
Porting DTrace to
NetBSD/arm

Ryota Ozaki
ozaki-r@{iij.ad.jp,NetBSD.org}

AsiaBSDCon 2014
March 16, 2014

Who’s am I?

● Ryota Ozaki
● working at IIJ

○ ISP company in Japan
● a NetBSD developer

○ since the last month :)
● an OSS developer

○ find me (ozaki-r) at github or Ohloh

Motivation

● We (IIJ) want DTrace on ARM for our
productions

● Not supported yet on NetBSD :-/
○ even on FreeBSD

● Do it by ourselves!
●
● For fun :)

Standing on the shoulders of giants

● Solaris DTrace
● FreeBSD DTrace
● NetBSD DTrace
● DTrace for ARM

○ Some source codes for ARM were already imported
into NetBSD

○ written by gonzo@FreeBSD
○ imported by christos@NetBSD

What I need to do

● Fix existing code to make it buildable
○ Support SDT provider

● Support of FBT provider
○ Probable instruction explore
○ Exception handling
○ Instruction emulations

● Others
○ Optimizations
○ Support THUMB instructions in the kernel
○ Support other providers
○ etc.

Supporting FBT provider
Background

● FBT: Function Boundary Tracing
● How it works

○ Preparation
■ Explore probable instructions
■ Replace instructions at the entry and return points of a

target function with a breakpoint instruction
● Preserve original instructions

○ Probing
■ Handle an exception of the breakpoint and probe the

runtime context
■ Emulate the replaced instruction
■ Return to the original context

○ Cleanup
■ Restore original instructions to probe points

Supporting FBT provider
Current implementation

● Breakpoint
○ Use undefined instructions

● Trap handler
○ added in undefinedinstruction of

sys/arch/arm/arm/undefined.c
● Instruction emulations

○ Written in C
○ Need to optimize in the future

Supporting FBT provider
Instruction emulations

● The instruction deconding on ARM is easier
than i386/amd64
○ Thanks to constant size of instructions

● ARM allows many instructions to be entry
points and return points

● 11 instruction emulations cover ~80% of
probe points
○ On amd64 push and retq emulations can cover

most probe points :-/

Supporting FBT provider
Conditional executions

● Encode a condition specifier into a
breakpoint

● Get a condition specifier from a breakpoint
instruction on exception handling

● Run the DTrace probe function only if the
condition passes

0xE1A0C00D mov ip, sp

0xE7FFFEFE <UNDEFINED>

Current status

● Done
○ Half of my patch (trivial parts) were committed

already
○ FBT patches have been commited during the

conference :)
● Tested environments

○ -m evbarm (-a earm) kernel=BEAGLEBONE
● Acknowledgment

○ I have to say thank you to matt and christos for
great helps!

Any questions?

