
Improving bridge(4)  
or Toward a Unified L2 Framework

k-goda and ozaki-r
@iij.ad.jp

!
NetBSD BoF in AsiaBSDCon 2014

March 14, 2014
!1

Who We Are

!2

• Kazuya Goda (k-goda) and Ryota Ozaki
(ozaki-r)

• Working at IIJ (Internet Initiative Japan)
– ISP company in Japan

• Developing Internet access routers
• Kernel and networking developers

Motivation

!3

• We have several software switches
– L3capable bridge(4), openvswitch, etc.

Motivation

!4

• They have much in common
– architecture
• data plane and internal port are separated

– configuration
• add/delete data plane and port, forwarding rules…

– processing
• rule lookup, forwarding frames by the rule…

Framework Overview

!5

• The framework consists of several
components

Framework Overview

!6

• Configuration
– add/delete data plane and port, forwarding

rules…

• Flexible forwarding plane
1. Extract a key from a packet
2. Lookup a rule with the key
3. Forward the packet by the rule

• Others
– STP and LLDP handling
– Timer event handling
• expire rule, etc..

Adding forwarding rules

!7

• Both brconfig(8) and vswitchd(8) add
forwarding rules via the framework APIs

Adding forwarding rules

!8

• Both brconfig(8) and vswitchd(8) add
forwading rules that used the framework APIs

!9

static void!
dp_input(struct ifnet *ifp, struct mbuf *m) {!
 struct brdp_softc *sc = &ifp->if_softc;!
 struct flow_key key;!
 struct flow *flow;!
 !
 (sc->brdp_flow_extract)(sc, m, &key);!
 m = (sc->brdp_upcall_controller)(sc, m, &key);!
 if (m == NULL)!
 return;!
 flow = (sc->brdp_flow_lookup)(sc, &key);!
 (sc->brdp_forward)(sc, m, flow);!
}

Dataplane abstraction function

!10

static void!
dp_input(struct ifnet *ifp, struct mbuf *m) {!
 struct brdp_softc *sc = &ifp->if_softc;!
 struct flow_key key;!
 struct flow *flow;!
 !
 (sc->brdp_flow_extract)(sc, m, &key);!
 m = (sc->brdp_upcall_controller)(sc, m, &key);!
 if (m == NULL)!
 return;!
 flow = (sc->brdp_flow_lookup)(sc, &key);!
 (sc->brdp_forward)(sc, m, flow);!
}

Normal packet processing

1.Extract a key from the packet

!11

static void!
dp_input(struct ifnet *ifp, struct mbuf *m) {!
 struct brdp_softc *sc = &ifp->if_softc;!
 struct flow_key key;!
 struct flow *flow;!
 !
 (sc->brdp_flow_extract)(sc, m, &key);!
 m = (sc->brdp_upcall_controller)(sc, m, &key);!
 if (m == NULL)!
 return;!
 flow = (sc->brdp_flow_lookup)(sc, &key);!
 (sc->brdp_forward)(sc, m, flow);!
}

Normal packet processing

1.Extract a key from the packet

2.Lookup a rule with the key

!12

static void!
dp_input(struct ifnet *ifp, struct mbuf *m) {!
 struct brdp_softc *sc = &ifp->if_softc;!
 struct flow_key key;!
 struct flow *flow;!
 !
 (sc->brdp_flow_extract)(sc, m, &key);!
 m = (sc->brdp_upcall_controller)(sc, m, &key);!
 if (m == NULL)!
 return;!
 flow = (sc->brdp_flow_lookup)(sc, &key);!
 (sc->brdp_forward)(sc, m, flow);!
}

Normal packet processing

1.Extract a key from the packet

2.Lookup a rule with the key

3. Forwarding the packet

!13

static void!
dp_input(struct ifnet *ifp, struct mbuf *m) {!
 struct brdp_softc *sc = &ifp->if_softc;!
 struct flow_key key;!
 struct flow *flow;!
 !
 (sc->brdp_flow_extract)(sc, m, &key);!
 m = (sc->brdp_upcall_controller)(sc, m, &key);!
 if (m == NULL)!
 return;!
 flow = (sc->brdp_flow_lookup)(sc, &key);!
 (sc->brdp_forward)(sc, m, flow);!
}

STP and LLDP

3.Lookup a rule with the key

Summary

!14

• We have proposed a framework for
software switches
– They have similar components
– architecture
– configuration
– forwarding processing

• We have a plan to support hardware
switches

Thank you!

Any questions or comments?

!15

Backup

!16

Extend to hardware switch

!17

• Overview of extended framework

Device specific operation

!18

What is improving bridge(4)?

!19

• bridge(4) has many
many problems

• So we redesign
bridge(4)

• Improving bridge(4)
has internal-port
that receive and
send self packets

What is openvswitch module?

!20

• We implement in-
kernel datapath
that is component
on Open vSwitch

