd.org

NPF — progress and perspective

http://www.NetBSD.org/

