
GETRANDOM (2) NetBSD System Calls Manual GETRANDOM (2)

NAME

getrandom — random number generation from system entropy

LIBRARY

Standard C Library (libc, −lc)

SYNOPSIS

#include <sys/random.h>

ssize_t

getrandom(void ∗ buf , size_t buflen , unsigned int flags);

DESCRIPTION

The getrandom function fills buf with up to buflen independent uniform random bytes derived from
the system’s entropy pool.

The function may block until the system has full entropy, meaning that the system has observed enough noise
from physical processes that an adversary cannot predict what state it is in:
• When the system has only partial entropy, the output of getrandom() may be predictable.
• When the system has full entropy, the output is fit for use as cryptographic key material.

The flags argument may be:

0 Block until the system entropy pool has full entropy; then generate arbitrarily
much data. Recommended.

If interrupted by a signal, may fail with EINTR or return a short read. If success-
ful, guaranteed to return at least 256 bytes even if interrupted.

GRND_INSECURE Do not block; instead fill buf with output derived from whatever is in the system
entropy pool so far. Equivalent to reading from /dev/urandom; see rnd(4).

If interrupted by a signal, may fail with EINTR or return a short read. If success-
ful, guaranteed to return at least 256 bytes even if interrupted.

Despite the name, this is secure as long as you only do it after at least one suc-
cessful call without GRND_INSECURE, such as getrandom(..., 0) or
getrandom(..., GRND_RANDOM), or after reading at least one byte from
/dev/random.

WARNING: If you use GRND_INSECURE before the system has full entropy. the
output may enable an adversary to search the possible states of the entropy pool
by brute force, and thereby reduce its entropy to zero. Thus, incautious use of
GRND_INSECURE can ruin the security of the whole system.

NetBSD attempts to defend against this threat model by resetting the system’s
entropy estimate to zero in this event, requiring gathering full entropy again before
/dev/random or getrandom() without GRND_INSECURE will unblock, but
other operating systems may not.

GRND_RANDOM Block until the system entropy pool has full entropy; then generate a small amount
of data. Equivalent to reading from /dev/random; see rnd(4). This is pro-
vided mainly for source compatibility with Linux; there is essentially no reason to
ev er use it.

The flag GNRD_NONBLOCK may also be included with bitwise-OR, in which case if getrandom() would
have blocked without GRND_NONBLOCK, it returns EAGAIN instead.

NetBSD 9.0_STABLE January 13, 2020 1



GETRANDOM (2) NetBSD System Calls Manual GETRANDOM (2)

Adding GRND_NONBLOCK to GRND_INSECURE has no effect; the combination
GRND_INSECURE|GRND_NONBLOCK is equivalent to GRND_INSECURE, since GRND_INSECURE never
blocks. The combination GRND_INSECURE|GRND_RANDOM is nonsensical and fails with EINVAL.

RETURN VALUES

If successful, getrandom() returns the number of bytes stored in buf. Otherwise, getrandom() returns
−1 and sets errno.

Since getrandom(..., 0) and getrandom(..., GRND_INSECURE) are guaranteed to return at
least 256 bytes if successful, it is sufficient to use, e.g.,

getrandom(buf, 32, 0) == -1

or
getrandom(buf, 32, GRND_INSECURE) == -1

to detect failure. However, with GRND_RANDOM, getrandom() may return as little as a single byte if suc-
cessful.

EXAMPLES

Recommended usage. Generate a key for cryptography:

uint8_t secretkey[32];

if (getrandom(secretkey, sizeof secretkey, 0) == -1)

err(EXIT_FAILURE, "getrandom");

crypto_secretbox_xsalsa20poly1305(..., secretkey);

Other idioms for illustration:

• Wait for entropy once, and then generate many keys without waiting:

struct { uint8_t key[32]; } user[100];

if (getrandom(NULL, 0, 0) == -1)

err(EXIT_FAILURE, "getrandom");

for (i = 0; i < 100; i++)

if (getrandom(user[i].key, sizeof user[i].key,

GRND_INSECURE) == -1)

err(EXIT_FAILURE, "getrandom");

• Twiddle thumbs while waiting for entropy:

uint8_t secretkey[32];

while (getrandom(secretkey, sizeof secretkey, GRND_NONBLOCK)

== -1) {

if (errno != EAGAIN)

err(EXIT_FAILURE, "getrandom");

twiddle_thumbs();

}

crypto_secretbox_xsalsa20poly1305(..., secretkey);

(No examples of GRND_RANDOM because it is not useful.)

ERRORS

NetBSD 9.0_STABLE January 13, 2020 2



GETRANDOM (2) NetBSD System Calls Manual GETRANDOM (2)

[EAGAIN] The GRND_NONBLOCK flag was specified, and the system entropy pool does not have
full entropy.

[EINTR] The GRND_NONBLOCK flag was not specified, the system entropy pool does not have
full entropy, and the process was interrupted by a signal while waiting.

[EINVAL] flags contains an unrecognized flag or a nonsensical combination of flags.

[EFAULT] buf points outside the allocated address space.

SEE ALSO

rnd(4)

HISTORY

The getrandom system call first appeared in Linux 3.17, and was added to NetBSD 10.0.

AUTHORS

The NetBSD implementation of getrandom and this man page were written by Taylor R Campbell
〈riastradh@NetBSD.org〉 .

BUGS

There is no way to multiplex waiting for getrandom() with other I/O in select(2), poll(2), or
kqueue(2). Instead, you can wait for a read from /dev/random; see rnd(4).

GRND_RANDOM is a little silly.

NetBSD 9.0_STABLE January 13, 2020 3


