
USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

NAME

usbnet — common USB Ethernet driver framework

SYNOPSIS

#include <dev/usb/usbnet.h>

Functions offered by usbnet.h

void

usbnet_set_link(struct usbnet ∗ un , bool link);

struct ifnet ∗
usbnet_ifp(struct usbnet ∗ un);

struct ethercom ∗
usbnet_ec(struct usbnet ∗ un);

struct mii_data ∗
usbnet_mii(struct usbnet ∗ un);

krndsource_t ∗
usbnet_rndsrc(struct usbnet ∗ un);

void ∗
usbnet_softc(struct usbnet ∗ un);

bool

usbnet_havelink(struct usbnet ∗ un);

bool

usbnet_isdying(struct usbnet ∗ un);

void

usbnet_enqueue(struct usbnet ∗ un , uint8_t ∗ buf , size_t buflen ,

int csum_flags , uint32_t csum_data , int mbuf_flags);

void

usbnet_input(struct usbnet ∗ un , uint8_t ∗ buf , size_t buflen);

void

usbnet_attach(struct usbnet ∗ un);

void

usbnet_attach_ifp(struct usbnet ∗ un , unsigned if_flags ,

unsigned if_extflags , const struct usbnet_mii ∗ unm);

int

usbnet_detach(device_t dev , int flags);

int

usbnet_activate(device_t dev , devact_t act);

DESCRIPTION

The usbnet framework provides methods usable for USB Ethernet drivers. The framework has support for

these features:

• Partial autoconf handling

NetBSD 9.0_STABLE March 15, 2020 1

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

• USB endpoint pipe handling

• Rx and Tx chain handling

• Generic handlers or support for several struct ifnet callbacks

• Network stack locking protocol

• Interrupt handling

usbnet provides many or all of the traditional “softc” members inside struct usbnet, which can be used

directly as the device softc structure if no additional storage is required. A structure exists for receive and

transmit chain management, struct usbnet_chain, that tracks the metadata for each transfer descriptor avail-

able, minimum of one each for Rx and Tx slot, and will be passed to the Rx and Tx callbacks.

There is a struct usbnet_ops structure that provides a number of optional and required callbacks that will be

described below.

For autoconfiguration the device attach routine is expected to ensure that this device’s struct usbnet is the

first member of the device softc, if it can not be used directly as the device softc, as well as set up the neces-

sary structure members, find end-points, find the Ethernet address if relevant, call usbnet_attach(), set

up interface, Ethernet, and MII capabilities, and finally call usbnet_attach_ifp(). The device detach

routine should free any resources allocated by attach and then call usbnet_detach(), possibly directly

using usbnet_detach() as most consumers have no additional resources not owned and released by the

usbnet framework itself. The device activate function should be set to usbnet_activate().

When bringing an interface up from if_init(9), which happens under IFNET_LOCK(9), usbnet will:

1. call “uno_init” to initialize the hardware for sending and receiving packets,

2. open the USB pipes,

3. allocate Rx and Tx buffers for transfers,

4. call “uno_mcast” to initially program the hardware multicast filter, and finally

5. start the Rx transfers so packets can be received.

See the RECEIVE AND SEND section for details on using the chains.

When bringing an interface down, usbnet will:

1. abort the USB pipes,

2. call “uno_stop” to stop the hardware from receiving packets (unless the device is detaching),

3. free Rx and Tx buffers for transfers, and

4. close the USB pipes.

For interface ioctl, most of the handling is in the framework. While the interface is running, the optional

“uno_mcast” callback is invoked after handling the SIOCADDMULTI and SIOCDELMULTI ioctl commands

to update the hardware’s multicast filter from the ethersubr(9) lists. The optional “uno_ioctl” callback,

which is invoked under IFNET_LOCK(9), can be used to program special settings like offload handling.

If ioctl handling requires capturing device-specific ioctls then the “uno_override_ioctl” callback may be used

instead to replace the framework’s ioctl handler completely (i.e., the replacement should call any generic

ioctl handlers such as ether_ioctl() as required.) For sending packets, the “uno_tx_prepare” callback

must be used to convert an mbuf into a chain buffer ready for transmission.

For devices requiring MII handling there are callbacks for reading and writing registers, and for status

change events. Access to all the MII functions is serialized by usbnet.

NetBSD 9.0_STABLE March 15, 2020 2

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

As receive must handle the case of multiple packets in one buffer, the support is split between the driver and

the framework. A “uno_rx_loop” callback must be provided that loops over the incoming packet data found

in a chain, performs necessary checking and passes the network frame up the stack via either

usbnet_enqueue() or usbnet_input(). Typically Ethernet devices prefer usbnet_enqueue().

General accessor functions for struct usbnet:

usbnet_set_link(un , link)

Set the link status for this un to link.

usbnet_ifp(un)

Returns pointer to this un’s struct ifnet.

usbnet_ec(un)

Returns pointer to this un’s struct ethercom.

usbnet_mii(un)

Returns pointer to this un’s struct mii_data.

usbnet_rndsrc(un)

Returns pointer to this un’s krndsource_t.

usbnet_softc(un)

Returns pointer to this un’s device softc.

usbnet_havelink(un)

Returns true if link is active.

usbnet_isdying(un)

Returns true if device is dying (has been pulled or deactivated, pending detach). This should be used

only to abort timeout loops early.

Buffer enqueue handling for struct usbnet:

usbnet_enqueue(un , buf , buflen , csum_flags , csum_data , mbuf_flags)

Enqueue buffer buf for length buflen with higher layers, using the provided csum_flags, and

csum_data, which are written directly to the mbuf packet header, and mbuf_flags, which is or-ed

into the mbuf flags for the created mbuf.

usbnet_input(un , buf , buflen)

Enqueue buffer buf for length buflen with higher layers.

Autoconfiguration handling for struct usbnet. See the AUTOCONFIGURATION section for more

details about these functions.

usbnet_attach(un)

Initial stage attach of a usb network device. Performs internal initialization and memory allocation

only — nothing is published yet.

usbnet_attach_ifp(un , if_flags , if_extflags , unm)

Final stage attach of usb network device. Publishes the network interface to the rest of the system.

If the passed in unm is non-NULL then an MII interface will be created using the values provided in

the struct usbnet_mii structure, which has these members passed to mii_attach():

un_mii_flags Flags.

un_mii_capmask Capability mask.

NetBSD 9.0_STABLE March 15, 2020 3

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

un_mii_phyloc PHY location.

un_mii_offset PHY offset.

A default unm can be set using the USBNET_MII_DECL_DEFAULT() macro. The if_flags and

if_extflags will be or-ed into the interface flags and extflags.

usbnet_detach(dev , flags)

Device detach. Stops all activity and frees memory. Usable as driver(9) detach method.

usbnet_activate(dev , act)

Device activate (deactivate) method. Usable as driver(9) activate method.

AUTOCONFIGURATION

The framework expects the usbnet structure to have these members filled in with valid values or functions:

un_sc Real softc allocated by autoconf and provided to attach, should be set to the usbnet structure if no

device-specific softc is needed.

un_dev device_t saved in attach, used for messages mostly.

un_iface

The USB iface handle for data interactions, see usbd_device2interface_handle() for

more details.

un_udev

The struct usbd_device for this device, provided as the usb_attach_arg’s uaa_device member.

un_ops Points to a struct usbnet_ops structure which contains these members:

void (∗ uno_stop)(struct ifnet ∗ ifp , int disable)

Stop hardware activity (optional) . Called under IFNET_LOCK(9) when bringing the inter-

face down, except when the device is detaching.

int (∗ uno_ioctl)(struct ifnet ∗ ifp , u_long cmd , void ∗ data)

Handle driver-specific ioctls (optional) . Called under IFNET_LOCK(9).

void (∗ uno_mcast)(struct ifnet ∗)

Program hardware multicast filters from ethersubr(9) lists (optional) . Called between,

and not during, “uno_init” and “uno_stop”.

int (∗ uno_override_ioctl)(struct ifnet ∗ ifp , u_long cmd , void ∗ data)

Handle all ioctls, including standard ethernet ioctls normally handled internally by usbnet

(optional) . May or may not be called under IFNET_LOCK(9).

int (∗ uno_init)(struct ifnet ∗ ifp)

Initialize hardware activity. Required. Called under IFNET_LOCK(9) when bringing the

interface up.

int (∗ uno_read_reg)(struct usbnet ∗ un , int phy , int reg , uint16_t

∗ val)

Read MII register. Required with MII. Serialized with other MII functions, and with

“uno_init” and “uno_stop”.

int (∗ uno_write_reg)(struct usbnet ∗ un , int phy , int reg , uint16_t

val)

Write MII register. Required with MII. Serialized with other MII functions, and with

“uno_init” and “uno_stop”.

NetBSD 9.0_STABLE March 15, 2020 4

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

usbd_status (∗ uno_statchg)(struct ifnet ∗ ifp)

Handle MII status change. Required with MII. Serialized with other MII functions, and with

“uno_init” and “uno_stop”.

unsigned (∗ uno_tx_prepare)(struct usbnet ∗ un , struct mbuf ∗ m , struct

usbnet_chain ∗ c)

Prepare an mbuf for transmit. Required. Called sequentially between, and not during,

“uno_init”. and “uno_stop”.

void (∗ uno_rx_loop)(struct usbnet ∗ un , struct usbnet_chain ∗ c ,

uint32_t total_len)

Prepare one or more chain for enqueue. Required. Called sequentially between, and not dur-

ing, “uno_init” and “uno_stop”.

void (∗ uno_intr)(struct usbnet ∗ un , usbd_status status)

Process periodic interrupt (optional) . Called sequentially between, and not during,

“uno_init” and “uno_stop”.

void (∗ uno_tick)(struct usbnet ∗ un)

Called every second with USB task thread context (optional) . Called sequentially between,

and not during, “uno_init” and “uno_stop”.

un_intr Points to a struct usbnet_intr structure which should have these members set:

uni_buf

If non-NULL, points to a buffer passed to usbd_open_pipe_intr() in the device init call-

back, along with the size and interval.

uni_bufsz

Size of interrupt pipe buffer.

uni_interval

Frequency of the interrupt in milliseconds.

un_ed Array of endpoint descriptors. There indexes are provided: USBNET_ENDPT_RX,

USBNET_ENDPT_TX, and USBNET_ENDPT_INTR. The Rx and Tx endpoints are required.

un_phyno

MII phy number. Not used by usbnet.

un_eaddr

6 bytes of Ethernet address that must be provided before calling usbnet_attach_ifp() if the

device has Ethernet.

un_flags

Device owned flags word. The usbnet framework will not touch this value.

un_rx_xfer_flags

Passed to usbd_setup_xfer() for receiving packets.

un_tx_xfer_flags

Passed to usbd_setup_xfer() for sending packets.

un_rx_list_cnt

Number of chain elements to allocate for Rx.

un_tx_list_cnt

Number of chain elements to allocate for Tx.

NetBSD 9.0_STABLE March 15, 2020 5

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

un_rx_bufsz

Rx buffer size.

un_tx_bufsz

Tx buffer size.

The device detach and activate callbacks can typically be set to usbnet_detach() and

usbnet_activate() unless device-specific handling is required, in which case, they can be called before

or after such handling.

The capabilities described in both struct ifp and struct ethercom must be set before calling

usbnet_attach_ifp().

RECEIVE AND SEND

Receive and send routines are structured around a the usbnet_cdata and usbnet_chain structures, the un_ed,

un_rx_xfer_flags, and un_tx_xfer_flags members, and the uno_stop(), uno_init(),

uno_tx_prepare(), and uno_rx_loop() callbacks of usbnet_ops.

Typically, the device attach routine will fill in members of the usbnet structure, as listed in

AUTOCONFIGURATION. The un_ed array should have the USBNET_ENDPT_RX and

USBNET_ENDPT_TX array entries filled in, and optionally the USBNET_ENDPT_INTR entry filled in if

applicable.

The optional uno_stop() callback performs device-specific operations to shutdown the transmit or receive

handling.

The uno_init() callback both performs device-specific enablement and then calls

usbnet_rx_tx_init(), which sets up the receive, transmit, and, optionally, the interrupt pipes, as well as

starting the receive pipes. All USB transfer setup is handled internally to the framework, and the driver call-

backs merely copy data in or out of a chain entry using what is typically a device-specific method.

The uno_rx_loop() callback, called sequentially, converts the provided usbnet_chain data and length into

a series (one or more) of packets that are enqueued with the higher layers using either usbnet_enqueue()

(for most devices) or usbnet_input() for devices that use if_input() (This currently relies upon the

struct ifnet having the “_if_input” member set as well, which is true for current consumers.)

The uno_tx_prepare() callback must convert the provided struct mbuf into the provided struct

usbnet_chain performing any device-specific padding, checksum, header or other. Note that this callback

must check that it is not attempting to copy more than the chain buffer size, as set in the usbnet

“un_tx_bufsz” member. This callback is only called once per packet, sequentially.

The struct usbnet_chain structure which contains a “unc_buf” member which has the chain buffer

allocated where data should be copied to or from for receive or transmit operations. It also contains pointers

back to the owning struct usbnet, and the struct usbd_xfer associated with this transfer.

MII

For devices that have MII support these callbacks in struct usbnet_ops must be provided:

uno_read_reg

Read an MII register for a particular PHY. Returns standard errno(2). Must initialize the result even

on failure.

uno_write_reg

Write an MII register for a particular PHY. Returns standard errno(2).

uno_statchg

Handle a status change event for this interface.

NetBSD 9.0_STABLE March 15, 2020 6

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

INTERRUPT PIPE

The interrupt specific callback, “uno_intr”, is an optional callback that can be called periodically, registered

by usbnet using the usbd_open_pipe_intr() function (instead of the usbd_open_pipe() func-

tion.) The usbnet framework provides most of the interrupt handling and the callback simply inspects the

returned buffer as necessary. To enable the this callback point the struct usbnet member “un_intr” to a struct

usbnet_intr structure with these members set:

uni_buf

Data buffer for interrupt status relies.

uni_bufsz

Size of the above buffer.

uni_interval

Interval in millieconds.

These values will be passed to usbd_open_pipe_intr().

CONVERTING OLD-STYLE DRIVERS

The porting of an older driver to the usbnet framework is largely an effort in deleting code. The process

involves making these changes:

Headers

Many headers are included in usbnet.h and can be removed from the driver, as well as headers no

longer used, such as callout.h and rndsource.h, etc.

Device softc

The majority of the driver’s existing “softc” structure can likely be replaced with usage of struct usbnet

and its related functionality. This includes at least the device_t pointer, Ethernet address, the ethercom

and mii_data structures, end point descriptors, usbd device, interface, and task and callout structures

(both these probably go away entirely) and all the associated watchdog handling, timevals, list size,

buffer size and xfer flags for both Rx, and Tx, and interrupt notices, interface flags, device link, PHY

number, chain data, locks including Rx, Tx, and MII. There is a driver-only “un_flags” in the usbnet

structure available for drivers to use.

Many drivers can use the usbnet structure as the device private storage passed to

CFATTACH_DECL_NEW. Many internal functions to the driver may look better if switched to operate

on the device’s usbnet as, for example, the usbd_device value is now available (and must be set by the

driver) in the usbnet, which may be needed for any call to usbd_do_request(). The standard end-

point values must be stored in the usbnet “un_ed[]” array.

As usbnet manages xfer chains all code related to the opening, closing, aborting and transferring of

data on pipes is performed by the framework based upon the buffer size and more provided in subnet,

so all code related to them should be deleted.

Interface setup

The vast majority of interface specific code should be deleted. For device-specific interface values, the

ifnet flags and exflags can be set, as well as the ethercom “ec_capabilities” member, before calling

usbnet_attach_ifp(). All calls to ifmedia_init(), mii_attach(), ifmedia_add(),

ifmedia_set(), if_attach(), ether_ifattach(), rnd_attach_source(), and

usbd_add_drv_event() should be eliminated. The device “ioctl” routine can use the default han-

dling with a callback for additional device specific programming (multicast filters, etc.), which can be

empty, or, the override ioctl can be used for heavier requirements. The device “stop” routine is

replaced with a simple call that turns off the device-specific transmitter and receiver if necessary, as the

framework handles pipes and transfers and buffers.

NetBSD 9.0_STABLE March 15, 2020 7

USBNET (9) NetBSD Kernel Developer’s Manual USBNET (9)

MII handling

For devices with MII support the three normal callbacks (read, write, and status change) must be con-

verted to usbnet. Local “link” variables need to be replaced with accesses to usbnet_set_link()

and usbnet_havelink(). Other ifmedia callbacks that were passed to ifmedia_init() should

be deleted and any work moved into “uno_statchg”.

Receive and Transmit

The usbnet framework handles the majority of handling of both network directions. The interface

init routine should keep all of the device specific setup but replace all pipe management with a call to

usbnet_init_rx_tx(). The typical receive handling will normally be replaced with a receive

loop functions that can accept one or more packets, “uno_rx_loop”, which can use either

usbnet_enqueue() or usbnet_input() to pass the packets up to higher layers. The typical

interface “if_start” function and any additional functions used will normal be replaced with a relatively

simple “uno_tx_prepare” function that simply converts an mbuf into a usbnet_chain useful for this

device that will be passed onto usbd_transfer(). The framework’s handling of the Tx interrupt is

all internal.

Interrupt pipe handling

For devices requiring special handling of the interrupt pipe (i.e., they use the

usbd_open_pipe_intr() method), most of the interrupt handler should be deleted, leaving only

code that inspects the result of the interrupt transfer.

Common errors

It’s common to forget to set link active on devices with MII. Be sure to call usbent_set_link()

during any status change event.

Many locking issues are hidden without LOCKDEBUG, including hard-hangs. It’s highly recom-

mended to develop with LOCKDEBUG.

The usbnet “un_ed” array is unsigned and should use “0” as the no-endpoint value.

SEE ALSO

usb(4), driver(9), usbd_status(9), usbdi(9)

HISTORY

This usbnet interface first appeared in NetBSD 9.0. Portions of the original design are based upon ideas

from Nick Hudson 〈skrll@NetBSD.org〉 .

AUTHORS

Matthew R. Green 〈mrg@eterna.com.au〉

NetBSD 9.0_STABLE March 15, 2020 8

