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1.  System Features

The Sun–4M Architecture is a system architecture for Sun workstations and servers incorporating  SPARC

processors and the SPARC Reference MMU.  Some of the implementations are designed around the SPARC MBus.

Different implementations of this architecture will support between one and four processors.  The primary I/O bus is a

Sun SBus.  Primary page size is 4KB.

This architecture is an outgrowth of the Sun–4 Architecture, with changes reflecting the nature of SRMMU and

multiple processors.  Some functions that are related to the processor core (IU, FP, cache, MMU) are replicated per

processor.  Interrupt steering logic is new, with MP support.

Section 2.3 provides a functional index to this document.

The first implementations based on this architecture are Galaxy and Campus–2.  Appendices A.I and A.II

(respectively) give implementation details for these systems.  Appendices B.I, B.II, B.III, B.IV, and B.V define the

specifics of each type of MBus processor module supported.

2. Introduction

2.1 Goals

The purpose of an architecture is to provide a consistent model of a system as seen by the operating system and by

device drivers.  In an ideal world this model is exact, and a single operating system will run identically across all

implementations of that architecture.  Sun has traditionally had a more lenient approach to system architecture, with

minor variations allowed between implementations.  It is the goal of this document to provide a definition of the model

that is consistent among implementations, with variations specified in cache management models, device options, and

devices managed at the device driver level.  Implementations that choose to introduce changes at a more fundamental

level should do so with a full understanding of the software development and test implications.

2.2 Scope

The Sun–4M Architecture provides a system definition for Galaxy and Campus–2 and follow–on projects.  It

comprises a programmer’s model for use in developing system software, and architectural description for

understanding of the system for hardware developers.

Up to this point this has been a living document.  With the release of revision 2.0 it is firm for those products

described, and flexible for future 4M projects.  As this document was being developed there were several corporate

committees involved in defining system architecture for the next generation of Sun products.  Among these products

are Campus–2,  Sundragon (not a 4M machine), and Galaxy, using processor cores based on Viking and Ross modules.

The Comet Committee and the SPARC Multi–Processor Architecture Committee have served as forums for arriving at

a common architecture for the various products.  This architecture document is in compliance with the resolutions of

those two committees.

2.3 Acknowledgements

Many people have contributed to this document.  The author would especially like to thank Tim Bucher, Steve

Kleiman, Michel Cekleov, Jean–Marc Frailong, Ken Okin, and Frank Spies for their insights and often entertaining

ideas.  Also, thanks to the members of the Comet Committee, the MP SPARC Architecture Committee, the SBus Spec.

Committee,  the SPARC MBus Committee, the MBus Module Committee, the Galaxy design team, the ad–hoc MP

Graphics Committee, the Comet write–buffer subcommittee, the ad–hoc I/O Model Committee, the Maxiray design

team, the Viking design team, and of course the Sun Recycling Committee for processing the previous versions of this

worthy document.
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2.3 How to Use this Document

This document describes a system architecture for several system implementations and several processor core

implementations (modules).  This section is intended to help the reader in locating information which may be scattered

across several sections.

2.3.1 Modules

Section 3 contains the generic module programmer’s model, including virtual addresses, ASI’s, and module

register addresses.  Section 4 contains the descriptions of generic module registers and their behavior.  The ’B’

appendices contain module–specific information such as cache size and style, extra registers implemented on each

module, and extra control/status bits marked as ’reserved’ in section 4.  Section 7 discusses memory management and

cache coherence, including the SPARC Reference MMU.  Section 12 defines reset activity.

2.3.2 System Registers

System register addressing is described in section 3.2.  Each register is described in detail in section 5. Registers

associated with I/O are described in section 9 (for slave–only devices) and section 10 (for DVMA devices).

2.3.3 Memory Management and Cache Coherence

Chapter 7 is the bible for memory management and cache management.  7.1 defines the SPARC Reference MMU

(SRMMU), and section 4 defines the behaviour of the SRMMU registers in Sun–4M implementations.  7.2 defines the

IOMMU and explains how to manage it. Section  7.3 explains the MP and DVMA coherence support and rules.  7.4

details where write buffers may be implemented in the system and how to manage them.  The I/O Cache is described in

chapter 8, and the management of the IOC is also explained in that chapter.

2.3.4 SBus

SBus slot addressing is defined in 3.2.3, and SBus/IOMMU control space addressing in 3.2.2.4.  The SBus Slot

Configuration Registers are described in 5.9.  SBus slots can each behave as both a master and a slave; the slave

attribute is described in 9.6, and the master in 10.3.

2.3.5 VMEbus

Top–level addressing for the VME master port is described in 3.2.1, and VME control space in 3.2.2.3.  VME

interface registers are described section 5.6.  Table 7.2.2 shows how VME addresses map to DVMA addresses.  The I/O

Cache is defined in section 8; it is used only for VME DVMA.  The VME Master Port is defined in 9.5, and the VME

slave port is defined in 10.3.

2.3.6 Interrupts

Section 6 defines how interrupts are distributed in the multi–processor Sun–4M architecture.  6.3 gives the

interrupt level assignment for interrupts from hardware devices.  Section 5.7 defines the registers associated with the

interrupt logic and describes their behaviour.

2.3.7 Main Memory

Main memory is described in section 11.  The memory registers and ECC are described in section 5.5.
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2.4 Glossary

This section defines some technical terms that the reader may not be familiar with.

Block: The information that goes into a cache line.  Many different blocks may map to the same line.  In

Sun–4M the block size is 32 bytes.

Cache:  a small, fast memory that keeps recently accessed data, instructions, or translations local to the data

sink

Coherence, consistency: keeping multiple cached copies of information up–to–date even when one copy

gets modified (written to)

Demap:  Changing the correspondence between a virtual and physical address, and purging stale cached

translations

DVMA:  Direct Virtual Memory Access; access from non–processor masters to memory or I/O devices via

a memory management unit.

Expansion:  Generally refers to options that a user can add to a system by plugging a circuit board into a

backplane or into a socket on the CPU motherboard.

Flush: Purging of stale references from a cache in order to maintain consistency, used when the system

 software is changing the use of a virtual address or of an I/O Cache line.

Harvard architecture:  An architecture where instructions and data use separate caches.

Line: An entry in a cache, which contains one or more blocks

Module:  A logical module consists of a SPARC IU, FPU, cache(s), an SRMMU, and an interface to the

 system.  A physical module (MBus module) is a daughterboard that plugs into a CPU that

 contains one or two logical modules.  In general references to a module in this document are

 for logical modules unless otherwise specified.

MMU:  Memory Management Unit; a device that translates processor or DVMA virtual addresses to

phsysical addresses; may include access permission checks and status of page access.  Two types

of MMU are described in this specification, the SPARC Reference MMU and the IOMMU.

MP: Multiple Processor

Mutex: MUTual EXclusion lock; this is a semaphore in memory used by software to guarantee exclusive

access to memory variables or to a hardware device, among multiple processors or threads

On–board:  Generally refers to devices that are standard on the CPU motherboard.

PDC:  Page Descriptor Cache; a cache that contains multiple TLB’s, each holding a recently used 

translation.

Physical:  Generally refers to system addresses that are decoded in order to select a memory location or

device
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Reserved: Addresses or bit fields that are not currently assigned within this architecture.  Future implemen–

tations may assign these addresses or bit fields but should consult with the author first.

Thread: A thread of execution is a sequence of instructions executed either sequentially or with flow control

managed by that execution.  A thread has a program counter associated with it; each processor

in a Sun–4M MP has a thread of execution associated with it.  Threads are entered by an IU

when it exeuctes a trap.  In software terms a thread generally has some process state associated

with it; formal definitions can be found in SVR4 documentation.

TLB: Translation Lookaside Buffer; an entry in a PDC that contains a recently accessed translation.  By

caching translations an MMU can save accesses to page tables in memory.

TSO:  Total Store Ordering; a slightly weak memory model defined in the SPARC Architecture Manual

version 8.

Virtual:  A virtual address is a 32–bit address issued by a SPARC IU or a DVMA master.  A virtual address

and a context number are translated by the MMU to a physical address.
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3. Address spaces

3.1 Virtual Address Space: Proccessor Cores

Virtual addresses are used only within the processor/cache module.  Address space identifiers (ASI’s) are

interpreted by the cache interface logic.  The modules contain memory management units (MMU’s) that implement

the SPARC Reference MMU, using TLB’s and tables in main memory, which are used to translate virtual addresses

into physical addresses when appropriate.  This architecture supports up to four processor modules.  Module #0 must be

installed; the other modules may be installed in any order.  All processor modules installed must be of the same type.

3.1.1 Address Space Identifiers (ASI’s)

The ASI code is interpreted by the processor and/or cache controller(s) on each module.  No ASI information is

accessible on the MBus.  The ASI assignment is:

ASI

0x00 Reserved

FUNCTION

0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17

0x18

0x1F

0x20 – 0x2F
0x30 – 0x7F
0x80 – 0xFF

SRMMU flush/probe
Module Control/Status Registers
SRMMU Diagnostic, I–cache TLB
SRMMU Diagnostic, D–cache TLB (or I/D cache TLB if shared)
Unassigned

User Instruction
Supervisor Instruction
User Data
Supervisor Data
I–cache Tag
I–cache Data
D–cache Tag (or I/D–cache tag, if appropriate)
D–cache Data (or I/D–cache tag, if appropriate)
Flush I/D cache(s) by page
Flush I/D cache(s) by segment
Flush I/D cache(s) by region
Flush I/D cache(s) by context
Flush I/D cache(s) by user
Reserved
Reserved
Block Copy

Flush D cache by page

Block Zero

SRMMU Bypass (PA[35:32] = ASI[3:0], PA[31:0] = VA[31:0])
Unassigned
Reserved

0x19
0x1A
0x1B
0x1C
0x1D
0x1E

Flush D cache by segment
Flush D cache by region
Flush D cache by context
Flush D cache by user
Reserved
Reserved

These 4 ASI codes indicate addresses
that the MMU may translate

Reserved 
Reserved

ASI spaces are accessed through use of the SPARC lda, sta, and swapa instructions.  These instructions can only be

issued in supervisor mode.  In general making an access to a reserved ASI will result in a data access exception trap

(exceptions to this are noted in the module appendices). ASI’s 0x8 – 0xB are issued by SPARC IU’s under normal data

access and instruction fetch operations.

’Reserved’ ASI’s are reserved for future use by SPARC International.  ’Unassigned’ ASI codes may be used by

system designers for design–specific functions.
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For definitions of the ASI functions, see your module specifications (also Appendices B.I, B.II, B.III, B.IV, B.V).

Not all ASI’s are supported by all modules.

3.1.2 Translation Modes

Translation of virtual addresses to MBus physical addresses is done by the modules in the following modes:

ASI BOOT–
MODE

MMU 
 EN

PA<35:00> NAME

0x8, 0x9
0x8, 0x9
0x8, 0x9
0xA, 0xB
0xA, 0xB
0x20–0x2F

YES       
NO
NO
X
X
X

X     
OFF
ON
OFF
ON
X

PA<35:28> = 0xFF, PA<27:0> = VA<27:0>
PA<35:32> = 0x0, PA<31:0> = VA<31:0>
PA<35:12> = PTE<31:08>, PA<11:0> = VA<11:0>
PA<35:32> = 0x0, PA<31:0> = VA<31:0>
PA<35:12> = PTE<31:08>, PA<11:0> = VA<11:0>
PA<35:32> = ASI<3:0>, PA<31:0> = VA<31:0>

Boot Ifetch
Pass–thru
Translate
Pass–thru
Translate
Bypass

MBUS
’C’ bit

0        
0
PTE<7>
0
PTE<7>
0

When asserted the MBus ’C’ bit indicates that this is a cacheable transaction.  PTE/VA concatenation will differ if

the PTE is not a level–3 PTE (4K page size).  See the SRMMU specification in section 7.1 for details.

3.1.3 CPU Core Addresses (ASI = 0x4)

VA(31:00) Description

0x00000000 Module Control Register

0x00000100
0x00000200
0x00000300
0x00000400
0x00000500
0x00000600
0x00000700

0xFFFFFFFF

Context Table Pointer Register
Context Register

Synchronous Fault Status Register
Synchronous Fault Address Register

Asynchronous Fault Status Register
Asynchronous Fault Address Register
Reset Register

Implementation Dependent: refer to the appropriate module    
specification.

0x00000800 to

For module–specific information, refer to the module specification.  Current modules supported are Viking,

Viking/MXCC, Ross–604 (level–1), and Ross–605 (level–2).  See Appendices B.I, B.II, B.III, B.IV  and B.V for the

latest information on these modules.  Not all of these modules will be use in real products.  Actual module

specifications, when available, will be more accurate.
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3.2 Physical Address Space

3.2.1 Physical Address Space Allocation

The processor modules contain items that are accessed in ASI space with virtual addresses.  The Address Space

Identifiers (ASI’s) and virtual addresses from the SPARC IU are interpreted and used solely on the modules.  For ASI’s

0x8, 0x9, 0xA, and 0xB the address is translated in to a 36–bit physical address (PA) by the SPARC Reference MMU

(SRMMU) TLB in the module; the bypass ASI’s 0x20–0x2F generate the PA without use of the MMU. DVMA virtual

addresses are translated by the DVMA MMU (IOMMU). The 36–bit physical address space is further broken down into

16 32–bit address spaces identified by PA(35:32).

Reserved addresses are reserved for use in future implementations.

PA(35:32) 32–BIT SPACE

0xF
0xE
0xD
0xC
0xB
0xA

0x1–0x8

Control Space
S–bus
VME Master Port, Supervisor, 32–bit Maximum Data
VME Master Port, Supervisor, 16–bit Maximum Data

VME Master Port, User, 16–bit Maximum Data
VME Master Port, User, 32–bit Maximum Data

Reserved
0x0 Main Memory

0x9 Memory–based Video (TBD)

Optional?

No
––
Yes
Yes
Yes
Yes
Yes
No
No

3.2.2 Control Space

PA(35:28)

0xFF

Control Space  (PA<35:32> = 0xF)

System Space
0xFE S–Bus/IOMMU Control Space

VME/IOC Control Space0xFD
0xF1–0xFC   Reserved

0xF0 Memory Control Space

3.2.2.1 On–Board Memory Control/Status Registers (32–bit access)

PA(35:00)

ECC Memory Enable Register
  Reserved
ECC Memory Fault Status Register
  Reserved
ECC Memory Fault Address Register 0
ECC Memory Fault Address Register 1
ECC Diagnostic Register
  Reserved

Diagnostic Message–Passing Registers <0:3>: byte access only

Reserved

0xF00000000
0xF00000004
0xF00000008
0xF0000000C
0xF00000010
0xF00000014
0xF00000018
0xF00000020–
0xF00000FFF
0xF00001000–
0xF00001003
0xF00001004
0xF0FFFFFFF

Memory–related Addresses Section

5.5.1   

5.5.2

5.5.3.1
5.5.3.2
5.5.4

5.4.2
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3.2.2.2 System Space

PA(35:24)

0xFF0

System Space

EPROM
0xFF1
0xFF2
0xFF3
0xFF4
0xFF5
0xFF6
0xFF7
0xFF8
0xFF9
0xFFA
0xFFB
0xFFC
0xFFD
0xFFE
0xFFF

Reserved

System Control Space

Reserved

Reserved
Reserved
Reserved
Reserved

For definitions of this
space, see
the appropriate mod-
ule specification.

Control space for Module MBus master #8  
Control space for Module MBus master #9
Control space for Module MBus master #A
Control space for Module MBus master #B
Control space for Module MBus master #C
Control space for Module MBus master #D
Control space for Module MBus master #E
Control space for Module MBus master #F

Each Module MBus master represents the MBus interface for a processor cache.  In the case of Harvard

Architecture modules (split cache) the processor may require two master ID’s, one for each cache.  See the appropriate

module specification to determine the allocation of addresses within these control spaces.

Most of the Module control space is implementation dependent; however, the highest 32–bit location in each slot

(PA = 0xFFnFFFFFC, where n = MID) is reserved for the MBus Port Address register (see section 4.7).  The module ID

is a 4–bit field provided by the MBus module connector. See the MID table in section 5.5.3 for definitions.  The

names used in this document (processor #<3:0>) are not the MID’s, but rather are a Sun–4M convention.

3.2.2.2.1 System Control Space

PA(35:20) System Control Space 

Keyboard/Mouse
Serial Ports
TOD/NVRAM
Timer/Counter and Counter Registers
Interrupt Registers
Audio/ISDN
Diagnostic LED’s (write–only)
Floppy Controller
Auxiliary I/O registers
Reserved
Generic 8–bit Device
  Reserved
  Reserved
  Reserved
  Reserved
System Status/Control Register

0xFF10   
0xFF11
0xFF12
0xFF13
0xFF14
0xFF15
0xFF16
0xFF17
0xFF18
0xFF19
0xFF1A
0xFF1B
0xFF1C
0xFF1D
0xFF1E
0xFF1F

Optional

No
No
No
Note 
Note 
Yes
Yes
Yes
Yes
–
Yes
–
–
–
–
No

 Per–processor items are optional per implementation; one set is provided for
 each possible processor in that implementation.

Section

9.1
9.1
9.2
5.3
5.7
9.4
5.4.1
9.7
9.8

9.9

5.1.1
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3.2.2.2.2 Timer/Counter and Counter Registers

Address Register Type

0xFF130N000**
0xFF130N004
0xFF130N008
0xFF130N00C

RW
RW*
W
RW

Processor #N Limit Register or User Timer MSW
Processor #N Counter Register or User Timer LSW
Processor #N Limit Register, doesn’t reset Counter
Processor #N User Timer Start/Stop Register

0xFF1310000
0xFF1310004
0xFF1310008
0xFF131000C
0xFF1310010

System Limit Register (level 10 interrupt)
System Counter Register
System Limit Register, doesn’t reset Counter
  reserved
Timer Configuration Register

RW
R
W

RW

Section

5.3.2
5.3.2
5.3.2
5.3.4
5.3.2
5.3.2
5.3.2

5.3.1

* Writable as User Timer LSW, read–only as Counter Register                                      
** ’N’ is the processor number, starting at 0x0.  One set of these registers is provided for
each processor supported in an implementation.

3.2.2.2.3 Interrupt Registers

Address Register

Processor #N Interrupt Pending Register

Type

R
Processor #N Clear_Pending Pseudo–Register W

WProcessor #N Set_Soft_Int  Pseudo–Register
N/AReserved

System Interrupt Pending Register R

Interrupt_Target_Mask Clear Pseudo–Register
R
W

Interrupt_Target_Mask Set  Pseudo–Register

Interrupt_Target_Mask  Register

W

Interrupt Target Register RW
Reserved N/A

0xFF140N000*
0xFF140N004
0xFF140N008
0xFF140N00C –
0xFF140NFFF
0xFF1410000
0xFF1410004
0xFF1410008
0xFF141000C
0xFF1410010
0xFF1410014 –
0xFF14FFFFF

Section

5.7.1.1
5.7.1.2
5.7.1.3

5.7.3.1
5.7.3.2
5.7.3.2
5.7.3.2
5.7.2

* ’N’ is the processor number, starting at 0x0.  One set of these registers is provided for
each processor supported in an implementation.

3.2.2.3 VMEbus Control Space

PA(35:00) VMEbus Control Space

VMEbus Interrupt Vector Register                                        
  Reserved

IOC Tags

IOC Data Diagnostic Access

VMEbus Interface Control Register
VMEbus Interface Asynchronous Error Address Register
VMEbus Interface Asynchronous Error Status Register
  Reserved

I/O Cache Flush 

  Reserved

0xFD000000X

0xFD0000010 –
0xFDEFFFFFF
0xFDF000000–
0xFDF007FFF
0xFDF008000–
0xFDF00FFFF
0xFDF010000
0xFDF010004
0xFDF010008
0xFDF01000C–
0xFDF01FFFF
0xFDF020000–
0xFDF027FFF
0xFDF028000–
0xFDFFFFFFF

Section

5.6.2

8.3

8.4

5.6.1
5.6.3.2
5.6.3.1

8.2
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3.2.2.4 SBus/IOMMU Control Space

PA(35:00) S–bus and IOMMU Control Space

IOMMU Control Register                             
IOMMU Base Address Register
  Reserved
  Reserved
Flush ALL TLB entries
Address Flush Register
IOMMU Tags Diagnostic Access 
IOMMU Translation Cache Diagnostic Access 
  Reserved

M–to–S Asynchronous Error Fault Status Register
M–to–S Asynchronous Error Fault Address Register
Arbiter Enable Register
  Reserved
SBus Slot #N Configuration Register , ss = (4 * N) + 0x10
  Reserved

MID Register
  Reserved

Section

5.8.1
5.8.2

7.2.4.1
7.2.4.2
7.2.6.2
7.2.6.1

5.2.1
5.2.2
5.1.2

5.9

5.4.3

0xFE0000000
0xFE0000004
0xFE0000008 –
0xFE0000010
0xFE0000014
0xFE0000018
0xFE0000100
0xFE0000200
0xFE0000300 –
0xFE0000FFF
0xFE0001000
0xFE0001004
0xFE0001008
0xFE000100C
0xFE00010ss
0xFE0001060 –
0xFE0001FFF
0xFE0002000
0xFE0002004 –
0xFEFFFFFFF

 One SBus Slot Configuration Register is provided for each expansion slot supported.  On–board devices are not given

a Configuration Register.

There is no error checking on accesses to SBus control space (PA<35:28> = 0xFE).  Writes to read–only registers

are ignored (NOOP), reads of write–only addresses return undefined data, wrong–sized accesses have undetermined

behaviour.

3.2.3 SBus Slot Addressing

PA(35:28)

0xEN 

S–Bus Slot

S–Bus Slot #N

Section

9.6, 10.4

 ’N’ represents the SBus slot number.  Implementations should number expansion slots
starting at 0x0 and with increasing number, and on–board devices start at 0xF with decreasing number.

3.2.3.1 SCSI/Ethernet Address Space

The on–board SBus devices will generally include a SCSI and Ethernet solution in SBus ’slot’ 0xF.  The details of

this device are included in the system–specific ’A’ appendix.

3.2.4 Reserved Address Spaces

Accesses to addresses with PA<35:32> = 0x8 – 0x1 will result in a TIMEOUT acknowledge on the MBus.

Accesses to other reserved spaces may not be detected, since addresses may not be fully decoded by all devices.

 Access to reserved addresses within an address space allocated to a device may cause unspecified behaviour.

Access to a reserved address space that is not allocated to a device will result in a timeout response.  Unless otherwise

noted, access to a non–installed device will result in a timeout response (some devices may require a write–read probe).
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4. Processor Core Register Definitions (ASI = 0x4)

This chapter defines the core register assignments for a module.  For module–specific details see the appropriate

’B’ module appendix.

4.1 Module Control Register (MCR) (Address = 0x0000)

IMPL VER BM C CP rsvd CE NF MECB rsvd

31 28 27 24 23 15 14 13 12 11 10 9 8 7 2 1 0

rsvd

Field Description Type

IMPL
VER
BM
C

CP
CB
CE
NF

ME

SRMMU implementation number
SRMMU version number
Boot Mode: 1 = Boot mode enabled
Cacheable bit for second–level caches (MBus address phase);
  used when MMU is not enabled, or for transactions that do
  not use the MMU (i.e. table walks).
Cache Parameters.  Meaning varies with IMPL and VER
1 = Copy–back cache, 0 = write–through cache
Cache Enable
No–Fault: When 1, Supervisor data access exceptions are not reported to
the IU, but are captured in the fault status register.

MMU Enable

R
R
RW
RW

R
RW 
RW
RW

RW
rsvd Reads as 0’s; writing has no effect. Some modules have

definitions for these bits; see the appropriate module appen-
dix.

R

In some implementations, only copy–back or write–through is supported, and this bit will 
be read–only.

4.2 Context Table Pointer Register (CTPR) (Address = 0x0100)

rsvd

31 2 1 0

CTP<35:6>

Field Description Type

Context Table Pointer.  This table–size–aligned physical address
points to the context (CTX) table in memory, which is indexed by
the CTX field of the context register.  CTP will appear on
MAD(35:6) when this level of table–walk is required.

RWCTP

rsvd Reserved.  Reads as 0’s, writing has no effect R

4.3 Context Register (CTX) (Address = 0x0200)

rsvd

31 N N–1 0

CTX

Field Description Type

RWContext Number.  This N–bit field contains the current context number.
2**N contexts are supported.

CTX

rsvd Reserved.  Reads as 0’s, writing has no effect R
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4.4 Synchronous Fault Registers

The Synchronous Fault Status Register (SFSR) provides information on exceptions (faults) issued by the MMU as

specified in the SPARC Reference MMU document.  SRMMU is described in section 7.1.

Since the IU is pipelined, several faults may occur before a trap is taken.  The faults are grouped into three classes;

instruction access faults, data access faults, and translation table access faults.  If an instruction access fault occurs

before the status of a prior instruction access fault is read by the IU, the status of the latest fault is posted in the SFSR and

the OW (overwrite) bit is set to indicate that status has been lost.  If multiple data faults occur, the SFSR and SFAR

contain the status related only to the fault that the CPU has trapped on.  If a data fault overwrites status from an

instuction access fault then the OW bit is cleared, since the fault status is represented correctly.  Instruction access

faults may not overwrite data access faults.

A translation table access fault occurs if an MMU access to the page tables causes an external system error.  These

faults will overwrite any previous data or instruction access fault, and will clear the OW bit.  Data and instruction

access faults may not overwrite a translation table access fault.

The Synchronous Fault Address Register (SFAR) captures the address of a data access or translation table access

fault, and is valid when the FAV bit in the SFSR is set.  The SFAR may not be valid for instruction access faults.

4.4.1 Synchronous Fault Status Register (SFSR) (Address = 0x0300)

31 13 12 11 10 9 8 7 2 1 0

rsvd

5 4

UC TO L AT FT FAV OWBE

Field Description Type

OW     
FAV
FT
AT
L
BE
TO
UC
rsvd

Overwrite: multiple errors have occurred                           
Fault Address Valid: SFAR contains a fault address
Fault Type: see table 4.4.3
Access Type: see table 4.4.3
Page table level of fault, if fault was during a table–walk
Bus Error response from MBus
Timeout response from MBus or module interface
Uncorrectable Error response from MBus
reserved, read as ’0’

R
R
R
R
R
R
R
R
R

This register is clear–on–read.  Reading it also unlocks the Synchronous Fault Address Register.

If an instruction access fault occurs and OW is set, the software must probe the MMU and/or memory to determine

what the exact fault was, using the saved PC as the fault address.  The fault address register is not guaranteed correct for

instruction access faults, and FAV will not be set if the SFAR is not valid.

4.4.2 Synchronous Fault Address Register (SFAR) (Address = 0x0400)

31 1 0

SFA

Field Description Type

Synchronous Fault Address: 32–bit virtual address of the faultSFA R
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4.4.3 Fault Type and Access Type Encoding

0
1
2
3
4
5
6
7

FT Fault Type

None
Invalid Address Error
Protection Error
Privilege Violation Error
Translation Error
Access Bus Error
Internal Error
–reserved

0
1
2
3
4
5
6
7

AT Access Type

Load from User Data Space
Load from Supervisor Data Space
Load/Execute from User Instruction Space
Load/Execute from Supervisor Instruction Space
Store to User Data Space
Store to Supervisor Data Space
Store to User Instruction Space
Store to Supervisor Instruction Space

4.4.4 L Encoding and Error Priorities (1 = Highest)

0
1
2
3

L MMU table level

Context Level
Region Level
Segment Level
Page Level

1
2
3
4
5
6

Priority Fault Type

Internal Error
Translation Error
Invalid Address Error
Privilege Violation Error
Protection Error
Access Bus Error

4.4.5 Translation Errors

Invalid address, protection, and privilege violation errors depend on the Access Type field of the SFSR and the

ACC field of the corresponding PTE.  The errors are set as follows:

0
1
2
3
4
5
6
7

AT PTE[V] = 1, PTE[ACC] =

0  1  2  3  4  5  6  7      

–  –  –  –  2  –  3  3
–  –  –  –  2  –  –  – 
2  2  –  –  –  2  3  3
2  2  –  –  –  2  –  –
2  –  2  –  2  2  3  3
2  –  2  –  2  –  2  –
2  2  2  –  2  2  3  3
2  2  2  –  2  2  2  –

PTE[V] = 0

1 
1
1
1
1
1
1
1

FT Value

A translation error is indicated if a bus error (UC, TO, or BE as defined in the SFSR description) occurs while the

MMU is fetching an entry from a page table, if a PTP is found in a level–3 table, or if a PTE has ET = 3 (reserved).  The L

field indicates which level of page table was being accessed when the error occurred, and the UC, TO, or BE bit

indicates what type of error was reported.  Access Bus Error is set when any of these three error types are reported on a

memory access that is not a table access by the MMU.  Internal Error will be set if the MMU detects an internal

inconsistency, and is considered a fatal error condition.
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4.5 Asynchronous Fault Registers

The asynchronous fault registers capture fault information related to system bus errors that are reported on

transactions that occur asynchronous to processor operations.  Such transactions may include cache copy–backs, and

stores that were accepted into a module write buffer.  Asynchronous faults are reported to the processor (and to the rest

of the system) via a level–15 broadcast interrupt, which is issued at the time that the AFV bit is set.

Clearing of the AFSR is controlled by reads of the AFAR.  The AFSR should be read prior to the AFAR, and the

AFAR should only be read if AFV (AFSR bit <0>)is asserted.  This avoids a race condition between asynchronous

faults being posted and accesses to the asynchronous fault registers.

If asynchronous faults cannot occur in a particular implementation, that implementation can choose to not provide

asynchronous fault registers.  In that case accesses to these registers will provide either an error acknowledge or

garbage data (the former is preferred) as specified in the module appendix.  Asynchronous faults that occur on module

write buffers further from the processor may be reported through implementation–specific error registers accessed

through ASI 0x2.

4.5.1 Asynchronous Fault Status Register (AFSR) (Address = 0x0500)

31 13 12 11 10 9 8 7 1 0

rsvd

3

UC TO AFVBE rsvd rsvd

4

AFA<35:32>

Field Description Type

AFV
AFA<35:32>
BE
TO
UC
rsvd

Asynchronous Fault Occurred
Asynchronous Fault Address bits PA<35:32>
Bus Error response from MBus
Timeout response from MBus
Uncorrectable Error response from MBus
reserved, read as ’0’

R
R
R
R
R
R

4.5.2 Asynchronous Fault  Address Register (AFAR) (Address = 0x0600)

31 0

AFA

Field Description Type

Asynchronous Fault Address: PA<31:0> of the faulting addressAFA R

4.6 Reset Register (Address = 0x0700)

31 2 1 03

rsvd–1 WD SI rsvd

Field Description Type

RWD Watchdog Reset

SI Software Internal Reset (not normally used) RW
rsvd
rsvd–1

Reserved, Write as ’0’
Reserved, reads a ’0’, writing has no effect.

See section 12: ’Resets’ for a description of module and system reset functions.
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4.7 MBus Port Address Register (See 3.2.2.2 for addressing)

31 03

Implementation Specific

16 15 8 7 4

MDEV MREV MVEND

Field Description Type

MDEV
MREV
MVEND

MBus device number: vendor specific device type        
Device revision number
MBus vendor number: identifies the device vendor

R
R
R

Currently assigned vendor codes (for the MCR IMPL field and the Port Address MVEND field) are:

0x0 Fujitsu

0x1 Ross Technology/Cypress Semiconductor

0x2 (unassigned)

0x3 LSI Logic

0x4 Texas Instruments
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5. System Register Definitions

Each register definition has the register access size specified in the section header.  The size(s) stated is(are) the

only valid access size(s) for each device; access of other size may be detected and reported, or may cause unspecified

behaviour.

5.1 System Control Registers

5.1.1 System Control/Status Register (32–bit access): (PA = 0xFF1F00000)

System Control/Status Register

Bits Name MeaningType

D<0> SW_RST Generates the equivalent of a power–on resetW
D<1> SW_RST_STAT Set on SW reset, clear on power–on or switch resetR 
D<2> DIAG.SW DIAG_MODE switch.  0 = normal mode, 1 = diag mode.R

D<31:4> Reserved R Read as ’0’s
D<3> RST.SW Set on  switch reset, clear on power–on or SW resetR

 write ’0’ to clear, writing ’1’ has no effect

Reads as ’0’ if this system does not support a diag switch

5.1.2 Arbiter Enable Register (32–bit access): (PA = 0xFE0001008)

Bits Name MeaningType

Arbiter Enable (Diagnostic) Register

D<0>   
D<1>
D<2>
D<3>
D<15:4>
D<16>
D<17>
D<18>
D<19>
D<20>
D<30:21>
D<31>

 Reserved
EN_P1_ARB
EN_P2_ARB
EN_P3_ARB
 Reserved
EN<0>
EN<1>
EN<2>
EN<3>
EN<F>
  Reserved
SBW

Enables arbitration for MBus master 0x9 
Enables arbitration for MBus master 0xA 
Enables arbitration for MBus master 0xB 
Read as ’0’
Enables arbitration for SBus Slot 0
Enables arbitration for SBus Slot 1
Enables arbitration for SBus Slot 2
Enables arbitration for SBus Slot 3 
Enables arbitration for on–board Sbus devices
Read as ’0’
Enables S–to–M asynchronous writes. When ’0’ all such
writes complete synchronously
 

R    
RW
RW
RW
R
RW
RW
RW
RW
RW
R
RW

POR state

1   
1
0
0
0
0
0
0
0
0
0
0

Read as ’1’

  When booting it is desirable to miminize the number of processors executing out of PROM in order to speed up

the boot process.  To meet this goal the processors connected to arbitration as processor_2 (MID = 0xA) and

processor_3 (MID = 0xB) are disabled at system reset time.  Processor_0 (MID = 0x8) is enabled and is expected to act

as the boot master, testing and initializing all system facilities prior to enabling arbitration for the other processors.  At

reset the arbitration for processor_1 is enabled since some harvard–architecture modules will require one request/grant

pair for data and another for instruction access.  For configurations that are not split requesters, the system firmware

should disable processor_1 (MID = 0x9) arbitration early in the boot process.

  If an implementation plans more than 4 SBus expansion slots, please contact the author.

Arbitration can be arbitrarily enabled and disabled in a running system for diagnostic purposes.  The disable

function takes a small, indeterminate number of cycles to take effect due to the ’parking’ nature of MBus arbitration;

until a different master needs the bus a ’disabled’ master may retain ownership.
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5.2 M–to–S Asynchronous Error Registers (32–bit access)

5.2.1 M–to–S Asynchronous Fault Status Register: (PA = 0xFE0001000)

31 0

rsvdTO SIZBERRERR S MID

30 28 27 25 24 23 19 4 3

PA

29 20 18

MELE RD

17 16 12 11 9

rsvd

8

SA<4:0> SSIZ

7

WM

Field Description Type

ERR
LE
TO
BERR

SIZ
S
MID
ME
RD
SA<4:0>

SSIZ
WM
PA
rsvd

R
R
R

R
R
R
R
R
R
R

R
R
R
R

Summary error bit; LE or TO or BERR is asserted  
Late Error: SBus reported an error after the transaction was done
Write access timed out in PA<35:32> = 0xE range
SBus write access received a BERR , or a write to the  VME master
   port or E–bus received an error ack.
Requested size of error transaction
Error access had the ’Supervisor’ bit set in the MBus address phase
Module ID number: indicates owner of the faulted cycle: See 5.5.3.4
Multiple error: another error was detected after the error shown
Direction of error access; may be a read for LE, all others are write
Actual address <4:0>; may differ from FA<4:0> if dynamic sizing or
  burst resizing when the error occurred
Actual size of error transaction (in case of dyn. sizing or burst resize) 
Interpret SSIZ as an SBus wide–mode access size (if supported)
PA<35:32> of the fault address
read as 0’s, writing has no effect.

SSIZ<2:0> Transaction (SBus encodings)

000        
001
010
011
100
101
110
111

word (4 bytes)
byte
half–word (2 bytes)
reserved
16–byte burst
32–byte burst
  Reserved
8–byte burst

SIZ<2:0> Transaction (MBus encodings)

000        
001
010
011
100
101
110
111

byte
half–word (2 bytes)
word (4 bytes)
double–word (8 bytes)
16–byte burst
32–byte burst
  Reserved
  Reserved

Transaction (Wide Mode)

reserved
reserved
reserved
8–byte
16–byte burst
32–byte burst
64–byte burst
128–byte burst

5.2.2 M–to–S Asynchronous Fault Address Register: (PA = 0xFE0001004)

31 0

FA

Field Description Type

Fault Address: PA<31:0> of the faulting access, as requested from
the MBus.  May be inexact (see 5.2.1)

FA R

The M–to–S asynchonous fault register captures information related to errors that occur on MBus writes to the

SBus, to VMEbus (second level write buffer error), or to SBus/IOMMU control registers.  Such writes are

write–buffered, so error reports will not be synchronous to the flow of instructions.  Instead, if a write is scheduled in

the MBus to SBus write buffer, and that write access receives either a timeout or error acknowledge, then the error

information is frozen here.  Errors will also be captured if the SBus reports a LATERR after the transaction.  The ERR

bit will be asserted, and a level–15 interrupt (source = M_to_S_WRT_BUF) is posted to the system.  Subsequent errors

are not captured, but the ME bit will be asserted.  Any write to the FSR will clear the interrupt and the ERR bit, and will

unlock both the FSR and the FAR.

Reads of the FSR will stall if the MBus to SBus write buffer is busy; this synchronization allows the kernel to

determine if a write has completed.  The MBus to SBus write buffer is used for write access from the MBus to SBus

devices, E–bus devices, and the VMEbus master port.
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5.3 Counter–Timer Registers and User Timers

5.3.1  Timer Configuration Register (32–bit access): (Addresses in 3.2.2.2.2)

31 01234

rsvd T0T1T2T3

Field Description Type

T0
T1
T2
T3
rsvd

Timer/counter 0 configuration: 0 = Counter/Timer, 1 = User Timer
Timer/counter 1 configuration: 0 = Counter/Timer, 1 = User Timer
Timer/counter 2 configuration: 0 = Counter/Timer, 1 = User Timer
Timer/counter 3 configuration: 0 = Counter/Timer, 1 = User Timer
Reads as 0’s, writing has no effect.

RW
RW
RW
RW
R

Each of the processor counter/timers (one per processor) can be configured to behave as a counter–timer with a

level–14 interrupt, or to provide a real–time counter for high–resolution user performance analysis.  In the first mode

the timer is useful for OS kernel profiling.  In the second mode the timer can be loaded upon each entry to user mode,

and saved on each exit from user mode.  By mapping the counter read–only for the user process, it provides ’virtual’

time, a measure of the context run time, which can be used to measure code performance.  It could also be loaded with a

binary real time, which will then track precisely with the TOD.

Upon power–on reset all four sets are configured as counter–timers.  The system level–10 timer/counter cannot be

configured to act as a User Timer.  The value of the User Timer and Count and Limit registers is unspecified after the

corresponding configuration bit has been changed.  It is required for software to initialize the counter after a mode

change by writing to it in order to set the register value and to clear the limit bit.  When the counter is programmed to be

a User Timer the Counter/Timer function is disabled, and vice–versa; these functions share one counter, so no state is

preserved across mode changes.

5.3.2 Counter–Timer Registers (32–bit access): (Addresses in 3.2.2.2.2)

The counter–timer registers follow the structure of the counter–timers used in the Sun–4 architecture.  Three

addresses are associated with each counter; a COUNT register and a LIMIT register, and a

load–Limit–without–affecting–Count pseudo–register.  The counter and limit registers all look like

0893031

L 22–BIT VALUE 000000000

The counter increments at 500 nS intervals, with bit 9 as the LSB of the counter. When a counter reaches the value

in the corresponding limit register, the Limit bit is set and the counter is set to 500 nS (i.e. 0x00000200).  If the interrupt

path for that counter is enabled, the presence of the L bit will assert the interrupt.  The interrupt is cleared and the limit

bit is reset when the corresponding Limit register is read.  Reading the Count register will allow the value of the limit bit

to be read without clearing it.  The Counter register is read–only; when the timer is programmed to be a User Timer this

register address is also writable.

Writing to the Limit register sets the Count to 500 nS.  Setting the limit register to ’0’ allows the counter to

free–run.  Since the timer always resets to a value of 500 nS after reaching maximum count, there is no match and no

interrupts are generated.  The Limit Register can also be written at a second address which loads the Limit Register

without affecting the contents of the Counter Register; if the Count is already larger than the new Limit then the counter

will count to its maximum value, then reset and count up to the Limit value before interrupting.  The second address is
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provided to allow for alarm–clock, as opposed to time–tick, usage of the timer/counter.  The counter registers are not

written to.  Upon reset all limit registers are set to 0x00000000.  Any write to the Limit register will clear that register’s

Limit bit independent of the data written.

The System Counter/Timer follows this structure, and provides an interrupt on level–10. Each of the processor

counter/timers can be configured to be a counter/timer with a directed interrupt to the corresponding processor on

level–14, or can be configured as a User Timer, through the Timer  Configuration Register.

5.3.3 User Timer Registers (64–bit access recommended; 32–bit access also allowed)

0896263

L 000000000COUNT VALUE

When a timer is configured to be a User Timer, it should be accessed only as a 64–bit word.  The counter

increments at 500 nS in bit 9.  The counter is read/write; it is recommended that the timer is mapped read–only for

user–mode access.  The ’L’ bit is set any time the counter exceeds the maximum possible count value of

0x7FFFFFFFFFFFFE00, and is cleared on any write to the User Timer. 64–bit access on reads will ensure

consistency between the high and low words. 

There is no interrupt associated with the User Timer function.

5.3.4 User Timer Stop/Start Registers (32–bit access): (Addresses in 3.2.2.2.2)

31 01

rsvd RUN

Bits Name MeaningType

D<0> RW
RD<31:1>

RUN
RESERVED

When ’1’ the UT counts, when ’0’ the UT is frozen.
Read as ’0’s

The User Timer Stop/Start Register associated with each User Timer is provided to allow fast trap handlers to stop

the User Timer (UT) blindly during time–critical code without reading and saving the value.  The UT must be restarted

before re–entering user state.   A software flag must be maintained to indicate if each User Timer is currently in use, so

that the fast trap handler knows if it must restart the UT later. The contents of this register have no effect if the

corresponding timer is configured as a counter/timer.
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5.4 Diagnostic Support

5.4.1 Diagnostic LED’s (16–bit write–only access): (PA = 0xFF1600000)

This register is a 16–bit write–only register.  A ’0’ bit written to the register causes the corresponding LED to light

up, a ’1’ will cause the LED to be dark.  Upon power–up reset the diagnostic register is initialized to 0x0 causing all

LEDs to light up.  Depending upon the implementation fewer bits may be visible.

5.4.2 Diagnostic Message Registers: (PA = 0xF00001000 – 0xF00001003)

These four 8–bit registers are read/write, and accesses to them have no side effects.  They are provided for

diagnostic use.  These registers are non–volatile across resets (except POR, which leaves them in a random state).

5.4.3 MID Register: (PA = 0xFE0002000)

31 04

rsvd

3

MID

Bits Name MeaningType

D<3:0> R
RD<31:4>

MID
RESERVED

MBus Master ID of the current Bus master.
Read as ’0’s

Some modules may not configure their MID in hardware; instead the system provides the MID information in this

register so that the firmware can configure the MID.  This must be done very early in the boot process, prior to

processors accessing any system devices or registers with the exception of EPROM, this register, and the arbiter enable

register.  See 5.5.3.4 for the MID table.

Note:  The first implementation of this register had a bug which renders the MID register nonfunctional.  There are

several methods which allow a processor to determine which MID it is.  At configuration time the boot firmware can

communicate with each processor in turn via use of the arbiter enable function, so that each processor can be uniquely

identified.  After this time, each processor can have a unique mapping to some page in memory where it can find out

what MID it is; or information can be encoded in some internal module or IU register that can be used to identify a

processor’s MID.  For example, each processor could have a unique value in its Trap Base Register (TBR) in the

SPARC IU; all of the TBR’s could map to the same physical page which contains the trap table, but each virtual address

for the TBR can be unique and aliased.  To determine the MID the IU can simply take the value in %tbr, mask, shift, and

add to determine the MID.

This operation is required because there was no requirement that the modules provide a fixed location to read the

MID from, so several modules exist that do not provide an MID in software readable form.
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5.5 Memory Registers

5.5.1 ECC Memory Enable Register (32–bit access): (PA = 0xF00000000)

31 012

rsvd EEEI

28 27 24 23

IMPL VER

Field Description Type

EE
EI

IMPL
VER
rsvd

Enables ECC checking.   Generation is always enabled. 
Enables Interrupt on correctable error.  When ’0’ a CE will
 still be captured in the fault registers, but no interrupt will
 be generated.  
Identifies the Sun Implementation of this memory controller
Version: Identifies the revision of this design
Reads as 0’s, writing has no effect.

RW
RW

R
R
R

 clears to 0 on power–on reset.

5.5.2 ECC Memory Fault Status Register (EFSR) (32–bit access): (PA = 0xF00000008)

31 0

rsvd CETOUE

1234

ME

7

DW

815

SYND

1617

rsvd

Field Description Type 

CE
TO
UE
DW
SYND
ME

rsvd

R
R
R
R
R
R

R

 clears to 0 on power–on reset.
 any write to the EFSR clears CE, UE and TO and un–freezes the EFAR.

Correctable Error during read or partial–write 
Timeout on partial write access to expansion memory 
Uncorrectable Error on partial write 
Double–word within block that had the CE
Syndrome for Correctable Error
Multiple Errors: an error was detected after the fault registers
  were frozen
Reads as 0’s, writing has no effect.

Errors that are reported are (in order of priority, highest first) (1) partial write uncorrectable error, (2) correctable

error, and (3) expansion memory timeout.  If status for an error has been captured, and then a subsequent error of the

same or lower priority is detected, the contents of the ECC Error Registers will not be over–written; instead the ME bit

is set, and the appropriate error bit (UE, TO, or  CE) is asserted.  If multiple error bits are asserted then the one with the

highest priority corresponds to the contents of the ECC Error Registers.  The ME bit will be set any time that more than

one error has been detected.

Access Errors (invalid size of access to control register, write to read–only register) will be reported synchronously

to the MBus master as an MBus Bus Error.

If any of UE, TO, or  CE is asserted then MEM_ERR (level–15) is asserted.  A write to the EFSR will clear error

status and will release the interrupt.  Reads of the EFSR will stall if the memory write buffer is busy; this

synchronization allows the kernel to determine if a write has completed.  The 8–bit Syndrome fields are defined as

follows:

0

SX

1

S0

2

S1

3

S2

4

S4

5

S8

6

S16

7

S32
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Sun–4M machines implement a SEC/S4ED Error Correction Code (ECC) based on a paper by Kaneda (IEEE

Trans. on Computers, Aug84).  This code provides correction of any single–bit error among 64 data bits and 8 check

bits, as well as detection of errors in any two bits, or in any three or four bits within a nibble.  The SYNDROME<7:0>

field is interpreted as follows:

S0S1S2S3
S4
S5
S6
S7

Syndrome
Bits

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1 1 1
1 1 1
0
0

0
1

1
1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

0 0 01

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1

1 1

1

1 1

1 0

* C4 C5 D C6 D

1
1
1
0

T C7 D D T D T T

C0 D D 00 D 25 M

D

D D 05 17 D 08 D D

Q

12

C1 D D 01 D 29 36 D D M 21 D 13 D D 09

D 32 33 D 42 D D M 47 D D M D T T D

C2 D D 10 D 27 07 D D M 19 D 02 D D 14

D 57 61 D 59 Q D D Q DM 63 M M M

D M 04 D 39 D D D D D

D

D22 M 30 16 24

T

T

T

T

T

T

T

T

T T

D D D DD D D D

D D DD D DD D

D D DD DD D D

D D DDD D DD

D D DDD D D D

D D D D D D

D Q D D Q D

D D D D D D

D D D D D DQ Q

D

D

D

M M 54 50 M M

M

M

M

C3 15 31 M 38 23 03

D

D

D

37 M M 18 06 26 20 28

49 53 51 M 55 M M M

M M 62 58 M

40 45 34 35 M M

M 48 52 M M

M 56 60 M M

44 41 46 M 43 M M M

11

5.5.3  ECC Memory Fault Address Registers (EFAR’s) (32–bit access)

These registers captures the MBus address of the transaction that caused the fault recorded in the ECC Memory

Fault Status Register.  Not all information is useful.  VA is used only for the cache superset in virtual address cached

systems.  Any write to the ECC Memory Fault Status Register will unlock the address registers.

5.5.3.1  ECC Memory Fault Address Register 0: (PA = 0xF00000010)

31 0

rsvd TYPESIZCMBLVASMID LOCK PA<35:32>

347810111213142122262728

Field Description Type

PA
TYPE
SIZ
C
LOCK
MBL
VA
S
MID

PA<35:0>: physical address of the faulting transaction
TYPE<3:0>: Transaction type 
SIZE<2:0>: Transaction size 
Address was mapped cacheable 
Error occurred in an atomic cycle 
Boot Mode 
VA<19:12>: superset bits for virtual address cache systems 
Access was supervisor mode
Owner code

R
R
R
R
R
R
R
R
R

These fields are required only in MBus–based implementations.  They are captured during the address phase of

faulting MBus transactions, and are provided for diagnostic purpose only.
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5.5.3.2  EFAR TYPE and SIZE Field Definitions

TYPE<3:0> Transaction

0000        
0001
0010
0011
0100
0101
0110–1111

Write
Read
Coherent Invalidate
Coherent Read
Coherent Write and Inalidate
Coherent Read and Invalidate
  Reserved

SIZE<2:0> Transaction

000        
001
010
011
100
101
110–111

byte
half–word (2 bytes)
word (4 bytes)
doubleword (8 bytes)
16–byte burst
32–byte burst
  Reserved

5.5.3.3 MID Assignments

MID<3:0> Owner

0000        
0001–0111
1000
1001
1010
1011
1100
1101
1110
1111

DVMA
Reserved
MBus master 0x8
MBus master 0x9
MBus master 0xA
MBus master 0xB
MBus master 0xC
MBus master 0xD
MBus master 0xE
MBus master 0xF

Non–Harvard          Harvard
  –
  –
Processor 0
Processor 1
Processor 2
Processor 3
 (future)
 (future)
 (future)
Processor 0 

  –
  –
Processor 0 I–cache
Processor 0 D–cache
Processor 2 I–cache
Processor 2 D–cache
 (future)
 (future)
 (future)
Processor 0 

 A level–1 module will always issue MID = 0xF; it will be installed in slot ’0’.

5.5.3.4  ECC Memory Fault Address Register 1: (PA = 0xF00000014)

31 0

PA<31:0>

5.5.4  ECC Diagnostic Register (32–bit access): (PA = 0xF00000018)

31 0

rsvd DMODE rsvd CB32 CB16 CB8 CB4 CB2 CB1 CB0 CBX

11 10 9 8 7 6 5 4 3 2 112

Field Description Type

CBX
CB0
CB1
CB2
CB4
CB8
CB16
CB32
DMODE

rsvd

Diagnostic check bit CBX
Diagnostic check bit CB0
Diagnostic check bit CB1
Diagnostic check bit CB2
Diagnostic check bit CB4
Diagnostic check bit CB8
Diagnostic check bit CB16
Diagnostic check bit CB32
Diagnostic mode:  (resets to ’00’)
     00: normal generate/detect/correct, diag disabled
     01: diagnostic generate mode (CB bits substituted to memory)
     10: diagnostic detect/correct mode (CB bits substituted to ECC check)
    11: invalid
  Reserved, no meaning

RW
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5.6 VMEbus Interface Registers

5.6.1 VMEbus Interface Control Register (32–bit access): (PA = 0xFDF010000)

 

31 0

rsvd

30 29 28 27

C S L R

34

IMPL

Field Description Type

C
S
L
R
IMPL
rsvd

I/OCache Enable:  1 =  enabled, 0 = disabled.   
SVME Enable: Enables the VME Slave port.  
Loopback Enable: 1 = Diagnostic loopback enabled. 
Reset VMEbus 
VME interface implementation number
Reads as 0’s, writing has no effect.

RW
RW
RW
RW
R
R

 clears to 0 on power–on reset.

Note: VME loopback is provided for diagnostic purposes only, and should not be used for normal operation of the

system.  Such accesses are very inefficient in time.  Write buffer synchronization does not work for the loopback case;

instead synchronization can be forced by issuing a VME loopback read that is not IOC–cacheable.

5.6.2 VMEbus Interrupt Vector Register (8–bit access): (PA = 0xFD000000X)

07

VEC

Field Description Type

VEC VME Interrupt vector. R

Reads of this register trigger a VMEbus 8–bit interrupt acknowledge cycle.  Address bits A<3:1> indicate the

acknowledge level.  Address bit A<0> must = 1 for a valid cycle to occur.

5.6.3 VMEbus Asynchronous Error Registers (32–bit access)

5.6.3.1 VMEbus Asynchronous Fault Status Register: (PA = 0xFDF010008)

31 0

rsvdTO

29 28 27 26 25 24

SIZ BERR WB ERR

23

S

22

ME

Field Description Type 

SIZ      
TO
BERR
WB
ERR
S
ME
rsvd

Size of error transaction                                             
VME Master access timed out
VME Master access received a BERR
IOC write–back error, or write error on non–IOC–cacheable store 
Summary bit; an error has occurred.  
MVME error occured on a supervisor–mapped space
Multiple error: another error was detected after the error shown
read as 0’s, writing has no effect.

R
R
R
R
R
R
R
R

 Clear on write.                                                                           
 SIZ = 32 indicates an IOC writeback error; other sizes indicate non–IOC–cacheable error.  SVME writes are

buffered, so the VME master was released before this error was reported.
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SIZ(2:0) Description

000
001
010

011–100
101

110–111

4 byte
1 byte
2 byte
  reserved
32–byte
  reserved

5.6.3.2 VMEbus Asynchronous Fault Address Register: (PA = 0xFDF010004)

31 0

FA

Field Description Type

Fault Address: 32–bit physical address of MVME fault or virtual address
of IOC fault or non–IOC–cacheable SVME fault.

FA R

The error register will capture the first error to occur.  Errors are not accumulated; subsequent errors are ignored

and the ME bit is set to indicate that this has occurred.  When an error is posted in these registers, the ERR bit is asserted,

and a level–15 interrupt (source=VME_control) is posted to the system.  A write to the Fault Status Register will clear

the interrupt, clear the error bit, and unfreeze the VFSR and VFAR so that subsequent errors will be captured.

VME Master reads will always receive a synchronous report of a timeout or BERR, via a memory exception.

VME Master writes are scheduled through a write buffer, so any errors that occur are captured in the VFSR, and a

level–15 interrupt (source=VME_control) is posted.  If the IOC receives an error from the IOMMU or the memory

system, it will post the error to the VFSR with the WB bit asserted.

Synchronous errors will have their status posted in the module Synchronous Fault Status Register, so the IU will be

able to determine if the error was a BERR or TO.

Reads of the VFSR will stall if the VMEbus write buffer is busy; this synchronization allows the kernel to

determine if a write has completed.

5.7 Interrupt Related Registers

This section describes the contents and function of registers related to interrupts.  Section 6 describes the

multiprocessor interrupt distribution method.

5.7.1 Processor Interrupt Registers: 1 set per processor: (Addresses in 3.2.2.2.3)

5.7.1.1 Interrupt Pending Register: 1 per processor (32–bit access)(read only)

0 0

0115161731

HARD_INT<15:1>SOFTINT<15:1>

5.7.1.2 Clear–Pending Pseudo Register: 1 per processor (32–bit access)(write only)

01415161731

SOFTINT<15:1>.CLR INT<15>.CLR rsvdrsvd



Spec. Number: 950–1373–01July 19, 1991 Sun–4M System Architecture
Rev. 50

– 32 –Sun Microsystems, Inc.

5.7.1.3 Set–Soft–Int Pseudo Register: 1 per processor (32–bit access)(write only)

0161731

SOFTINT<15:1>.SET rsvd

The interrupt pending register shows soft interrupts and directed or undirected interrupts for this processor.  Writes

to the set pseudo–register with any bit set to 1 causes the corresponding bit in the pending register SOFTINT field to be

set, which sends a directed interrupt at that level to the corresponding processor.  Writes to the clear pseudo–register

with any bit set to 1 causes the corresponding SOFTINT or level–15 broadcast interrupt bit to be cleared,

acknowledging that interrupt.  Shared message areas in memory must be used for the interrupt recipient to determine

which processor sent the interrupt.

The set/clear mechanism allows for single–operation atomic access to this register, eliminating the need for mutex

locks around such accesses.  All pending interrupt bits are cleared upon system RESET.

HARD_INT<13:1> will only be active if this processor is specified as the Current Interrupt Target in the Interrupt

Target Register; otherwise they read as ’0’. These bits are never ’set’; rather, they reflect the current status of interrupts

on the corresponding level if this processor is enabled to see them (via the Interrupt Target Register). HARD_INT<14>

corresponds to this processor’s counter/timer.

5.7.2 Interrupt Target Register: 1 per system (32–bit access): (PA = 0xFF1410010)

31 0

rsvd

12

TARGET

Field Description Type

TARGET
rsvd

Current processor target for the undirected interrupts
read as 0’s, writing has no effect.

RW
R

The TARGET code indicates which processor receives the undirected interrupts.  In order to prevent spurious

interrupts, the current target should have traps disabled when it is relinquishing the Interrupt Target Register.

Alternatively, if a processor wants to take ownership of interrupts, i.e. become the Current Interrupt Target (acquire

CIT) there is a window of time where a new interrupt could be asserted, the CIT could change, and the old CIT will

respond to the interrupt, only to discover that it has no interrupts showing in its Interrupt Pending Register.  There is no

way in hardware to prevent this race; for this reason a relinquish algorithm is preferred.  A processor receiving a

spurious interrupt should check the Interrupt Target Register to verify that this race was the cause.

5.7.3 System Interrupt Pending Registers: 1 set per system (32–bit access)

In the Sun–4M architecture, all interrupts sources are visible in a single 32–bit register called the System Interrupt

Pending Register.  When a particular interrupt is asserted, a ’1’ is visible in the corresponding bit in this register.

Depending on the current value of the Interrupt Target Mask and the Interrupt Target registers, the assertion of these

interrupts will cause the Interrupt Target to receive an interrupt at the appropriate level.  The level–15 broadcast

interrupts are also visible in the System Interrupt Pending Register.

Bits in the System Interrupt Pending Register are never ’set’ or ’cleared’; rather, they reflect the status of the

corresponding interrupt source.  When the (level–sensitive) interrupt is released at the source by the interrupt handler,

the assertion of the interrupt will be released and the bit visible in the System Interrupt Pending Register will reflect that

change.  There is an indeterminate latency between the write to release an interrupt and the actual deassertion of that

interrupt.  If neccessary this can be dealt with either with delay loops or by polling of the appropriate interrupt bit in the

SIPR.
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Associated with the System Interrupt Pending Register is the Interrupt Target Mask Register.  This register has

three addresses, one for reading, and one each for setting and clearing individual bits (in the same manner as the

processor soft_int mechanism).  When a bit in the Interrupt Target Mask Register is asserted, the current Interrupt

Target will not see any effect from the assertion of the corresponding interrupt.

This mask is provided to support the allocation of interrupts to different processors.  When the Current Interrupt

Target (CIT) receives an interrupt, it can determine the source by examining the System Interrupt Pending Register.  If

it wants to schedule the service of this interrupt on another processor, it can leave a message in memory, SET the

associated mask bit, and send a directed interrupt to the selected servicer.  The masking function allows the CIT to

continue without receiving another trap due to the presence of that particular interrupt source.  (Note that interrupts are

level–sensitive).  When the selected servicer has serviced the interrupt, it will CLEAR the mask bit so that subsequent

interrupts from that source will reach the CIT.

The level–15 interrupt sources are also visible in the System Interrupt Pending Register, and are maskable with the

Interrupt Target Mask Register.  While these interrupts are considered ’non–maskable’ within the SPARC IU, a mask

capability is provided to allow the boot firmware to establish a basic environment before receiving any level–15

interrupts, which are non–maskable within SPARC.  A mask–all bit is provided to allow disabling of all external

interrupts during change of the CIT.  All mask bits are SET upon system reset.

Note that the mask for level–15 interrupts will prevent broadcast of those interrupt sources; that is, a level–15

source will only cause a broadcast interrupt to occur if that source’s mask bit was not set at the time of the interrupt

event.

5.7.3.1 System Interrupt Pending Register (read only) (32–bit access): (PA = 0xFF1410000)

31 0671314151617181920

KS SBUS VMEEASCTME I M V

30 29 28 27 26

rsvdrsvd

2122

VIMIFL

23

Field

VME
SBUS
K
S
E
A
SC
T
VI
MI
FL
MA

V
M
I
ME
rsvd

Description; applies to both SIPR and ITMR

VME interrupts <7:1>
SBus interrupts <7:1>
Keyboard/mouse SCC
Serial ports SCC
On–board Ethernet
Audio/ISDN
On–board SCSI
Level–10 Timer/Counter
On–board Video Interrupt
Module Interrupt (future non–processor modules)
Floppy disk interrupt
Mask All interrupts.  Does not affect the state of other mask bits

Broadcast Interrupt Sources (level 15)
VME asynchronous error (write buffer or IOC write–back err)
ECC Memory Error
M–to–S write buffer error
Module Error (any module)
read as 0’s, writing has no effect.
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5.7.3.2 Interrupt Target Mask Register (read only), mask Set and Clear (write only) (32–bit access)

(PA = 0xFF1410004, 0xFF141000C, 0xFF1410008)

31 0671314151617181920

KS SBUS VMEEASCTME I M V

30 29 28 27 26

rsvdMA

2122

VIMI

23

FL

5.7.4 Interrupt Flow Diagram

Hard–Int
Sources

Sys Int Pending

Mask

Int Target

Soft Int 0
Proc 0

Int Pending
Encode

Steering

Soft Int 1
Proc 1

Int Pending
Encode

Soft Int 2
Proc 2

Int Pending
Encode

Soft Int 3
Proc 3

Int Pending
Encode

P0–IRL

P1–IRL

P2–IRL

P3–IRL

Timer 0

Timer 1

Timer 2

Timer 3

Level 15
Sources

5.8 IOMMU Registers

Functionality and management of the IOMMU is described in section 7.2.

5.8.1 IOMMU Control Register: (PA = 0xFE0000000)

31 0

rsvd

28 27 24 23

IMPL VER

12

DE ME

45

RANGE

Field Description Type

IMPL
VER
ME

DE

RANGE

rsvd

R
RW

RW

RW

R

Implementation number of IOMMU                  
Version number of IOMMU
IOMMU Enable:  1 = translation is enabled.  0 = pass–      through
mode; PA<31:0> = VA<31:0>, PA<35:32> = 0000
  Cleared to 0 on reset.
Diagnostic Enable; when 1, allows direct access to tags
  and TLB.  If DE = 1 and ME = 1, care must be exer–
  cised to not introduce inconsistencies in the LRU queue
  or tags.  When ’0’ diagnostic accesses are treated as NOOPs.
IOMMU translation range = 16 MB * 2**<RANGE>.  
  Resets to 000.
Reads as 0’s, writing has no effect.

R
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5.8.2 IOMMU Base Address Register: (PA = 0xFE0000004)

31 0910

IBA<35:14> rsvd

Field Description Type

RWIBA

rsvd

IOMMU Base Address:  when IOMMU is enabled and the    
  access translation misses on the TLB, IBA is used as the
  base address for the (<RANGE/1024>)byte–aligned IOMMU
  Page Table.
Reads as 0’s; writing has no effect R

5.9 SBus Slot Configuration Registers (One per SBus expansion slot): (Addresses in 3.2.2.3)

31 0

rsvd

22 21 16 15 5 4 3 2 1

rsvdSEGA<35:30> BA64 BA32 BA16 BA8 BY

14

CP

13

WMA

Field Description Type

RW 

RW

RW
RW
RW
RW
RW
RW
R

SEGA<35:30>

CP

WMA
BA64
BA32
BA16
BA8
BY
rsvd

Segment Address: provides PA<35:30> when IOMMU bypass
  is used
Cacheable bit: used in physically cached systems to determine
  if bypass access should be treated as coherent on MBus.
Enables wide–mode accesses if supported, else writes are ignored
Slave supports 64–byte bursts
Slave supports 32–byte bursts
Slave supports 16–byte bursts
Slave supports 8–byte bursts
Bypass Enabled
Reads as 0’s; writing has no effect

In some implementation, some of SEGA may be hardwired to ’0’

Note that the on–board devices do not have Slot Configuration Registers associated with them.  These are

provided only for expansion slots.
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6. Interrupts

There are 15 levels of external interrupts that can be accepted by the modules.  These are encoded in a 4–bit code

IRL(3:0), with the code of ’0’ indicating that no interrupts are pending.  In an MP environment the capability is needed

to steer individual interrupts to any of the four proccessors.  It is also neccessary to have the ability to post interrupts via

software (’soft’ interrupts) to any of the processors at various levels.  With both a VMEbus and an SBus supported in the

system, interrupt levels may be shared by many devices in different environments and the O/S should have the

capability to select one or more source to dispatch to a processor (or to a interrupt handling thread), and to isolate

sources so that different drivers can migrate easily from processor to processor.  The hardware must be flexible so that

software can choose the best algorithms for servicing the interrupts.

M0.IRL(3:0)

M1.IRL(3:0)

M2.IRL(3:0)

M3.IRL(3:0)

VME.IRQ(7:1)–

SBUS.IRQ(7:1)–

SYSTEM INTERRUPTS

CLOCK INTERRUPTS

SOFT INTERRUPTS

Section 6.1 deals with definitions of interrupts in an MP environment.  Sun–4M–specific details follow in section

6.2

6.1 Interrupt Definitions

6.1.1 Interrupt Types

There are three types of interrupts in multiple processor systems.  A directed interrupt is an interrupt that is always

posted to the same target processor.  Directed interrupts can come from specific devices, from error conditions, and

from soft_interrupts posted from any processor.  An undirected interrupt comes fom a system device, and the interrupt

steering logic selects a target processor based upon some distribution scheme.  A broadcast interrupt is an interrupt that

is sent to all processors in the system.

Interrupts in SPARC are defined in 15 interrupt priority levels, with level–15 as the highest priority.  The interrupts

pending to a particular processor are priority encoded and sent to the SPARC processor as a 4–bit code IRL(3:0).  A

code of ’0’ indicates that there are no interrupts pending.  Asynchronous interrupt sources should be properly

synchronized prior to encoding to prevent spurious codes.

6.1.2 Processor to Processor Interrupts

Associated with each processor is a register set that posts soft interrupts at any level.  The register can have any bit

asserted by writing to the associated set register with that bit asserted, and can have any bit cleared by writing to the

associated clear register with that bit asserted.  The deasserted bits in the data written have no effect.  This mechanism

eliminates the need for mutex locks around accesses to these registers.

There is no information about the source of the soft_interrupt in hardware.  The kernel must  establish message

areas in shared memory that can be polled by the recipient of the soft_interrupt to find the pending source(s).  Any

queueing of multiple soft interrupts must also be treated in the message areas.
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6.1.3 Directed Interrupts

Certain interrupts must always be sent to a particular processor.  For example, the level–14 high–resolution timer

interrupts are directed; one timer/counter is dedicated to each processor.  Note that the level–10 time–tick interrupt is

undirected, and there is one level–10 timer/counter for the entire system.

Some device drivers are not reentrant, and therefore some interrupts may not be distributed to multiple processors.

6.1.4 Undirected Interrupts

Undirected interrupts come from system devices.  The servicing of these interrupts can be shared among the

different processors in the system.

For a small MP system, i.e. 4 or fewer processors, the expected interrupt traffic is small enough that a single

processor can handle identifying sources and scheduling different processors to service those interrupts, via memory

descriptors and directed interrupts. In a large MP system, the allocation may be handled in hardware.  The

hardware/software distribution criterion is that, if a single processor receives all undirected interrupts and schedules

them for service on the different processors in the system, the time spent should be small enough that a process running

on that processor will not be significantly slower than a process running on any other processor in the system.  A

maximum ’scheduling’ load of 5% is recommended.

In order to support more flexible allocation algorithms, the ’current target’ is programmable; that is, one of the

processors in the system can be selected to receive all undirected interrupts.

6.1.5 Broadcast Interrupts

A broadcast interrupt is an interrupt that is posted to all processors in the system, including the processor that

initiates the posting (if the interrupt is from a processor).  A broadcast interrupt can be issued at any interrupt level.

Implementation of broadcast is system dependent; in a small–MP system, it may be implemented with a series of

processor–to–processor interrupts, while in larger systems it may be issued as a single message.  The effect of a

broadcast interrupt is to set the same level soft_interrupt for all processors.  The issue of a broadcast interrupts should

be done in a single kernel routine that hides the differences in implementation.  The acknowledge of broadcast

interrupts must be handled in the shared–memory message area used for soft_interrupts.

6.2 Sun–4M Interrupt Structure

6.2.1 Interrupt Distribution

Sun–4M is a small MP system, consisting of 1 to 4 processors.  Each processor will receive directed interrupts for

level–14 profiling.  Each processor has a facility to receive a directed interrupt on any level, which is asserted by writes

to a register associated with that processor.  All undirected system interrupts will go to the processor indicated by the

Interrupt Target Register, and that processor (referred to hereafter as the Current Interrupt Target, or CIT) can schedule

the interrupt to any processor via the directed interrupt mechanism and shared memory communication, or can service

the interrupt.  All hard level–15 interrupts will be broadcast to all processors; the assertion of any level–15 source will

set the level–15 bit in each Processor Interrupt Pending register, and each processor can acknowledge by clearing its

own copy of that bit.  Only one processor may service the interrupt source, but each processor can clear its own pending

bit.

A read–only register shows the interrupts that are asserted at any time.  When the Current Interrupt Target

processor has scheduled an interrupt to a processor for service, it will write a mask bit in a corresponding register so that

the presence of that interrupt will no longer cause the CIT to trap for that interrupt source.  When the processor that is



Spec. Number: 950–1373–01July 19, 1991 Sun–4M System Architecture
Rev. 50

– 38 –Sun Microsystems, Inc.

scheduled has serviced the interrupt, it must also de–assert that mask bit so subsequent interrupts from that source will

again go to the CIT.

The registers associated with interrupts are (1) the Processor Interrupt Registers, (2) the System Interrupt

Registers, (3) the Timer/counter Registers, and (4) the Interrupt Target Register.

6.3 Interrupt Level Assignment

LEVEL SOURCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SOFTINT.1

SOFTINT.2, VMEbus L1,  Sbus L1

SOFTINT.3, VMEbus L2, Sbus L2

SOFTINT.4, on–board SCSI

SOFTINT.5, VMEbus L3, Sbus L3

SOFTINT.6, on–board Ethernet

SOFTINT.7, VMEbus L4, Sbus L4

SOFTINT.8, on–board video

SOFTINT.9, VMEbus L5, Sbus L5, Module Interrupt (non–IU)

SOFTINT.10, System Counter/Timer

SOFTINT.11, VMEbus L6, Sbus L6, Floppy (PIO)

SOFTINT.12, Keyboard/Mouse, Serial Ports

SOFTINT.13, VMEbus L7, Sbus L7, ISDN Audio (PIO)

SOFTINT.14, Per–processor counter/timer

SOFTINT.15, Asynch. Errors (broadcast)

Note 1: Soft Interrupts are per processor                                    
Note 2: SBus mapping to SPARC IRL in Sun–4M is different from Sun–4c

6.4 Programming Notes on Error Reporting

Errors that happen during a read operation are always reported back to the IU as a data access or intstruction access

exception (or error) trap.  Status about such an error is captured in that module’s Synchronous Fault Status Register and

Synchronous Fault Address Register.

Errors that occur during a write may be reported either synchronously in the same way that read errors are reported,

or asynchronously via a level–15 broadcast interrupt.  Write errors are reported asynchronously when the write has

been accepted by a write buffer, which has then released the processor to do useful work concurrent with the

completion of the write.  Such write buffers exist in the M–to–S interface, the VME interface, and the memory

controller.  Each write buffer has an associated Asynchonous Fault Register set.  Detection of an error causes the fault

address and status to be captured, and a level–15 broadcast interrupt to be posted.

A broadcast level–15 interrupt will interrupt all processors in  the system, and will set the HARDINT.15 bit in each

processor’s Interrupt Pending Register.  Each processor can remove its own level–15 interrupt by clearing that bit in its

own IPR; the kernel must provide a mechanism so that one and only one processor services the source of the error

interrupt.  Sources are visible in the System Interrupt Pending Register, and are serviced in the appropriate system

AFSR.  Level–15 sources can be masked in the Interrupt Target Mask Register.
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Modules may also contain a write buffer used for certain operations such as cache write–back. Again, these

operations occur asynchronous to the flow of instructions in the IU.  If an error is reported back to the module for a write

operation that uses this write buffer (i.e. does not stall the processor) then that error will be captured in the module

Asynchronous Fault Status/Address Register pair, and the module will post a Module Error to the system; that error in

turn will be sent as a broadcast level–15 interrupt to all processors in the system.  This is done to bring the MP

environment to a simple state while the error is sorted out.  A watchdog reset is sent as a level–15 broadcast to all

processors, for the same reason.  Note that accesses posted in a module write buffer have already been successfully

translated; translation errors are always posted in the module’s Syncronous Fault Status and Address Registers as

defined in chapter 4.

The sequence that is recommended when a level–15 interrupt is received is the following:

(1) Read the processor’s Interrupt Pending Register to determine if the interrupt is a SOFT_INT or a HARD_INT.

If it is a SOFT_INT then it was sent by a processor, and there should be information in memory as to why the directed

interrupt was sent.  Otherwise, it is a hardware broadcast interrupt.

(2) write to the processor’s Interupt Pending Clear pseudo–register with data = 0x00008000 to clear the

HARDINT.15 bit.

(3) try to acquire the L15_SERVICE_LOCK (i.e. a mutex around ownership of L15 service).  If fail, goto (5)

(4) as owner of the L15_SERVICE_LOCK, read the System Interrupt Pending Register to determine the source(s)

of the level–15 broadcast interrupt;

–If memory then read the ECC Fault Status Regsiters

–If M–to–S then read the M–to–S Asynchronous Fault Status Registers

–If VME then read the VME Asynchronous Fault Status Registers

–If Module Error

–If a non–processor module is installed, may require special handling here.

–otherwise, release the L15_SERVICE_LOCK and goto (5)

(5) Each processor will check its own Asynchronous Fault Status Register in ASI = 0x4 space, take appropriate

action; also check the Module Reset Register in ASI = 0x4 space to see if the Module Error was reported due to a

watchdog reset on this module.  Note that a watchdog will reset the one processor, which will go through a watchdog

restart; part of that proceedure might be to check and service the processor’s HARDINT.15 that remains due to the

watchdog.

(6) check the HARDINT.15 bit again in case another broadcast has occurred. If so, goto (1).
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7. Memory Management and Cache Coherence

7.1 SPARC Reference MMU

Processor modules will implement a SPARC Reference MMU (SRMMU) local to each processor.  In the case of

virtual Harvard Architecture modules, there may be two SRMMU controllers on a module, one for each cache.  For

further information about the SRMMU, see ref. [1].

Main memory is allowed to be mapped cacheable.  No other element may be marked cacheable.  The kernel must

enforce this rule.

In systems with virtual–address caches (i.e. Ross 605) the page tables are not cacheable; that is, the pages in which

the SRMMU tables are stored must be accessed non–cacheable by the memory management software, since the

MMU’s access them without translation on table walks (obvious, but important).  In systems with physical address

caches (i.e. Viking) it is legal for the processors to treat the pages containing the SRMMU tables as cacheable; in fact,

this is recommended for efficiency in Viking–based systems.

7.1.1 Overview of SRMMU

CTPR

Context Table Pointer

Root Pointer PTP PTP PTE

Context Index 1 Index 2 Index 3

CTX

Context

Context
Table

Level 1
Table

Level 2
Table

Level 3
Table

2**N entries
PTE maps 4GB

256 entries    
PTE maps 16MB

64 entries    
PTE maps 256KB

64 entries    
PTE maps 4KB

31 24 23 18 17 12 11 0

Index 1 Index 2 Index 3 Page OffsetVirtual Address

Module Registers

Memory

SPARC Reference MMU (SRMMU) provides translations from a 32–bit virtual address to a 36–bit physical

address through the use of tables in main memory.  Each MMU controller contains a set of Translation Look–aside

Buffers (TLB’s) to keep recently used translations cached close to the processor.  The set of TLB’s is referred to as a

Page Descriptor Cache, or PDC.  A PDC can contain both page table entries and page table pointers.

When a new translation is required the MMU controller will do a table walk to find it.  As shown in the above

diagram a series of tables is accessed.  At any level the controller will find either a Page Table Pointer (PTP) or Page

Table Entry (PTE).  A PTP contains the physical address of the next table to access, while a PTE contains the actual
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translation information.  Depending on the level at which a PTE is found, the page size could be 4KB, 256KB, 16MB,

or 4GB.  The offset within page is not translated; for example in a 4KB page the physical address bits <11:0> equal the

virtual address bits <11:0>.

This multiple–level mapping provides for efficient translation of sparse address spaces.  It is unlikely that a full set

of tables is required.

7.1.2 Registers Associated With SRMMU

Most of the module registers defined in chapter 4 are defined as part of the SPARC Reference MMU.  Most of the

Module Control Register (MCR) definition comes from SRMMU.  The Context Table Pointer Register (CTPR) and

Context Register (CTX) provide the ’root pointer’ for a context’s level–1 table.  The Synchronous Fault Status Register

(SFSR) and Synchronous Fault Address Register (SFAR) are also part of the SRMMU, while the Asynchronous Fault

Status and Address Registers (AFSR and AFAR) are not.

Chapter 4 contains definitions of all of the fields in these registers, and a description of the behaviour of the

synchronous fault registers.

7.1.3 SRMMU PTE’s and PTP’s

7.1.3.1 SRMMU PTP’s (Page Table Pointers)

31 0

PTP

2 1

ET

Field Description

PTP

ET

Page Table Pointer: provides PA<35:6> of the base address of the next–
  level page table during a table walk.  The page table pointed to must be
  aligned on a boundary equal to the size of the table pointed to, as 
 defined in the diagram in section 7.1.1.
Entry Type: for a PTP, ET = 1.  ET = 0 means Invalid, ET = 3 is reserved

7.1.3.2 SRMMU PTE’s (Page Table Entries)

31 04

PPN

8

C

7 6 2 1

M R

5

ACC ET

Field Description

PPN

C

M

R
ACC
ET

Physical Page Number: this field provides PA<35:12> for a translated
  address; depending on the page size, bits <35:N+1> are concatenated 
  with VA<N:0> to provide the entire translated address.
Cacheable:  When ’1’, indicates that this page is cacheable by a data
  and/or instruction cache
Modified: This bit gets set to ’1’ by the MMU when the page is accessed
  for writing.
Referenced: This bit gets set to ’1’ by the MMU when the page is accessed.
Access Permissions: defined in the table in 7.1.3.3.
Entry Type: for a PTE, ET = 2.
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7.1.3.3 Access Permissions

0
1
2
3
4
5
6
7

ACC
Permissions

User Supervisor

Read Only
Read/Write

Read/Execute
Read/Write/Execute

Execute Only
Read Only
No Access
No Access

Read Only
Read/Write

Read/Execute
Read/Write/Execute

Execute Only
Read/Write

Read/Execute
Read/Write/Execute

7.1.3.4 ’R’ and ’M’ Bits

A successful translation of any kind results in the Referenced bit in the PTE being checked.  If it is ’0’ then the

MMU will set it to ’1’ in both the PTE and in the cached copy of the PTE in the PDC.  A successful translation of a write

operation results in the Modified bit being checked.  If it is a ’0’, the MMU will set it to ’1’ in both the PTE and the PDC.

The SRMMU specification states that the Modified bit gets set synchronously with the store access, and further

that the ’R’ and ’M’ bits get set atomically with respect to other system accesses to the page tables.  Some

implementations do not complete the update atomically, but rather implement an iterative algorithm to guarantee

proper update of these bits.

7.1.4 SRMMU Flushing

Flushing is used to purge stale translations from the PDC.  The flush operation is implemented through use of

SPARC store alternate (sta) with ASI = 0x3.  Flushes of user–mode pages (PTE[ACC] = 0–5) use the current contents of

the Context Register (CTX).  The address for a flush is composed as follows:

31 0

VFA

8 7

rsvd

12 11

TYPE

Field Description

VFA
TYPE

rsvd

Virtual Flush Address:  Provides VA<31:12> for comparison on flushes
Flush type Flush Object
  
  0 (page) Level–3 PTE
  1 (segment) Level–2 and –3 PTE/PTP’s
  2 (region) Level–1, –2, and –3 PTE/PTP’s
  3 (context) Level–0, –1, –2 and –3 PTE/PTP’s
  4 (entire) All PTE/PTP’s
  5 – 0xF None (reserved)

This field is ignored by the MMU, and must be zero.

page
segment
region
context
entire

PTE Flush Match Criteria (PTP criteria is same but no ACC checks)

level–3 and Addr[31:12] match and (PTE[ACC] = 6–7 or CTX equal )
level–2 or –3 and Addr[31:18] match and (PTE[ACC] = 6–7 or CTX equal )
level–1 or –2 or –3 and Addr[31:24] match and (PTE[ACC] = 6–7 or CTX equal )
PTE[ACC] = 0–5 and CTX equal
none (flush all PTE and PTP)

Flush
Type
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A ’precise’ flush removes the minimum number of entries from the PDC.  Implementations may choose to remove

more entries than the minimum specified, that is, to implement an ’imprecise’ flush.

Flushing is local to a module; that is, each IU is responsible for issuing flushes to its own PDC.  During a demap

operation, if more than one processor may have references to a stale PTE or PTP then each processor must issue flushes.

Cooperative flushing may be implemented with directed soft interrupts.

7.1.5 SRMMU Probing

SRMMU probe operations return either an entry from a page table or the PDC, or generate an error.  Probes are

accomplished with a SPARC load alternate (lda) with ASI = 0x3.  The current contents of the context register (CTX)

are used. A probe operation will return the entry from a page table as implied by the TYPE field, or will return 0x0 if

there is an invalid or translation error.  A zero is likewise returned if a UE, TO, or BE is reported on a probe.  These

errors on a probe will not cause the processor to trap.

The requested entry is returned if it is valid (ET = 2) or invalid (ET = 0).  The entry will also be returned if it is a PTP

(ET = 1) except if it is found at level–3, in which case a zero is returned.  A zero will be returned if an invalid (ET = 0) or

reserved (ET = 3) entry is encountered at any intermediate level or if a UE, TO, or BE is reported on any access.

PROBE_ENTIRE will return a valid PTE (ET = 2) from whichever level it is found at for the VPA and CTX, or will

return a zero if no PTE is found or a bus error is experienced.  There is no indication from a PROBE_ENTIRE about

which level the PTE was found at; determining the table level will require further probes of types 0 – 3, or software

emulation of a table walk.  PROBE_ENTIRE is the only required probe type; all others are optional in an

implementation.

Page, segment, and region probes should not update a PTE’s Referenced bit, although implementations are

allowed to set PTE[R] for PROBE_ENTIRE.

The probe address is formed as follows:

31 0

VPA

8 7

rsvd

12 11

TYPE

Field Description

VPA
TYPE

rsvd

Virtual Probe Address:  Provides VA<31:12> for table–walks on probes
Probe type Probe Object
  
  0 (page) Level–3 PTE
  1 (segment) Level–2 and –3 PTE/PTP’s
  2 (region) Level–1, –2, and –3 PTE/PTP’s
  3 (context) Level–0, –1, –2 and –3 PTE/PTP’s
  4 (entire) Level–n PTE’s
  5 – 0xF None (reserved)

This field is ignored by the MMU, and must be zero.

7.1.6 SRMMU Diagnostic Access

Diagnostic read and write access to the entries in the PDC are done through the use of lda and sta accesses with ASI

= 0x6, and with ASI = 0x5 if there are multiple SRMMU’s in a single module.  The details of what elements are

accessed, how they are addressed, and what meaning is attached to specific bit fields is purely implementation

dependent.
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7.2 I/O Memory Management Unit (IOMMU)

7.2.1 IOMMU Overview

DVMA accesses will issue a virtual address on the SBus, which must be translated to a physical address in order to

do the actual access.  These translations are accomplished through a set of translation–look–aside–buffers (TLB’s) in

the MBus to SBus interface.  The TLB’s are part of the MMU used for DVMA.  The IOMMU is a one–level MMU that

is similar to a SPARC Reference MMU, but provides reduced functionality appropriate to DVMA needs.

The IOMMU is a one–level memory–based MMU; there is a base pointer that points to a table in memory, and part

of the DVMA virtual address is used to index into this table to access an IOPTE (page table entry) which contains a

physical page number, a ’valid’ bit for the entry, a write–allowed bit, and a cacheability bit.  The ’C’ bit has no meaning

for the DVMA interface, but is used on the MBus in support of DVMA coherence with the system data caches (see

7.3.2). Each IOPTE maps one 4KB page.  The page table size and the corresponding DVMA virtual address range are

configured in the IOMMU Control register RANGE field. The table consists of (DVMA Range / Pagesize) 32–bit

entries.

The IOMMU maps (DVMA Range) of virtual address space for DVMA activity.  The virtual address used is

VA<X:0>, where ’X’ is the highest VA bit in the translatable range.  VA<31:X+1> must be all 1’s in order for a

translation to take place; otherwise an error is signalled to the DVMA master.  The bits VA<X:12> provide a virtual

page number which is used as an index into the IOMMU table in memory, and the physical page number PA<35:12> is

concatenated with the in–page index VA<11:0> to generate the physical address of the access.  VME cannot accesss all

of the virtual address range; see table 7.2.2.

Intelligent DVMA masters may provide their own translation facility, and can bypass the IOMMU if the Bypass

Enable bit is set in that device’s slot configuration register.  This facility is described in 7.2.5.1.

TLB entries in the IOMMU are allocated based upon an LRU algorithm.  There are 16 TLB entries.  TLB misses

are serviced in hardware.  Control/status registers are provided for management of the IOMMU.  Translation faults are

indicated with an error acknowledge to the DVMA master.

TLB flushes are done by writes to control space.  Flushes involve writing a virtual address to the IOMMU flush

register.  If there is currently a TLB entry corresponding to that virtual page then the contents are discarded.

Diagnostic access is allowed when the IOMMU is disabled.  The allocation logic and the data path can be

exercised directly.

7.2.2 DVMA Virtual Address Space

DVMA VA

DVMA 
Range

VME A24

VME A32

SBus DVMA

DVMA Address Source

0x00000000 Invalid
address
range

DVMA base –

DVMA base–1

0xFFFFFFFF

0xFF7FFFFF

0xFF800000 –
0xFF8FFFFF
0xFF900000 –
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In this diagram, ’DVMA base’ is the highest address in a 32–bit virtual space minus the DVMA range; DVMA

addresses are always at the high end of the virtual address space.

The RANGE field in the IOMMU Control Register defines the virtual address range for DVMA.  In order for a

virtual address to be considered valid, all VA bits above the translatable address must be ’1’.  For example if RANGE =

2 then 64 MB of virtual addresses are supported, and valid DVMA virtual addresses range from 0xFC000000 to

0xFFFFFFFF.  Any access using a DVMA virtual address that is out of the valid range will recieve an error

acknowledge.  The only exception involves slots that have BYPASS MODE enabled; see 7.2.5.

7.2.3 IOMMU Page Table Entry (IOPTE) Format

31 0

rsvd

3

PPN

8

C W V

7 6 2 1

WAZ

Field Description

PPN

C

W
V
WAZ
rsvd

Physical Page Number: this field provides PA<35:12> for a translated
  address; this is concatenated with VA<11:0> to provide the entire
  translated address.
Cacheable:  for coherent DVMA, this bit indicates if the IU entries     to this
data are cacheable.  The bit is used in the MBus address
  and also triggers coherent access for accesses less than 32 bytes.
  If ’C’ = 1 then the DVMA address must alias with the processor
  virtual address used to access this data.
Writeable: 1 = Read and write allowed, 0 = Read–only access.
Valid: 1 = Valid PTE
Write as ’0’ always.
  Reserved.

The IOMMU table consists of one 4–byte entry for each 4K page of address space that can be translated.  The IBA

field provides the base address of the IOMMU table.  This table must be size–aligned; for example, if the RANGE = 2

then a 64 MB range of addresses is valid.  Thus the table has 16K 4–byte entries for a total of 64 KB, and the table would

have to be 64 KB–aligned.  When forming the address of a PTE, the DVMA virtual address bits <X:12> are placed in

PA<X–10:2>, PA<1:0> = 00, and PA<35:X–9> = IBA<35:X–9>, where X is the highest translatable bit of the DVMA

virtual address.  Again for example, if RANGE = 2 then the highest valid bit of the address is VA<25>, so the address of

the PTE is PA<35:16> = IBA<35:16>, PA<15:2> = VA<25:12>, and PA<1:0> = 00.

This PTE is only accessed if the IOTLB does not already contain the translation.  If the table is not properly aligned

then unpredictable behaviour will result.

The IOMMU page table in memory must be treated as non–cachable by the processor modules.

7.2.4 IOMMU Flushes

7.2.4.1 Flush All TLB’s: (PA = 0xFE0000014)

Writes to the Flush All address will invalidate the current contents of all TLBs, independent of contents.  This

address is write–only.

7.2.4.2 Address Based Flush: (PA = 0xFE0000018)

Writes to the Address Based Flush register will cause any TLB with a tag corresponding to the IOPTE indicated by

the FA to have its contents invalidated.  This address is write–only.



Spec. Number: 950–1373–01July 19, 1991 Sun–4M System Architecture
Rev. 50

– 46 –Sun Microsystems, Inc.

31 0

FA<30:12>

30 12 11

rsvdrsvd

Field Description Type

Flush Address: 32–bit virtual address of TLB flushFA W

7.2.5  SBus Slot Configuration Register

The SBus slot configuration register provides information about the slave device in that slot, and is also used for

IOMMU bypass management for that slot.  If an MBus processor attempts to access a slave and the size of that access is

not supported, the M–to–S interface will break the access into a sequence of smaller accesses of a size that is supported.

The actual sequence is implementation dependent; some implementations will automatically change non–supported

bursts into a sequence of 32–bit words, and others may break the burst into smaller, supported bursts.  If the access is

broken into 32–bit words then normal SBus dynamic sizing is allowed to occur on each 32–bit access.

 If an implementation supports wide–mode SBus devices, WMA enables both master and slave 64–bit activity for

that slot.  The boot code is expected to configure the slot based upon FCodes associated with the SBus device. (See 5.9

for a description of these registers)

7.2.5.1 IOMMU Bypass Mode

Bypass mode is provided to allow intelligent SBus masters to do their own memory management with assistance

from the kernel.  It is assumed that such a master  will have its own MMU.  System performance will benefit from this if

the intelligent master does not tend to local or sequential reference as normal DVMA does; a DVMA master that jumps

around in large address spaces will impact DVMA TLB hit rates significantly.  When bypass is enabled the DVMA

master will issue bypass accesses as follows:

DVMA VA<31:30> = 1X: The VA is treated as a normal virtual address, and is translated by the IOMMU.

This allows the master to use mapped accesses even with bypass mode enabled.

DVMA VA<31:30> = 00: The VA is treated as a bypass physical address.  SEGA<35:30> is concatenated

with VA<29:0> to form a 36–bit physical address, and the IOMMU is not used.  The PA is checked to ensure that it is in

the valid main memory range (PA<35:30> = 0x0), and an error is signalled to the master if it is not.  In this mode, the

access to main memory will be treated as non–cacheable (and not coherent) since the VA superset cannot be provided.

In systems with physically–addressed processor caches, the CP bit is used to determine if the access should be treated

as coherent in hardware.  CP should always be set to ’0’ in systems with virtually–addressed processor caches.  The

SEGA field can be managed by the DVMA master if the valid main memory range exceeds 1 GB.

DVMA VA<31:30> = 01: Bits VA<29:24> are used to select a register or function within the interface

that is accessible to the DVMA master.  Currently VA <29:24> = 0 is supported, and any other value will cause an error

acknowledge to the DVMA master.  When VA<29:24> = 0, the DVMA master can access the slot configuration

register associated with its own slot; the SEGA<35:30> and CP fields are RW, and the rest of the register is read–only

for the DVMA master.

7.2.6 IOMMU Diagnostic Access

Diagnostic access to the IOMMU requires MMU off, DE = 1, and a quiescent DVMA system (no DVMA activity

pending).  Both the TAG array and the TLB array can be read and written in this mode;  the CAM TAG array lives at

0xFE0000100 – 0xFE00013F; the contents are as shown in 7.2.6.2. The TLB RAM array lives at 0xFE0000200 –

0xFE000023F, and the contents defined in 7.2.6.1.  In addition there are two diagnostic registers; the Diagnostic VA
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Register at 0xFE0000140 (write–only) and the Diagnostic Comparator Output Register at 0xFE0000150 (read–only).

When in diagnostic mode the value in the Diagnostic VA register bits <30:12> is compared to the contents of all tags;

the comparator outputs can be viewed in bits <15:0> of the Comparator Output Register, with bit 0 corresponding to

TLB #0, etc. A ’1’ indicates a match, and a ’0’ indicates a non–match. After diagnostic use, all TLB entries should have

the ’V’ bit set to ’0’ so that there are no inconsistencies under normal use.  Care should be exercised if diagnostics are

run with the the IOMMU enabled.

Writes to the Diagnostic Comparator Output Register are ignored.  Reads of the Diagnostic VA register will return

indeterminate data.

7.2.6.1 Translation Cache (TLB) Entry Format

31 0

rsvd

3

PPN

8

C W V

7 6 2 1

rsvd

Field Description

PPN
C
W
V
rsvd

Physical Page Number
Cacheable: sent with MBus address for coherence support
Writeable: 1 = Read and write allowed, 0 = Read–only access.
Valid: 1 = Valid TLB entry
Read as 0’s, writing has no effect.

Type

RW
RW
RW
RW
R

7.2.6.2 Translation Cache Tag Format

31 0

rsvdTAG<30:12>

111230

1

4 3

LRUQ

Field Description

TAG <30:12> is compared to VA<30:12> on DVMA access.
  The high–order bits must be ’1’ (based on DVMA Range)
TLB number in the Least–Recently–Used queue.  The lowest
address has the number of the LRU TLB, and the highest 
address has the number of the MRU TLB.
Read as 0’s, writing has no effect.

Type

TAG

LRUQ

rsvd

RW   
R

R

7.3 Cache Coherence

7.3.1 Level–2 MBus Support for Coherence

The level–2 MBus supports multiple–master coherence on a 32–byte block basis.  At any time, a block in memory

may have one or more copies in the system caches.  If there are multiple copies the block is ’shared’.  If there is a single

copy the data is ’exclusive’.  In the case of a block which a processor has written to, or is allocating with plans to write,

the block is ’owned’.  A shared block may only be owned by one cache at any time.  It is possible for a block marked

shared to be the only copy currently cached.

MBus implements a write–invalidate policy.  When a cache that has a shared block writes to that block, it

broadcasts a Coherent Invalidate cycle on the MBus, which instructs all other caches that have a copy of that block to

discard it, since a more recent copy exists elsewhere.  If a cache is doing a write–allocate operation it issues a Coherent

Read and Invalidate, which gets the most recent copy of that block and then causes all other caches to discard their

copy.  This makes the new block exclusive and owned.
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The purpose of the shared status is to minimize the need for access to the MBus; exclusive blocks may be written to

internal to the cache without waiting to send an invalidate.

If there are multiple virtual addresses that map to the same physical page, it is a rule that the OS must make the

different virtual addresses map to the same cache line. This is the ’Virtual Address Aliasing Rule’.  In virtual–address

direct–mapped cache systems this means that the different virtual addresses must be identical modulo[1MB].  The

1MB rule is the absolute largest alias supported.  Systems with smaller caches can use an alias rule based on the module

cache size, which is specified in the module appendix.  In physcial address cache systems this rule does not apply.

Virtual address caches provide a ’flush’ mechanism to support purging of references in the caches.  This is

implemented with flush ASI’s as defined in 3.1.1.

MBus–based implementations of this architecture will use a cache block size or sub–block size of 32 bytes.  This

makes 32 bytes the unit of coherence in these systems.

7.3.2 The SPARC flush Instruction

It is important to note that the SPARC flush instruction affects instruction buffer consistency only on the processor

that executes the flush.  For cases where multiple modules may have buffered instances of an instruction that gets

modified by a store executed by one processor, the execution of the flush will not guarantee that other processor

modules have properly flushed their image of that instruction space.

This has no importance for common programs, but self–modifying code such as LISP or dynamic linkers may

have an issue with this.  It is a truism that multi–threaded applications with self–modifying code must have

synchronization mechanisms around the threads to eliminate modify/execute race conditions; it is important that the

synchronization mechanism includes local execution of flush in each thread for protection.

7.3.3 DVMA and Cache Coherence

By following certain rules in the allocation of DVMA addresses, consistency with the module caches can be

maintained in hardware.  This will reduce the need for cache flush cycles surrounding DVMA activity.  In systems

utilizing a level–1 MBus module, the module does not implement snooping, and software support  via flushing is

required to maintain coherence.

7.3.3.1 Stream I/O Versus Non–Stream I/O

There are two classes of DVMA devices, stream and non–stream.  Stream devices implement only sequential,

unidirectional, block–sized and block–aligned transfers to memory.  If such a device does a non–block–sized or

non–block–aligned transfer then it is expected to access the entire block; that is, a write of less than 32 bytes will

clobber the entire block.  An example of a stream I/O device is the VMEbus I/O cache. Devices that implement stream

I/O do not engage in fine–grained (cycle–by–cycle) coherence with the system caches; instead, the model is that pages

are marked for transfer, the I/O transfer occurs, and then the pages are marked as available.  During the time the transfer

is taking place, those pages belong to I/O and the processors should not be allowed to access them.  The kernel must

enforce this rule.

Non–stream devices engage in fine–grained coherence.  This means that upon each access to memory the

hardware and kernel must ensure that both the processors and the DVMA device have access to the most recent copy of

information at that address.  In order to ensure this coherence, one of two models apply:

(1) If the page is marked non–cacheable in the SRMMU tables then it must also be marked non–cacheable (i.e.

non–coherent) in the IOMMU tables.  This method allows for any Virtual Page Number to be used by the DVMA

access.  The efficiency of the processor accesses to this page is poor.
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(2) If the page is marked cacheable in the SRMMU tables then it must also be marked cacheable (coherent) in the

IOMMU tables.  In this case the DVMA virtual address must match the processor virtual address modulo[cache_size]. 

Hardware will ensure that coherence is maintained for both stream and non–stream devices under these models,

although the processors must not touch pages belonging to a stream transfer during that transfer.

The phrase ’must not touch’ needs some explanation.  If a processor writes to a page while DVMA is reading from

it, or DVMA writes to a page while a processor is reading from it, then the data read may be indeterminate.  For this

reason, during stream model access these processor writes are strongly discouraged, and any processor read from a

page during DVMA writes to that page are at risk.  It is quite safe for both a processor and DVMA to be reading from the

same page simultaneously.

The 1MB cache alias rule is due to the fact that the largest virtual coherent cache supported by the MBus is 1MB.  If

the size of the installed cache is less than 1 MB then the alias rule uses that cache size.  Physically–addressed caches

such as Viking do not require aliasing in order to provide DVMA coherence.

7.4  Write Buffers

Write buffers are used to accelerate writes and reduce bus occupancy for better overall system performance.

While write buffers are not new to computer designs, some write buffers in Sun–4M implementations are by neccessity

visible to the software.  Write buffers allow writes to complete concurrent with the processor doing useful work; the

implication is that error reports are not synchronous to instruction flow.  Errors are considered to be rare events, and

should never be used for flow control.

All write buffers in the Sun–4M architecture follow these rules:  (1) Once a write buffer has accepted a write, it

must either guarantee that the write can occur without error, or the write buffer is responsible for reporting those errors.

(2) Write buffers are read–stall; that is, after a write buffer has accepted a write, any subsequent access to that device

must wait for the write operation to complete. (This ensures that order is maintained). That is, system write buffers are

strongly ordered.  (3) If a write buffer is visible to the software, it must have a synchronization mechanism; that is,

software has a way of determining if a write is still pending or if it has completed.

Rule (2) does not apply to module write buffers, which are allowed to snoop cacheable items, but they must drain

on atomic SPARC instructions or on read access to non–cacheable data.  Module write buffers follow the TSO model

defined in SPARC Architecture V.8; this is described in 7.5.

Write buffers exist in many places in implementations of this architecture, but only two are visible to software.

Invisible write buffers are in the memory controller, the SCSI/Ethernet interfaces, and the E–bus interface; those write

buffers will not ack until they have determined that the address and size are a valid transaction; then they will accept the

write (if invalid they will error–ack; but the location of these buffers keeps that error–ack from reaching the modules.

Instead, the previous write–buffer on the path will receive the error, and post an interrupt).  Visible write buffers exist in

the MBus–to–SBus interface and the VME Master port.  There are also DVMA write buffers between SBus or

VME/IOC and the MBus.

7.4.1  Write Buffers and Atomic Cycles

When an atomic load–store occurs either from a processor to the SBus or VMEbus, or a DVMA atomic cycle

occurs to memory or to the SBus, that cycle will complete atomically.  What this means is that the target bus will be held

atomically between the read and write portions of the atomic cycle.  The only thing that can break atomicity is if the

target device issues a rerun on the write.  Atomic cycles to devices that may issue an SBus rerun are not rcommended.
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7.4.2  Write Buffer Synchronization Support

The following synchronization mechanisms are provided for Sun–4M system write buffers: (1) memory interface:

read EFSR or read from non–cacheable memory, (2) M–to–S: read the M–to–S AFSR, (3) VME Master: read VFSR,

(4) DVMA to memory: do a DVMA read from memory.  There are other write buffers that are not normally visible to

software, but if there are time dependencies based upon completion of stores then the program should read back from

the device that was written to.  These write buffers exist in the counter/timer area (any read of any counter/timer

register will suffice; that is, any register in the area PA<35:20> = 0xFF13), the interrupt logic block (any read of a

register in the area PA<35:20> = 0xFF14), and on the path to other devices in the PA<35:24> = 0xFF1 space.

User code can always verify synchronization of writes to a device by reading back from that device; since devices

are non–cacheable, the read–stall nature of write buffers will guarantee ordering.

7.4.3  DVMA Write Buffer Synchronization Support

When a DVMA write to memory has completed, or an IOC writeback or flush has been synchronized, that data

may not be in memory yet due to a write buffer supplied for DVMA writes to memory.  A DVMA master can

synchronize these buffers by issuing a DVMA read of memory.  A processor module can synchronize the DVMA write

buffer by reading the M–to–S AFSR three times.  It is expected that the kernel will have a routine called by all device

drivers to synchronize the IOC and the DVMA write buffers after DVMA completes.

Write buffer synchronization does not  work for the VME diagnostic loopback case; instead synchronization can

be forced by issuing a VME loopback read that is not IOC–cacheable.  Loopback is not used for normal operations.

7.5 Memory Model

Machines that are Sun–4M compliant will support the Total Store Order (TSO) model as defined in the SPARC

Architecture Manual version 8.  TSO guarantees that all store and load–store instructions from all processors are seen

as being executed by memory serially; furthermore the stores and load–stores for a particular processor are made

visible to the memory system in the order that they were issued by that processor.

A load by a processor may first check that processor’s store queue to see if it contains a store to that address; if so

that data is returned to the processor.  If the data was not in the store queue, then the load operation goes directly to

memory.  Since not all loads go to memory, loads in general do not appear in the memory order.  A processor may not

issue another memory access until a load returns a value; until then the processor is blocked.  (The check of the store

queue is an implementation option, not a requirement under Sun–4M; the other choice is to stall until the store queue

has drained.)

Atomic load–store (swap or ldstub) behaves like both a load and a store.  The load–store is placed in the store queue

like a store, and it blocks the processor like a load.  Load–stores are thus treated atomically by memory.  The processor

blocks until the store queue is empty, so loads don’t need to check for load–stores in the queue.  Also, in TSO an atomic

load–store is a point of strong synchronization, that is, when the load portion completes it is guaranteed that all

previous stores have made it to the shared memory image.

It is recommended that shared–memory applications be written assuming the PSO (Partial Store Ordering) model

defined in SPARC V.8 so that the same application will run across all SPARC MP platforms without modification.

Note that MMU table–walks will not participate in software locking schemes for access to MMU tables, which are

shared memory entitites.
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8. The I/O Cache (IOC)

8.1 Overview of the IOC

The I/O cache in Sun–4M is provided to accelerate sequential VME slave port activity.  Unlike previous IOC

designs used at Sun, this IOC is not shared with SCSI or Ethernet traffic.  IOC accesses to memory are always 32–byte

bursts. On VME reads from main memory, leading fragments can be discarded.  On VME writes to main memory that

use the IOC, the writes will always start and end on 32–byte boundaries independent of the addresses used.

Write–backs and flushes always trigger a 32–byte burst access.  The IOC is not cycle–by–cycle coherent with main

memory, but is coherent on a 32–byte burst basis.  In  SunOS this is known as the ’Streaming I/O’ model.

The IOC is a write–back cache with a no–write–allocate policy.  It is required that descriptors shared between the

IU’s and VME devices be non–IOC cacheable.

Each 32–byte line in the IOC will map to an 8KB section of VME address space; the mapping is a direct–map

based upon VME A<22:13>.  A total of 8MB of VME address space is allocated to the slave port, but only 1MB will

respond in A24 space; the 1MB of A24 space overlays one of the 8MB of A32 space.   Due to the 8K mapping, IOMMU

entries for VME must be made identically on a pair of sequential 4K pages; that is, the write–allowed, cacheable, and

valid bits must be the same, although the physical pages do not have to be physically contiguous.

VME slave port accesses can use or bypass the IOC on an 8K page basis.

The IOC does not participate in general SBus activity.  SBus masters will achieve maximum bandwidth by issuing

accesses that are system cache line–sized (32 bytes).

8.2 Management of IOC

The IOC requires software initialization, software flushes at the end of transfers, and tag initialization for each

transfer.  Cache initialization involves writing a ’0’ to the tag V and tag C bit in each tag.  As each transfer from a VME

device is established, the driver/kernel must establish valid mappings in the IOMMU entries corrsponding to the VA

allocated for the transfer, and must also write to the tag for each cache line allocated for the transfer.  The tag write must

(1) set V = 0, (2) set C = 1 if the transfer is IOC–cacheable, C = 0 if the IOC is bypassed for this 8K page, and (3) set the

W bit to the same value as was set in the IOMMU.  IOMMU entries must be mapped in pairs to correspond to the 8K

IOC line mapping.

IOC flushes are required to complete transfers from VME to memory if the IOC is used. In normal operation the

dirty line is written back to memory when another access to the line is attempted which misses on the tag; for this reason

an IOC line will always contain valid data at the end of a write transfer, so the flush is always required. A flush will

cause the corresponding IOC line to be written back to memory if the ’M’ bit is set.  This write–back is always a 32–byte

burst, so flushes must not be used if the transfer through that cache line is still in progress.

In order to trigger a flush of a cache line, the kernel must write to the IOC Flush address, with PA<14:5> selecting

the cache line to be flushed.  After a sequence of one or more flush writes, the kernel can determine that the flushes have

completed by attempting to read from the tag memory.  When the read is allowed to complete, the last flush has

completed.  This synchronization mechanism is managed in hardware.
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8.3  I/O Cache Tag Format (32–bit access)

31 0

rsvd

24

TAG V M IC

19

W

20212223

Field Description Type

TAG
V
M
IC

W
rsvd

Identifies block within 8K page; compared to VME.A<12:05>
Valid bit: set when the tag contains valid information
Modified:  At least one byte of this cache line is dirty
IOC–cacheable: set by the kernel during mapping.  This is 
  independent of system cacheability of the data.
Write–allowed: set by the kernel during mapping
reads as 0’s, writing has no effect.

RW
RW
RW
RW

RW
R

8.4 I/O Cache Data Format, Diagnostic Access (32–bit access)

31 0

IOCD

Field Description Type

IOCD Cache Data. PA<14:5> address the cache line, and PA<4:2> address
the word within the 32–byte line.

RW

8.5 I/O Cache Data Block Diagram

A31....A23  A22...A13  A12...A5  A4..A2  A1... A0

VME ADDRESS

DATA PORTION OF IOC SRAM

SELECTS BLOCK

SELECTS 
LWORD

SELECTS BYTES

WRITTEN AS THE TAG INFO

Address
recognition

BYTE 0 BYTE 1 BYTE 2       BYTE 3

BYTE 4       ETC...

BYTE 31

TAG (8 BITS) V M IC W

TAG PORTION OF IOC SRAM

PA<14:5>

VME.AM<4:0>

DIAG

PA<4:2>

IOC CONSISTS OF  1024
BLOCKS OF 32 BYTES
EACH.  A LINE DIRECT–
MAPS AN 8KB PAGE OF
VME SPACE.

DIAG
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9. I/O Devices

9.1 Keyboard/Mouse Interface and Serial Ports (8–bit access)

PA(35:00) AMD Z85C30 Registers

Mouse Control
Mouse Data
Keyboard Control
Keyboard Data

Serial Port B Control
Serial Port B Data
Serial Port A Control
Serial Port A Data

0xFF1000000      
0xFF1000002     
0xFF1000004     
0xFF1000006 
     
0xFF1100000      
0xFF1100002     
0xFF1100004     
0xFF1100006      

Unspecified addresses in the PA<35:20> = 0xFF10 and 0xFF11 ranges are reserved.

The Keyboard/Mouse and Serial Port interfaces are each implemented using an AMD Z85C30 Serial Channel

Controller.  This device is software compatible with the Zilog 8530, but the recovery time is reduced from 1.6 uS to 710

nS.  An enhancement from previous Sun architectures is that the need for spin–loops is eliminated.  As soon as a driver

has finished an access to the serial port it is released to do useful work, and a subsequent access will stall if recovery

time needs to be met.  In a busy MP system this may impact system performance since the bus will be occupied by the

stalled cycle; however in cases where high–speed serial port bandwidth is the primary goal, this will speed up the serial

port activity.

Both devices will interrupt on level 12.  See the AMD Z85C30 data sheet for further information.

9.2 EPROM (1, 2, 4, 8, 32–byte read access)

The EPROM consists of up to 1MB of PROM storage. The EPROM will mirror throughout the address space

dedicated to EPROM (PA<35:24> = 0xFF0) independent of boot–mode or direct access.  For example, if 512 KB of

EPROM are supported then address bits PA<23:19> are ignored.  If 128 KB of EPROM are supported then PA<23:17>

are ignored.

Boot–mode accesses to the EPROM must have VA<27:24> = 0x0.  EPROM is not cacheable.

9.3 TOD/NVRAM (8–bit access)

PA(35:00) Mostek 48T08B

NVRAM

”ID PROM” information (See 9.3.1)

Control register
Second 00–59
Minute 00–59
Hour 00–23
Day 01–07
Date 01–31
Month 01–12
Year 00–99
  Reserved.

0xFF1200000 –
0xFF1201Fd7
0xFF1201Fd8–
0xFF1201FF7
0xFF1201FF8
0xFF1201FF9
0xFF1201FFA
0xFF1201FFB
0xFF1201FFC
0xFF1201FFD
0xFF1201FFE
0xFF1201FFF
0xFF1202000–
0xFF12FFFFF
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9.3.1 NVRAM/IDPROM (8–bit access)

PA(35:00) Mostek 48T08B

Format code: indicates ”IDPROM” format
Machine Type (see system ’A’ appendix)
Ethernet Address:  this unique 48–bit Ethernet address is assigned 
  to the machine by Sun
Date of manufacture: format is a 32–bit word containing the num–
  ber of seconds since January 1, 1970
Serial number: 3 bytes

Checksum: defined such that the longitudinal XOR of the 16 bytes 
  from 0xFF1201Fd8 through 0xFF1201FE7 yields 0
Assigned to manufacturing process use.  Format is TBD.

0xFF1201Fd8
0xFF1201Fd9
0xFF1201FdA–
0xFF1201FdF
0xFF1201FE0 –
0xFF1201FE3
0xFF1201FE4 –
0xFF1201FE6
0xFF1201FE7
      
0xFF1201FE8 –
0xFF1201FF7

This format is identical to the format of IDPROM’s in the Sun–4 architecture, with the addition of an ECO–level

field for manufacturing use.  The use of NVRAM to contain IDPROM information was pioneered in the Sun–4c

architecture.

9.4 Audio/ISDN (8–bit access)

PA(35:00) AMD AM79C30A Registers

Interrupt Register (IR)
Command Register (CR)
Data Register (DR)
D–channel Status Register 1 (DSR1)
D–channel Error Register (DER)
D–channel Receive Buffer (DCRB)––8 byte FIFO
D–channel Transmit Buffer (DCTB)––8 byte FIFO
Bb Channel Receive Buffer (BBRB)
Bb Channel Transmit Buffer (BBTB)
Bc Channel Receive Buffer (BCRB)
Bc Channel Transmit Buffer (BCTB)
D–channel Status Register 2 (DSR2)

0xFF1500000
      
0xFF1500001     
0xFF1500002     
0xFF1500003      
0xFF1500004      
     
0xFF1500005    
      
0xFF1500006     
    
0xFF1500007      

RW

R  
W
RW
R
R
R
W
R
W
R
W
R

The audio interface in Sun–4M is identical to that in the Sun–4c architecture.  The interface is provided through the

Main Audio Processor (MAP) of the AMD 79C30A Digital Subscriber Controller.  The 79C30A is a highly integrated

circuit which provides an ISDN 4–wire subscriber level interface, an audio processing circuit, a parallel

microprocessor interface, and a serial interface.  For the audio interface, only the  audio processing circuit and the

microprocessor interface are used.

External to the 79C30A are an oscillator circuit using a 12.288 MHz, +/– 80 ppm, parallel resonant crystal and an

operation amplifier used to drive the speaker.

The 79C30A interrupts on level–13.  See the AM79C30A data sheet for further information.
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9.5 VMEbus Master Port (8, 16, 32–bit access.  32–bit not allowed in 16–bit spaces)

The VME Master Port is accessed in one of 4 system address spaces.  PA(31:00) is used as the VMEbus address.

PA(35:32) provides control information.

VMEbus Master Port Definitions

Address Sizes:
PA(31:00) = 0xFFFFxxxx is A16 space
PA(31:00) = 0xFFxxxxxx is A24 space except for A16 space

Data Sizes:
Interrupt Handler:
Bus Timeout:
Bus Requester:
Bus Arbiter:

A32, A24, A16

D32, D16, D8(EO)
IH(7–1), D8(O)

> 100 uS from master assertion of AS*
SGL, ROR

SGL, jumper disable
Address Modifiers Generated: 0x39, 0x3D, 0x09, 0x0D, 0x29, 0x2D

The VME Master Port is accessed in one of 4 system address spaces.  PA(31:00) is used as the VMEbus address.

PA(35:32) provides control information.  The VMEbus AM code always indicates a data access on the VMEbus

signals.

PA(35:32) VMEbus Space

0xA
0xB
0xC
0xD

AM = User, 16–bit maximum transfer size
AM = User, 32–bit maximum transfer size
AM = Supervisor, 16–bit maximum transfer size
AM = Supervisor, 32–bit maximum transfer size

PA(31:16) VMEbus Space

0xYYZZ
0xFFZZ
0xFFFF

YY not = FF, AM = A32 space
ZZ not = FF, AM = A24 space
AM = A16 space

Atomic bus cycles are guaranteed atomic on the VMEbus; other activity may occur on the system busses during

this time.  In keeping with previous Sun VME implementations atomic cycles are implemented by holding VME

BBSY* between a load and a store, rather that by the VME atomic transaction protocol.

9.6 SBus Expansion Slots

Four SBus expansion slots are provided.  Each is capable of being accessed as a slave.  Slave capabilities are

established in the SBus Slot Configuration Register for that slot.  The SBus implementation must be compliant at least

with SBus revision A.2; some implementations may be compliant with a more recent version of the SBus specification.

Depending on slave device capabilities, the SBus Slot Configuration Register (section 5.9) can be programmed to

resize bursts into smaller transfers.
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9.7 Floppy Disk Controller (8–bit access)

PA(35:00) AMD AM82077 Registers

Status Register A (not used by Sun)
Status Register B (not used by Sun)
Digital Output Register (DOR)
Tape Drive Register (not used by Sun)
Main Status Register (MSR)
Data Rate Select Regsiter (DSR)
FIFO Data Port (FIFO, 16–byte access)
   reserved
Digital Input Register (DIR)
Configuration Control Register
   reserved

0xFF1700000
0xFF1700001
0xFF1700002
0xFF1700003
0xFF1700004
0xFF1700004
0xFF1700005
0xFF1700006
0xFF1700007
0xFF1700007
0xFF1700008 – 
0xFF17FFFFF

RW

 –
 –
RW
–
R
W
RW
 –
R
W

The floppy will interrupt on level–11.  See the AMD 82077 data sheet for further information.  Note that  the use of

some register bits are different from those specified in that data sheet; this will be explained in the system appendices

for systems that support floppy disk drives.

9.8 Auxiliary I/O register 0 (8–bit access): (PA = 0xFF1800000)

0

L

12

T

45

D

6

1

7

1 rsvd

Field Description Type

Floppy Density: 1 = high density, 0 = low density     
Terminal Count: signals floppy drive that a transfer is done
LED (small systems): 1 = on, 0 = off.

D 
T
L

R   
W
W

All outputs reset to ’0’ on system reset.  This register is provided on systems that support the Floppy Disk

Controller.  Bits that are ’reserved’ may be specified in the system appendix for those systems.

9.9 Generic I/O and Auxiliary I/O register 1 (8–bit access)

There is support for some unspecified 8–bit slave device in some implementations.  The support includes: at PA =

0xFF1A00000 to  0xFF1A00FFF accesses can be made to an 8–bit slave device; and at address 0xFF1A01000 is an

auxiliary I/O register; bits <7:4> are input, bits <3:0> are output.  All outputs reset to ’0’ on system reset.

The use of these optional registers is defined in the system appendix for the systems that support them.

In the first implementation that is using them (Campus2) the AUXIO–1 register is used as a Power Control

Register (see appendix A.II); the Generic Register is unused.

Implementations can choose to add more implementation–specific registers or devices on unique 4KB pages

within the (PA<35:24> = 0xFF1) space.
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10. DVMA and DMA Devices

10.1 SCSI and Ethernet Interfaces

Most Sun–4M implementations have on–board SCSI and Ethernet interfaces.  Typically these interfaces are

implemented as a single SBus device, and are configured to be the on–board SBus device at SBus slot 0xF (PA<35:28>

= 0xEF).  As an on–board device there is no SBus slot configuration register for this device.  The SCSI/Ethernet

implementation is described in the system–specific ’A’ appendix.

10.2 VME Slave Port

Address Sizes:

Data Sizes:

A32, A24

D32, D16, D8(EO); UAT and Bursts not supported

VMEbus Slave Port Definitions

A32 responds to the lowest 8 MB of VME address space   
A24 responds to the lowest 1 MB of VME address space

Interrupter: No                                                                  
Address Modifiers Recognized: 0x39, 0x3A, 0x3D, 0x3E, 0x09, 0x0A, 0x0D, 0x0E

The VME slave port allows other VMEbus masters to access main memory through the DVMA mechanism.  In

A24 space the port will respond to VME addresses in the lowest MB of address space, and in A32 it will respond to the

lowest 8 MB of space.  (Note that prior Sun designs supported only 1 MB of space, so there may be addresses allocated

to devices in A32, MB(7:1) that need to be moved).  The VME address is used as a DVMA virtual address, with the

address shifted to the highest 8MB of DVMA virtual address space (see 7.2.2).

The VME slave port supports an I/O cache for stream I/O; see section 7.3.2.1 and section 8 for further details.  The

IOC is direct–mapped, with one cache line allocated for each 8KB of VME address space.  When a mapping is

established for SVME access the IOMMU must have the correct PTE’s for the address range to be accessed, the tag

entries in the corresponding IOC lines must have the ’V’ bit set to 0, and the ’C’ bit must either be set for IOC use, or

cleared for IOC bypass on that 8K range.

Data sizes of 8–, 16–, and 32–bit are supported for SVME transfers. Block–mode address modifiers are not

recognized.  VMEbus atomic cycles through the slave port are not guaranteed atomic on the system memory bus.

10.3 SBus Expansion Slots

’N’ SBus expansion slots are provided.  Each is capable of initiating a DVMA cycle, which can access main

memory or another SBus slave device.  The SBus implementation must be compliant at least with SBus revision A.2;

some implementations may be compliant with a more recent version of the SBus specification.  The limit on ’N’ is

based on SBus electrical characteristics and the number of on–board devices.

If an SBus master device contains its own memory management unit then its slot can optionally be configured to

allow it to bypass the IOMMU.  The configuration is accomplished with the SBus Slot Configuration Register (section

5.9) and is defined in section 7.2.5.1.

10.4 Valid DVMA Physical Addresses

DVMA devices are only allowed to access main memory (PA<35:32> = 0x0), MBus reserved spaces (PA<35:32>

= 0x1–0x9) and SBus slaves (PA<35:32> = 0xE).  Hardware will enforce this rule; if the IOMMU table contains a

mapping with an invalid address then any DVMA access to that address will result in an error acknowledge to the

DVMA master.  See 7.2.2 for the VME and DVMA virtual address ranges.
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11. Main Memory

11.1 Memory Overview

Main memory starts at physical address 0x0 and is not guaranteed to be contiguous.  Memory size is probed

according to the algorithm provided in the system–specific ’A’ appendix.  Memory addresses are not fully decoded;

this means that within a row of memory, addresses will mirror if a smaller DRAM is used.  Accesses to unpopulated

rows of memory will return garbage data.  The implementation notes for each Sun–4M machine will have guidelines

for that machine’s memory system.

Memory is ECC protected.  ECC generation is always enabled; ECC checking can be disabled through the ECC

Memory Control Register.  Upon detecting a correctable error, the memory subsystem will correct the data delivered to

the requester, and will also write the corrected data to memory.  There is no hardware support for scrub.  Diagnostic

support for the ECC logic is provided.

11.2 Programming Notes on Software Scrub

Scrub of an ECC memory system is simply issuing a read access to each location over some period of time in order

to catch soft errors. If an ECC error is detected is is required that the hardware will write the corrected data to memory.

In a scrub cycle the data that is read from memory is discarded.

In a multiple cache environment care must be taken to ensure that a read done for scrub actually reads memory; in

many cases a read will cause data to be issued from a cache that owns the block, rather than from memory.

A way to prevent this is to issue read cycles that are noncacheable when doing a scrub; this will both prevent a

cache from responding, and also will prevent the data read from memory being snooped by caches in the system.

The following method is recommended for issuing SCRUB cycles.Set the Alternate Cacheable bit in the module

control register to ’0’ (non–cacheable).  In the generic specification section 4.1, this is bit 13 of the MCR; check the

appropriate module specification to ensure that  the module in use conforms with this.  Then use the bypass ASI 0x20 to

issue reads to the memory system; this ensures that the DRAM will respond, rather than a snooping cache.  It is very

important that the data read in this manner is not used or written to, since the multi–processor cache coherence could be

destroyed.

The generic SCRUB code should issue sequential LDDA (addr) 0x20 to ensure that each location is read; the

SCRUB code will access tables of valid physical addresses to determine loop boundaries.  The SCRUB can be

optimized in some systems; for example, if the memory system  reads more than  64 bits on a non–cacheable read then

the stride can be (size of read). Another optimization may take advantage of nonstandard block–read hardware to issue

reads of 32–bytes, or use block–copy hardware to copy each location in memory to a single dump location.  Each

system will have different  capabilities and performance impacts related to these.

Note that a correctable ECC error will cause a broadcast level–15 interrupt (if enabled in the ECC Memory Enable

Register), so a flag should be posted when scrub is in progress so that the responding interrupt handler will know the

source of the error.
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12. Resets

There are several sources of reset in Sun–4M.  These are Power–on Reset (POR), Software Reset (SWR), Reset

Switch (RSTSW), and VME Reset In (jumper selectable; used only when the board is not the VME slot–1 master).  In

addition, each module may detect a Watchdog Reset if it experiences an error condition, which is a trap with traps

disabled.  This condition resets only the one processor, and generates a broadcast level–15 interrupt to the system.

Each module may also receive a local software reset (SI) through that processor’s Control Register; this facility is for

diagnostic purposes only.  Local software reset (SI) through the module control register will disable snooping for a long

period of time, so it is not allowed during normal MP operations.

When a processor is reset, it needs to determine the source of the reset; the hierarchy it should search is

local–watchdog, local SI, SWR, RSTSW, POR.

A reset is intended to put the processor or system into a known state.  In order to allow for some robustness in

system bringup, no state is reset in hardware unless it is absolutely neccessary in order to ensure controllability.  The

contents of processor general registers, caches, tags, TLB’s, and main memory are unaffected by RESET.  All I/O

devices and state machines will be reset; it is not possible to reset part of the system and leave the rest untouched.

The VME control register allows the kernel to issue a reset to the VMEbus in software, if the ’VME Reset Out’

jumper is installed.  A timing loop must be used to ensure that the VME reset is asserted for a minimum  of 200 mS.

A reset switch is provided on–board for system bringup.  This switch generates the equivalent of a power–on reset,

with cache and memory contents preserved.  The switch is not user accessible. A reset initiated with the switch will

leave status in the System Control and Status Register.

Device, Bus, or Bit
State after

POR or SWR or RSTSW
State after
watchdog

Module:
 Caches
 Module MMUs
 ’Dual’ bit (cache snooping)
  Boot–mode bit (1=boot mode, 0 = translate) 
  SI bit 
  Module write buffers
  Watchdog Bit
           
SWR_STAT
RSTSW bit in System SCR
SBus
VMEbus
Memory Controller
Software Reset Status bit (SWR_STAT)
Undirected_int_mask
VME_Slave_enable
Interrupt Target Register
LED’s
IOMMU
Soft–interrupt bits
System Error bits
System Write Buffers
Counter/Timers

Disabled                     
Disabled
Off
1
0
Empty
0

POR or RSTSW = 0, SWR = 1
POR or SWR = 0, RSTSW = 1
Reset
Reset
Reset
’0’
all ’1’
’0’
0x0
all ON
Disabled
all ’0’
all ’0’
Empty
Initialized (see description)

unchanged  
unchanged
unchanged
1
0
Drain normally
1

unchanged
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Appendix A.I: Board Features: Galaxy

GALAXY is a single–board, high performance SUN workstation that supports up to four level–2 MBus processors

on 2 MBus module connectors.  Modules planned include Ross 6002 and Viking/E$ on a Sun MBus.  All processor

modules installed must be of the same type.

– Double–height  (2 slots) 9U form factor

– MBus running at 40 MHz, with two sockets.  Each socket has support for a module containing one or

two logical ’processor modules’.

– SBus interface at 20 MHz to low–cost graphics and peripheral devices

– 3 SBus expansion slots and one shared SBus/MBus slot (second processor module occupies the same

space as the fourth SBus card)

– On–board memory of 16 or 32 SIMMS, ECC protected, interleaved, using 80 ns fast page–mode

SIMMS of 1 or 4 MBit DRAM (support is included for future 16Mb parts also).  Up to 128MB on–board with 4MB

SIMMs.

– Expansion memory of up to 256 MB on each of two boards using 4 MBx9 SIMMs

(system total of 640 MB with 4MB SIMMS, future 2.4GB with 16MB SIMMs)

– VMEbus master and slave ports with an I/O cache for the slave port

– LANCE Ethernet with local buffering

– Emulex ESP236 SCSI interface 

– ’Sunness’; TOD/NVRAM, EPROM, keyboard/mouse, counter/timers, 12 diagnostic LEDs

– 2 standard 25–pin serial ports, synchronous–capable

– Campus–1 style audio interface 

– Board Scan JTAG interface for manufacturing and field diagnosis
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A.I: System Specific Information: Galaxy

A.I.0: Galaxy Block Diagram

MODULE
#0 #1

MODULE

MEMORY
IFACE

M–BUS

NVRAM/
TOD

KBD/MOUSE

EPROM

LEDS

E–BUS

LANCE

ENET
MEM

ENET

SCSI
DVMA SCSI

VMEbus

SERIAL
PORTS

SYS
REGS.

DVMA
IOMMU

VME

E–BUS
CTRL

INT
CTRL

COUNTER/
TIMERS

MASTER

VME

SLAVEIOC

IFACE

C1–AUDIO

SBUS SLOT 0

SBUS SLOT 1

SBUS SLOT 2

SBUS SLOT 3

SBUS

X

2

3

4

5

ASIC Partition: 1 = MMC, 2 = MSI, 3 = SEC, 4 = VIC, 5 = ESC

SBUS   
ARB &
CTRL

1

SIMMS

MEM_MUX

MEM
EXP
PORT

EXP 
MEM

CARD(s)
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A.I.1 SBus Details

Galaxy supports 4 SBus slots, numbered 0–3; each has the capability of being both a master and a slave.  SBus

dynamic sizing is supported for IU–initiated accesses.  Slot configuration will allow for unsupported bursts to be con-

verted to sequential 32–bit accesses only; those accesses can each dynamic size.  The SBus supports up to 32–byte

bursts for DVMA to/from memory and from the MBus.  DVMA from SBus to SBus supports all burst sizes.   There is

also one on–board ’slot’ at SBus slot 0xF, which contains a SCSI/Ethernet device.

 The fourth slot shares space with the second MBus module.  If the second MBus module is installed only three

SBus slots are available.

SBus arbitration is fair per request; the requesters are slots<3:0>, on–board SCSI, and VME slave port.  The SBus

interconnect is also used to talk to the VME master port and the E–bus controller; this usage is not according to standard

SBus protocols, but such usage is invisible to other devices on the bus.

DVMA coherence is supported on partial writes by the S–to–M interface, which allocates the line, merges in new

data, and writes back to memory.  This is not highly efficient; 32–byte burst devices are recommended for high band-

width DVMA.

The M–to–S interface keeps track of reruns; if an SBus slave issues a rerun (which may be a stateful disconnect)

the MSI tags that slave with the MID and a ’busy’ bit; no other master is allowed to connect to the slave until the discon-

nected cycle is satisfied.  If any SBus master is rerun from an SBus slave, that status is similarly recorded, but multiple

SBus masters are not protected from each other if both are accessing the same slave device.  Caveat Emptor.

DVMA from VME can access SBus slave devices as well as memory.  SBus DVMA can access SBus slaves or

memory also, but cannot access VMEbus slaves.

A.I.2 MBus Details

Two MBus connectors are supported.  Each has support for up to two MBus masters.  Each connector can have a

single–processor module, a dual–processor module, or one harvard–architecture module in it.  The mappings to con-

nector, MID, and IRL are as follows:

MID<3:0>

1000
1001
1010
1011

Non–Harvard

Processor 0
Processor 1
Processor 2
Processor 3

Processor 0 I–cache
Processor 0 D–cache
Processor 2 I–cache
Processor 2 D–cache

InterruptInterrupt Harvard

P0_IRL<3:0>
P1_IRL<3:0>*
P2_IRL<3:0>
P3_IRL<3:0>*

P0_IRL<3:0>
  –
P2_IRL<3:0>
  –

Connector

0

1

* this processor is only present if a dual–processor module is installed in the slot

MBus arbitration is fair among the modules, with DVMA at a fixed, higher priority than the module. The Galaxy

MBus does not support modules that use 64–byte or 128–byte transfers.  Wrapping is supported within read bursts.

The MBus retry acknowledge is never used, and MRDY* acknowledges always provide good data; this allows for

Viking, which uses data on the fly during cache fills.  The memory controller will allow MIH* from A+2 to A+8.

Coherent Invalidate operations are acknowledged by the memory controller at A+3.
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A.I.3 Memory Details

Galaxy has both on–board and off–board memory.  The memory is ECC protected with SEC/S4ED codes.   These

codes provide the same coverage that is achieved with SEC/DED, plus detection of 3– and 4–bit errors within a nibble.

Memory is accessed with 2–bank interleave; this makes the increment of upgrade 16 SIMMs, each 9 bits wide.

1MBx9, 4MBx9, and 16MBx9 80 nS fast page–mode commercial SIMMs are supported.   All SIMMs in a row of 16

must be of the same type; thus each row can be 16 MB, 64 MB, or (far future) 256 MB. The expansion cards also has

support for double–sided 8MBx9 SIMMs, and for 100 nS fast page–mode parts (for upgrades only).

The on–board configuration consists of two rows of 16 SIMMs each.  The rows are based a 0x0 and 0x10000000

(256 MB boundaries).  If SIMMs smaller than 16 MB are used, addresses will mirror within the 256 MB row.  Off–

board memory starts at 0x4000000 (1 GB) and is accessed and distributed in the same way.

Up to two memory expansion cards are supported.  Each card has 64 SIMM sockets in four groups of 16.  The first

memory card contains rows of 256 MB of space starting at 0x40000000, 0x50000000, 0x60000000, and 0x70000000.

The second card contains rows of 256 MB of space starting at 0x80000000, 0x90000000, 0xA0000000, and

0xB0000000. Either or both cards can be installed.  The memory system requires use of a Sun Moonshine+ backplane

interconnect; however the memory interface is not Moonshine+, but rather is special to Galaxy.

Each row of memory can be probed with write/write/read patterns at  a 16–byte interval to determine if memory is

installed in that row, and write/write/read on power–of–2 boundaries to see how much is there (by checking mirroring).

A.I.3.1 ECC Memory Enable Register Difference from Sun–4M (32–bit access): (PA = 0xF00000000)

31 012

rsvd EEEI

28 27 24 23

IMPL VER

10 9 8

rsvdREU

Field Description Type

EE
EI

REU

IMPL
VER

Enables ECC checking.   Generation is always enabled. [1]
Enables Interrupt on correctable error.  When ’0’ a CE will
 still be captured in the fault registers, but no interrupt will
 be generated.  [1]
Memory Refresh Enable: a ’1’ enables refresh for the second row
  of on–board memory
Identifies the Sun Implementation of this memory controller = 0x0
Version: Identifies the revision of this design = 0x0

RW
RW

RW

R
R

[1] clears to 0 on power–on reset.

If only one row is installed on the motherboard, performance can be improved by shutting off refresh to the

(empty) second row.  This is accomplished through bit<8> of the ECC Enable Register (5.5.2), which is a special func-

tion implemented on Galaxy.  The bit is called REU (Refresh Enable Upper).  When the bit is ’1’ all onboard memory

receives refresh, when it is ’0’ only the first row receives refresh.  This function is independent of off–board memory.

This bit must be set to ’1’ if the second row is installed.

A.I.3.2 SBus Slot Configuration Register Option: (Section 5.9)

SEGA<35:32> are hardwired to 0x0.
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A.I.4 I/O Details and Options Supported

Galaxy supports an on–board LANCE Ethernet that accesses a local 128 KB buffer, and cannot DMA into system

memory; this avoids Ethernet memory latency problems.  SCSI is supported with the Emulex ESP236.  There is no

on–board video or floppy support.  The diagnostic LED register supports 12 LED’s in bits <11:0>; bits <15:12> are

reserved.  Galaxy supports 512 KB or 1MB of EPROM.

A.I.5 Implementation ID numbers:

(5.5.1) ECC IMPL = 0x0, ECC VER = 0x0  

(5.6.1) VME IMPL = 0x0

(7.2.4) IOMMU IMPL = 0x0, VER = 0x1 (VER = 0x0 for obsolete prototypes)

(9.2.1) Machine Type = 0x71

SCSI/Ethernet TYPE = 0x4

A.I.6 SCSI/Ethernet Interface Details

The Galaxy SCSI/Ethernet interface is implemented with the ESC SBus device.  This chip provides interface to an

Emulex ESP–236 SCSI controller and a LANCE Ethernet.  The SCSI device is a DVMA master.  The LANCE has a

private 128KB buffer memory, and DMA’s into that; the processor must transfer data to/from main memory and the

buffer.  This is done to prevent Ethernet dropped packets due to high memory latency.

A.I.6.1 Emulex ESP236 SCSI Port

A.I.6.1.1 SCSI Port Address Map

REGISTER TYPE

ESP
registers

Gate array
registers

(8–bit)

(32–bit)

Transfer Count Low                
Transfer Count High
FIFO Data
Command
Status/Bus ID
Interrupt Status/Timeout
Sequence Step/Synch transfer period
FIFO Flags/Synch. offset
Configuration
Clock Conversion Factor
  Reserved (test)
Configuration #2
Configuration #3
  Reserved

SCSI DVMA Control Register
SCSI DVMA Address Register
SCSI DVMA Count Register
  Reserved

0xEF0080000   
0xEF0080004
0xEF0080008
0xEF008000C
0xEF0080010
0xEF0080014
0xEF0080018
0xEF008001C
0xEF0080020
0xEF0080024
0xEF0080028
0xEF008002C
0xEF0080030
0xEF0080034–
0xEF0080FFF

0xEF0081000
0xEF0081004
0xEF0081008
0xEF008100C –
0xEF0081FFF

RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W  
RW  
RW  
RW  
–

RW  
RW  
RW  
–  

ADDRESS

A.I.6.1.2 SCSI DVMA Address Register

BIT NAME TYPE MEANING

D<31:0> A<31:0> read–write Virtual address used in SCSI DVMA access;  bits
<31:24> are register, bits <23:0> are counter.
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A.I.6.1.3 SCSI DMA Count Register

BIT NAME TYPE MEANING

D<31:24>
D<23:0>

Reserved
COUNT

R
RW

Read as ’0’, writing has no effect                     
SCSI DMA transfer count

A.I.6.1.4 SCSI Control Register

BIT NAME TYPE MEANING

*MUST match direction of SCSI transfer.  1 = to memory, 0 = from memory
**Writing a 0 has no effect.

D<0>  
D<1>
D<2>
D<3>
D<4>
D<5>
D<6>

D<7>
D<8>
D<9>
D<10>
D<11>
D<12>
D<13>
D<14>

D<15>
D<16>
D<17>
D<18>
D<27:19>
D<31:28>

SCSI_INT   
ERR_INT
BUF0
BUF1
EN_INT
FLUSH
SLAVE_ERR

RESET
WRITE
EN_DMA
REQ_PEND
BSIZE
TCZRO
EN_TCI
INT_PEND

PEN
PERR
DRAIN
EN_AD
rsvd
ID

R   
R
R
R
RW
W**
R

RW
RW
RW
R
RW
R
RW
R

RW
R
W**
RW
R
R

ESP Interrupt is asserted   
SCSI DVMA received an SBus ERR ack; clears on FLUSH
Buffer 0 has data (diagnostic)
Buffer 1 has data (diagnostic)
Enable INT_PEND to issue an interrupt to the system
Resets DVMA state machines.  Do not assert if EN_DMA
Slave access SIZE error, or access to ESP while RESET is asserted.
Clears on read.
’1’ = reset ESP and interface, ’0’ = normal ops.
Direction of DVMA transfer *
Allow DMA between ESP and interface
Do not assert FLUSH or RESET while this is ’1’
DVMA burst size: 0 = 32 byte, 1 = 16 byte
Transfer count has expired; clears on load of counter.
Enable interrupt upon terminal transfer count
Interrupt summary: SCSI_INT or ERR_INT or (TC0 and EN_TCI)
or PERR
Enables SBus parity generation/checking
Parity Error; st if PEN=1 and parity error; clear on FLUSH
Drains buffers to memory; poll BUF<1:0> for completion
Enables the Auto–Drain feature
  Reserved, read as ’0’
Interface Type = 0x4

post
RST

0   
0
0
0
0
0
0

1
0
0
0
0
0
0
0

0
0
0
0
0
0x4

Refer to the ESP–200 data sheet and the ESP–236 addendum for further details; also see the Galaxy Etherent/SCSI

Controller (ESC) ASIC spec, Sun P/N 950–1378–01, for a full programmer’s model.

A.I.6.2 LANCE Ethernet

PA<35:00> REGISTER SIZE TYPE

Register Data Port
Register Address Port

RW
RW

AMD ETHERNET INTERFACE

LANCE buffer memory 1, 2, 4, 8, 32–byte RW

2–byte
2–byte

0xEF0040000 –  
0xEF005FFFF
0xEF0060000
0xEF0060002

The LANCE is able to DMA to/from the buffer memory only; it cannot DVMA to/from system memory.  128 KB

of buffer memory are provided.  Address bits above the 128 KB range are not decoded.  Processor access to the buffer

memory includes support for use of the processor bcopy hardware, which transfers blocks of 32 bytes.

Addresses in the range PA<35:28> = 0xEF that are not specified either here or in section A.I.6.2 are reserved.  See

the AM7990 LANCE data sheet for additional information.
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A.I.7 Bugs/Features

VME LOCK:  If an IU issues a ldstub or swap to VME space, and the read portion receives either a BE or TO error

(reported in the module SFSR/SFAR), the VMEbus will remain locked.  Unlocking it requires a read of the VFSR,

discarding the data read.  Since it is not clear that this (atomic) event occurred, the VFSR should be read after any read

with BE or TO that is mapped to VME space.

MID Register:  A bug in the first implementation of the MID register makes this function unusable in this system.

The description of the MID Register in section 5.4.3 describes general workarounds for this bug.

A.I.8 Board Partition

There are 6 ASICs in the Galaxy design.  The MSI (MBus/SBus Interface) implements the M–to–S and S–to–M

functions, including the IOMMU, write buffers in both directions, the SBus arbiter, and the MBus arbiter.  The M–to–S

asynchronous error registers and the arbiter enable register reside in this chip, along with all SBus–related and IOMMU

related registers.  The MSI is also intended for use in Campus2.

The MMC (Main Memory Controller) interfaces the MBus to main memory both on– and off–board.  It contains

ping–pong write buffers, ECC generation and check logic, and the ECC error registers.  It also generates the controls to

the memory system.  The MUX ASIC provides 2–bank interleave access  and address buffering for the memory system

in 9–bit slices; it is used both on–board and on the memory expansion board.

The SEC (SBus/EBus Controller) implements the Sun–4M multiprocessor interrupt logic, and interfaces the sys-

tem to the 8–bit slave I/O on the E–bus (’E’ stands for ’Eight–bit’.  Well, what did you expect?).   The SEC is accessed

through the SBus, although it is not an SBus device.  The SEC uses a special multiplexed mode to receive address

information from the MSI on the S_D bus, and does not connect to the S_A bus.  It also contains the system status and

control register.  The SEC is also intended for use in Campus2; some pins that are not used on Campus2 (VME inter-

rupts, P2_IRL and P3_IRL) are remapped via the C2_MODE pin into interface to a floppy controller, a video control-

ler, and a generic 8–bit slave device.

The ESC (Ethernet and SCSI Controller) is an SBus device that interfaces the SBus to an on–board LANCE Ether-

net  with local buffer memory, and to an Emulex ESP236 SCSI interface.  This same ASIC can be used on an SBus

expansion card.  It supports parity on the SCSI/SBus function for use on Sundragon.

The VIC (VMEbus and I/O cache Controller) provides both master and slave interface to a VMEbus.  The slave

port supports up to 8MB of VME address space, and has an I/O cache for accelerating sequential activity.  As a VME

slave the VIC behaves as a normal SBus DVMA master.  The VME master port is accessed over the SBus using the

same special multiplexing as the SEC uses.  It also receives some additional non–SBus information such as LOCK.

A.I.9 Official Product Designations

The CPU board by itself is called the Sun 4600MP CPU Board.  The products based on this board are known collec-

tively as the SPARCsystem 600MP Series.  The word ’system’ is replaced with ’station’ or ’server’ depending upon

configuration.  Different package designators make the specific systems the 630MP, the 670MP, and the 690MP.
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A.II: System Specific Information: Campus–2

This appendix is based on the Campus–2 Programmer’s model version 1.02, the Campus–2 Theory of Operations

(DRAFT) version 0.4, The Campus–II DMA2 Chip Specification version 6.0, the Campus–II Video Interface System

Specification version 1.0 (6/25/90), and inummerable conversations with members of the Campus–2 design and oper-

ating system groups.

Details in this appendix are subject to change.  For up–to–date information contact the Campus–2 product team.

People with Need–to–Know can obtain copies of the relevant specifications from Janice Bater (janiceb@Eng), sub-

ject to approval by project management.

Campus–2 is a single–board, high performance SUN workstation that supports up to four level–2 MBus processors

on 2 MBus module connectors.  Modules planned include Ross 6002,Viking/NE, and Viking/E$ on a Sun MBus.  All

processor modules installed must be of the same type.

– ’Pizza box’ form factor

– MBus running at 40 MHz, with two sockets.  Each socket has support for a module containing one or

two logical ’processor modules’.

– SBus interface at 20 MHz to low–cost graphics and peripheral devices

– 4 SBus expansion slots

– On–board memory of 1–8 SIMMS, ECC protected, interleaved, using 80 ns fast page–mode SIMMS of

1 or 4 MBit DRAM (support is included for future 16Mb parts also).  Up to 512MB on–board with 64MB SIMMs.

These SIMM’s are custom to the Campus–2 project.

– Optional Video SIMMs (VSIMM’s) supported for low–cost frame buffer in memory space

– LANCE Ethernet

– Emulex ESP100A SCSI interface 

– On–board Dual Basic Rate ISDN (DBRI) interface

– ’Sunness’; TOD/NVRAM, EPROM, keyboard/mouse, counter/timers.

– 2 standard 25–pin serial ports, synchronous–capable, in a single DB25 connector

– Campus–1 style audio interface

– Board Scan JTAG interface for manufacturing and field diagnosis for some ASICs

– Type–5 Sun Keyboard

– A future version of this machine (Campus–2+) will incorporate integrated SPAM graphics.  That ver-

sion will be described in another appendix when the details are firm.
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A.II: System Specific Information: Campus–2

A.II.0: Campus–2 Block Diagram

MODULE
#0 #1
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X
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A.II.1 SBus Details

Campus–2 supports 4 SBus slots, numbered 0–3; each has the capability of being both a master and a slave.  SBus

dynamic sizing is supported for IU–initiated accesses.  Slot configuration will allow for unsupported bursts to be con-

verted to sequential 32–bit accesses only; those accesses can each dynamic size.  The SBus supports up to 32–byte

bursts for DVMA to/from memory and from the MBus.  DVMA from SBus to SBus supports all burst sizes.

There are also two devices attached to one on–board ’slot’ at SBus slot 0xF, which contains a SCSI/Ethernet/Paral-

lel port device and a Dual Basic Rate ISDN (DBRI) device respectively.  Note that the Arbiter Enable register bit <20>

enables arbitration for the SCSI/Ethernet/Parallel Port device, while there is no way to disable arbitration for the DBRI

device.

SBus arbitration is fair per slot request; the requesters are slots<3:0>, on–board SCSI/Ethernet/Parallel Port, and

the DBRI Codec.  The SBus interconnect is also used to talk to the E–bus controller; this usage is not according to

standard SBus protocols, but such usage is invisible to other devices on the bus.

DVMA coherence is supported on partial writes by the S–to–M interface, which allocates the line, merges in new

data, and writes back to memory.  This is not highly efficient; 32–byte burst devices are recommended for high band-

width DVMA.

The M–to–S interface keeps track of reruns; if an SBus slave issues a rerun (which may be a stateful disconnect)

the MSI tags that slave with the MID and a ’busy’ bit; no other master is allowed to connect to the slave until the discon-

nected cycle is satisfied.  If any SBus master is rerun from an SBus slave, that status is similarly recorded, but multiple

SBus masters are not protected from each other if both are accessing the same slave device.  Caveat Emptor.

 SBus DVMA can access SBus slaves or main memory.

A.II.2 MBus Details

Two MBus connectors are supported.  Each has support for up to two MBus masters.  Each connector can have a

single–processor module, a dual–processor module, or one harvard–architecture module in it.  The mappings to con-

nector, MID, and IRL are as follows:

MID<3:0>

1000
1001
1010
1011

Non–Harvard

Processor 0
Processor 1
Processor 2
Processor 3

Processor 0 I–cache
Processor 0 D–cache
Processor 2 I–cache
Processor 2 D–cache

InterruptInterrupt Harvard

P0_IRL<3:0>
P1_IRL<3:0>*
P2_IRL<3:0>
P3_IRL<3:0>*

P0_IRL<3:0>
  –
P2_IRL<3:0>
  –

Connector

0

1

* this processor is only present if a dual–processor module is installed in the slot

MBus arbitration is fair among the modules, with DVMA at a fixed, higher priority than the module. The Cam-

pus–2 MBus does support modules that use 64–byte or 128–byte transfers to memory but not to the SBus. Sun currently

has no plans for modules that issue accesses larger than 32 bytes. Wrapping is supported within read bursts.

The MBus retry acknowledge is never used, and MRDY* acknowledges always provide good data; this allows for

Viking, which uses data on the fly during cache fills. The window for MIH* is programmable up to A+14, but anything

that requires MIH* later than A+8 will slow down general memory performance.  The memory controller will pro-

grammably acknowledge a CI at A+2 to A+9, or will ignore them if a coherent interconnect is plugged in and has taken

ownership of CI acknowledge.
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A.II.3 Memory Details

Campus–2 supports on–board memory only.  The memory is ECC protected with 8–byte SEC/S4ED codes.   These

codes provide the same coverage that is achieved with SEC/DED, plus detection of 3– and 4–bit errors within a nibble.

Memory is implemented with custom SIMM’s that provide a 144–bit data path (16 bytes plus 16 check bits).  The

increment of upgrade is one SIMM.  SIMM sizes are 16MB (1 M x 16 byte), and (future, possibly at FCS) 64 MB (4M x

16 bytes).  SIMMS of different types can be mixed in a system.  Some SIMM sockets may contain a VRAM SIMM

frame buffer instead of DRAM.

The memory configuration consists of 8 SIMMs.  The sockets are at 64MB boundaries, so  memory must be probed

on 64MB boundaries.  If SIMMs smaller than 64 MB are used, addresses will mirror within the 64MB slot space.

If any SIMM sockets are not populated, performance can be improved by shutting off refresh to the empty rows.

This is accomplished through bits<9:2> of the ECC Enable Register (section 5.5.2), which is a special function imple-

mented on Campus–2.  The bits are called MRR<7:0> (Memory Row Refresh).  When the bits are ’1’ the correspond-

ing socket receives refresh, when they are ’0’ it does not receive refresh.

The following algorithm is provided by the Campus–2 team for identifying VRAM and DRAM configurations:

The following transfer sequence is an example of identifying the SIMM in SLOT  #7 after system reset. This algorithm

can be repeated for each inserted SIMM  by adjusting the slot specific VCONFIG value and the memory transfer ad-

dresses  a[28:26] = logical slot number:

Note that physical row number does not correspond to logical row number.  Physical sockets 0–1–2–3–4–5–6–7

correspond to logical address spaces 0–4–1–5–2–6–3–7.  Physical slots 1 and 3 can contain either a DRAM SIMM or a

VRAM SIMM.  The VRAM SIMM has no ECC, and provides a frame buffer in main memory space.  Slots that have a

VSIMM installed should have refresh disabled in the MRR field.  Physical slots 5 and 7 also support VSIMMs but have

no video extension socket.
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A.II.4 Implementation–Specific Registers and Bits in Sun–4M Registers

A.II.4.1 Additional Fields in Sun–4M Registers

A.II.4.1.1 ECC Memory Enable Register (32–bit access): (PA = 0xF00000000)

31 012

rsvd EEEI

28 27 24 23

IMPL VER

10 91112

MRR<7:0>ADCI

Field Description Type

EE
EI

MRR<7:0>

A
DCI
IMPL
VER
rsvd

Enables ECC checking.   Generation is always enabled. [1]
Enables Interrupt on correctable error.  When ’0’ a CE will
 still be captured in the fault registers, but no interrupt will
 be generated.  [1]
Memory Refresh Enable: a ’1’ enables refresh for the corresponding row of
DRAM (logical socket number)
Reads as ’0’ for this implementation
Disables Coherent Invalidate ACK; set to ’0’ for normal operation
Identifies the Sun Implementation of this memory controller = 0x1
Version: Identifies the revision of this design = 0x0
Reads as 0’s, writing has no effect.

RW
RW

RW

R
RW
R
R
R

[1] clears to 0 on power–on reset.

A.II.4.1.2 ECC Fault Status Register Differences  (PA = 0xF00000008)

A.II.4.1.3 ECC Diagnostic Register (PA = 0xF00000018)

A.II.4.1.4 Diagnostic Message–Passing Registers  (PA = 0xF00001000 – 0xF00001003)

Campus–2 does not provide these registers.

A.II.4.1.5 AUXIO 0 Register  (PA = 0xFF1800000)

Campus–2 defines the following additional bits:

Bit <4>: E: Edgeon, ro.  When ’1’, indicates that a manufacturing test jumper block is installed; should 

be removed for shipped products.

Bit <3>: S: SCCB–IMUX, wo.  When ’0’ serial port B recieves data from the REC_DATA_B pin on the

serial port connector; when ’1’ serial port B receives the differential MIDI data from the

Audio/AUI connector.

Bit <0>: L: LED_ON, wo.  Campus–2 uses this single LED instead of the LED register.

Important note about this register:  AUXIO–0 is shared between the floppy, LED, and serial–port driv-

ers.  Since there are shared functions and write–only bits, this register must be shadowed in software and the shadow

copy must be made both interrupt– and MP–safe.
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A.II.4.1.6 AUXIO 1 Register (Power Control Register):  (PA = 0xFF1A01000)

7 0

1

6 5 4 3 2 1

1 D I 0 0 C F

Field Description Type

D

I

C

F

Power Fail detect.  When ’1’, a power failure has been detected. 
   Assertion of this bit causes a module_error broadcast interrupt
   to be sent to all processors.  Resets to ’0’.
Keyboard Power–on Interrupt.  When ’1’ indicates that the key–
  board device has sent a power–on request, and a SBus–L7 inter–
  rupt is asserted (SPARC IRL13).
Inhibit Kbd Power–on Interrupt.  When ’1’, enables bit I to assert
   and to cause an interrupt.  Writes to this register with this bit’0’
   will clear/hold bit I at ’0’.
Power Off.  Writes with this bit ’1’ turns off power to the system

R

R

S

W

Bit ’I’ gets set if the type–5 keyboard power–on button is pressed while the system is powered up, if bit ’C’ = ’1’.

The action to be taken in this case is TBD, probably to issue a soft power–down after verification.

A.II.4.1.6 SBus Slot Configuration Register Option: (Section 5.9)

SEGA<35:32> are hardwired to 0x0.

A.II.4.2 Additional Implementation–Specific Registers in this Memory Control Space

A.II.4.2.1 Memory Delay Register (32–bit RW Access):  (PA = 0xF00000004)

31 0910

CI RRIMI

30 20 16 15

RSC MDL

1213212526

GAD MDH

Field Description Type

RSC
GAD<4:0>

MDH<4:0>
MDL<4:0>
CI<2:0>

MI<2:0>
RRI

Refresh load control; normally set to ’1’, exists for diagnostics.
Graphics Arbitration Delay:  when ’0’ buffered MBus transactions 
always win.  
MBus master (0xF–8) arbitration delay from graphics  
MBus master (7–0) arbitration delay from graphics  
Coherent Invalidate Delay: number of clocks after A+2 that the memory
controller will ACK a Coherent Invalidate cycle.
MIH Delay:  Cycle after A+7 that first MRDY* is issued.
Refresh Request Interval: number of clocks between refresh requests to
different rows.  Default value is 0x20.

W
RW

RW
RW
RW

RW
RW

The default value to put into this register for Campus–2 with either the Ross605/64K (B.II) or the Viking/NE (B.I)

is 0x00002095. With the Viking/E$ module (B.III) the value should be 0x00002895. 

     GAD<4:0>, MDH<2:0>, and MDL<2:0> are not used in this version of Campus–2.
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A.II.4.2.2 Video Configuration Register (32–bit RW Access):  (PA = 0xF0000000C)

31 07816 15

rsvd rsvdVCONFIG<7:0>

Field Description Type

VCONFIG<1:0>
VCONFIG<3:2>
VCONFIG<5:4>
VCONFIG<7:6>

RW
RW
RW
RW

VIDCONF<4><1:0>:  Control bits for the SIMM in logical slot 4
VIDCONF<5><1:0>:  Control bits for the SIMM in logical slot 5
Control bits for the SIMM in logical slot 6 (Not supported in C2)
Control bits for the SIMM in logical slot 7 (Not supported in C2)

VIDCONF<x><1:0> Description Page

 – 
4K
8K
16K

00
01
10
11

DRAM or Empty slot                                                   
128–bit 2MB frame buffer
128–bit 4MB frame buffer
256–bit 8/16MB frame buffer

The VCR is used to configure the EMC to properly manipulate the address of frame buffer accesses.  It is used in

the probe algorithm as described in section A.II.3, and should be set to the correct value for all slots when configuration

is complete.  Since logical slots 6 and 7 do not support VSIMMs in this machine the bits VCONFIG<7:4> should al-

ways be ’00’.

SIMM sockets 6 and 7 support SIMMs that implement the VSIMM protocol but do not have support for connection

to an external video connector.  Currently there are no plans for special SIMMs that take advantage of this feature.

A.II.4.2.3 Video Controller (MDI) Register Addressing

If a VSIMM is installed then the address space for that slot is mapped to the control and access of a frame buffer

implemented with an MDI (Memory Display Interface).  The MDI is a video display controller with up to three 24–bit

color look–up tables (CLUT’s), hardware cursor support, transparent overlay with bleeding, and fully programmatic

monitor timing.  The MDI will process 8–bit greyscale, 8–bit pseudo–color, 16–bit (8+8) and 32–bit pixels.

MDI is designed to support 76 Hz non–interlaced video.  A 4 MB VSIMM will support 1152x900 pixels with

32–bit true color; the same resolution will be supported at 84 Hz.  An 8 MB VSIMM will support either 1280x1024 or

1600x1280 pixels at 76 Hz.

Details of the MDI functionality, registers, and addressing can be found in Campus–II Video Interface Specifica-

tion version 1.0.  The UART function described in that specification is not implemented.  The initial implementation of

the MDI has the Revison Status Register = 0x00: Major Revision 0x0, Implementation = 0x0 (2 CLUT’s, Double

CLUT RAM mapping).  See that specification for further information.

VSIMM Base Address

SIMM 4
SIMM 5
SIMM 6 
SIMM 7 

0x010000000
0x014000000
0x018000000
0x01C000000

Control Space Base Address

0x090000000
0x094000000
0x098000000
0x09C000000

Not a video SIMM, but this slot support non–DRAM special SIMMS (future)
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A.II.4.3 System–Specific Interrupt Sources

Source SIPR Bit (5.7.3.1) SPARC IRL

Video SIMM (MDI)              
Parallel Port
DBRI
Keyboard Power–on Request
Power–fail detect (AUXIO–1)

Bit <20>:  VI
Bit <8>:   SBus 2
Bit <11>:  SBus 5
Bit <13>:  SBus 7
Bit <30>:  ME

8 
3
9
13
15

A.II.5 Implementation ID numbers:

(5.5.1) ECC IMPL = 0x1, ECC VER = 0x0 (Campus–2 EMC)

(5.6.1) VME IMPL = N/A

(7.2.4) IOMMU IMPL = 0x0, VER = 0x0 (MSI)

(9.2.1) Machine Type = 0x72

SCSI/Ethernet TYPE = 0xA (Campus–2 DMA2)

A.II.6 I/O and DVMA Details

A.II.6.1 I/O Details and Options Supported

Campus–2 supports an on–board LANCE Ethernet, Emulex ESP–100A (NCR 53C90A) SCSI, and a parallel port,

all through an SBus ASIC called S4–DMA2.  There is also a DBRI (Dual Basic Rate ISDN) interface supported as an

SBus device.  There is support for on–board floppy with an 82077 controller and AUXIO–0.  The diagnostic LED

register is not supported; instead a single LED is driven via the AUXIO–0 register.  Video frame buffers are supported

in the memory space with an MDI.

There is no support for a VMEbus interface or I/O cache. Campus–2 supports 512KB of EPROM. A power control

interface is supported through AUXIO–1.  A MIDI port is supported through the use of Serial Port B when AUXIO–0

bit<3> is ’1’.

Note that the ISDN audio device (See section 9.4) will be deleted for FCS if the DBRI is functional; will be decided

prior to FCS.

A.II.6.1 LANCE Ethernet

A.II.6.1.1 Ethernet Port Address Map

PA<35:00> REGISTER SIZE TYPE

2–byte
2–byte

4–byte
4–byte
4–byte
4–byte

0xEF00C0000
0xEF00C0002

0xEF0400010 
0xEF0400014 
0xEF0400018 
0xEF040001C 

LANCE Register Data Port  
LANCE Register Address Port

Ethernet Control/Status Register 
Ethernet Test Control/Status Register
Ethernet Cache Valid Bits
Ethernet Base Address Register

RW  
RW

RW
RW
RW
RW

Note: this page is shared with the SCSI port control access.

  See the AM7990 LANCE data sheet for additional information.
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A.II.6.1.2 Ethernet Control/Status Register

BIT NAME TYPE MEANING

D<0>  
D<1>

D<3:2>
D<4>
D<5>
D<6>
D<7>
D<9:8>
D<10>
D<11>
D<12>
D<14:13>
D<15>
D<16>
D<17>
D<19:18>
D<20>
D<21>
D<22>
D<27:23>
D<31:28>

E_INT   
ERR_INT

E_DRAINING
EN_INT
E_INVAL
SLAVE_ERR
RESET

DRAIN
DIS_W_DRAIN
DIS_R_DRAIN

ILACC
DIS_BUF_WRT
DIS_W_INVAL
BURST_SIZE
ALE/AS_
LOOP_TEST
TP_AUI

ID

R   
R

R
RW
W
RW1
RW
R
RW
RW
RW
R
RW
RW
RW
RW
RW
RW
RW
R
R

LANCE Interrupt is asserted   
LANCE DVMA received an SBus ERR ack; clears on 
   E_INVAL or E_RESET write with ’1’
’11’ if E–cache draining, else ’00’
Enables E_INT and ERR_INT to cause system Enet Int.
Marks all of E–cache as invalid.  Reads as ’0’
Indicates wrong–sized access to LANCE.  Write ’1’ to clear
When set, invalidates E–cache and resets LANCE
  rsvd
Forces drain of E–cache, clears when done
Disables drain of E–cache on LANCE descriptor writes
Disables drain of E–cache on LANCE slave reads
   rsvd
modifies LANCE access timing
Disables buffering of slave writes to LANCE
Disables E–cache invalidates upon LANCE slave writes
set to 0x1 for use in Campus–2
1 = ALE, 0 = AS*; must match LANCE config
Enables Ethernet loopback test
With LOOP_TEST = 0, defines TP or AUI interface
   rsvd
Device ID = 0xA

A.II.6.1.3 Ethernet Test Control/Status Register and Ethernet Cache Valid Bits Register

These registers are provided for diagnostic purposes; for details see the DMA2 specification.

A.II.6.1.4 Ethernet Base Address Register

Bits <7:0> of this register provide bits <31:24> of the DVMA virtual address used by the LANCE; these bits are

concatenated with the 24–bit address provided by the LANCE.

A.II.6.2 Emulex ESP100A (NCR 53C90A) or FAS100A SCSI Port

A.II.6.2.1 SCSI Port Address Map

REGISTER TYPE

ESP
registers

Gate array
registers

(8–bit)

(32–bit)

Transfer Count Low                
Transfer Count High
FIFO Data
Command
Status/Bus ID
Interrupt Status/Timeout
Sequence Step/Synch transfer period
FIFO Flags/Synch. offset
Configuration
Clock Conversion Factor
  Reserved (test)
Configuration #2
Configuration #3 (FAS100A only)
  Reserved

SCSI DVMA Control/Status Register
SCSI DVMA Address Register
SCSI DVMA Byte Count Register
SCSI Test Control/Status Regsiter

0xEF8000000   
0xEF8000004
0xEF8000008
0xEF800000C
0xEF8000010
0xEF8000014
0xEF8000018
0xEF800001C
0xEF8000020
0xEF8000024
0xEF8000028
0xEF800002C
0xEF8000030
0xEF8000034–
0xEF8000FFF
0xEF400000 
0xEF400004 
0xEF400008 
0xEF40000C 

RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W  
RW  
RW  
RW  
–

RW  
RW  
RW  
–

ADDRESS
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Note: this page is shared with the Ethernet port control access.

Refer to the ESP–100A (NCR53C90A) data sheet and the Campus–II DMA2 Chip Specification, Sun P/N

950–xxxx–xx, for a full programmer’s model.  To determine if this is an ESP100A or a FAS100A do the following

probe:  (1) reset the SCSI chip via the SCSI Control/Status Register.  (2) configure this device to be target 7.  (3) At-

tempt a RESELECT3 command to target 7.  If this is an ESP100A the chip will issue an Illegal_Command interrupt; if

it is a FAS100A it will eventually issue a Timeout interrupt.

A.II.6.2.2 SCSI Control Register

BIT NAME TYPE MEANING

D<0>  
D<1>

D<3:2>
D<4>
D<5>
D<6>
D<7>
D<8>
D<9>
D<12:10>
D<13>
D<14>>
D<15>
D<16>
D<17>
D<19:18>
D<20>
D<22:21>
D<23>
D<24>
D<25>

D<26>
D<27>
D<31:28>

D_INT   
ERR_INT

D_DRAINING
EN_INT
D_INVAL
SLAVE_ERR
RESET
WRITE
EN_DMA

D_EN_CNT
D_TC

DIS_CSR_DRN
DIS_ESP_DRN
BURST_SIZE
D_DIAG
SPEED
D_TCI_DIS
D_EN_NEXT
D_DMA_ON

D_A_LOADED
D_NA_LOADED
ID

R   
R

R
RW
W
RW1
RW
RW
RW
R
RW
RW1
R
RW
RW
RW
RW
RW
RW
RW
R

R
R
R

ESP Interrupt asserted, or (TC = 1 and D_TCI_DIS = 0)
ESP DVMA received an SBus ERR ack; clears on 
   E_INVAL or D_RESET write with ’1’
’11’ if D–FIFO draining, else ’00’
Enables D_INT and ERR_INT to cause system Enet Int.
Marks all of D–FIFO as invalid.  Reads as ’0’
Indicates wrong–sized access to SCSI reg’s.  W/’1’ to clear
When set, invalidates D–FIFO and resets ESP
DMA direction for ESP DVMA; 1 = to memory
Enables DMA requests from ESP if other conditions allow
  rsvd
Enables internal byte counter, to be decremented on xfers
Set when byte count expires.  W/1 to clear if D_EN_CNT=1
  rsvd
Disables drain of D–FIFO on writes to D–CSR
Disables drain of D–FIFO on writes to ESP registers
Set to 0x1 for use in campus–2
Disables drain/reset of D–FIFO on writes to D_ADDR
Set to 0x2 for Campus–2 or to 0x1 if FAS100A is used
Disables D_TC from generating an interupt
Enables next address/count autoload; requires D_EN_CNT=1
DMA2 can respond to ESP DMA; 
   D<9> & (D<26> or D<27>) & ~(D<1>)
D_ADDR written or NEXT_ADDR loaded into D_ADDR
NEXT_ADDR was written
Device ID = 0xA

Campus–2 uses a NCR53C90A/ESP100A; the FAS100A may be specified for the FCS version

A.II.6.2.3 SCSI DVMA Address Register

BIT NAME TYPE MEANING

D<31:0> A<31:0> read–write Virtual address used in SCSI DVMA access

If the D_EN_NEXT bit in the SCSI CSR is set then a write to the SCSI DVMA address register will write to the

NEXT_ADDRESS register instead.  If D_EN_NEXT is set when the byte count expires and the NEXT_ADDRESS has

been loaded since the last time this occurred, then NEXT_ADDRESS is copied into the address register.  See the

DMA2 spec for further details.

A.II.6.2.4 SCSI DMA Count Register

BIT NAME TYPE MEANING

D<31:24>
D<23:0>

Reserved
COUNT

R
RW

Read as ’0’, writing has no effect                     
SCSI DMA transfer count
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This counter is decremented each time a byte is transferred between the DMA2 and the ESP in a DMA cycle.

When the counter reaches ’0’ the D_TC bit in the SCSI CSR is set.  Loading with ’0’ causes the maximum transfer

(2**24 bytes).  If the D_EN_NEXT bit in the SCSI CSR is set then a write to the SCSI DMA count register will write to

the NEXT_COUNT register instead.  If D_EN_NEXT is set when the byte count expires and the NEXT_COUNT has

been loaded since the last time this occurred, then NEXT_COUNT is copied into the count register.  See the DMA2

spec for further details.

A.II.6.3 Parallel Port

The bidirectional 8–bit parallel port is a highly programmable interface that supports a wide variety of ’Centron-

ics’ interface specifications with a choice of DVMA or programmed I/O.  Both chained and unchained operations are

supported.  Another operating mode can be used to accelerate clearing of memory.  For a complete detailed progam-

mer’s models see the Campus–II DMA2 Chip Specification.

A.II.6.3.1 Parallel Port Address Map

PA<35:00> REGISTER SIZE TYPE

4–byte
4–byte
4–byte
4–byte
2–byte
2–byte
1–byte
1–byte
1–byte
1–byte
2–byte

0xEF4800000
0xEF4800004
0xEF4800008
0xEF480000C
0xEF4800010
0xEF4800012
0xEF4800014
0xEF4800015
0xEF4800016
0xEF4800017
0xEF4800018

PP DMA Control/Status Register
PP Address Register
PP Byte Count Register
PP Test Control/Status Register
PP Hardware Configuration Register
PP Operation Configuration Register
PP Parallel Data Register
PP Transfer Control Register
PP Control Output Register
PP Status Input Register
PP Interrupt Control Register

RW  
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

A.II.6.3.2 Parallel Port Control/Status Register

BIT NAME TYPE MEANING

D<0>  
D<1>

D<3:2>
D<4>
D<5>
D<6>
D<7>
D<8>
D<9>
D<12:10>
D<13>
D<14>>
D<17:15>
D<19:18>
D<20>
D<22:21>
D<23>
D<24>
D<25>
D<26>
D<27>
D<31:28>

P_INT   
ERR_INT

P_DRAINING
EN_INT
P_INVAL
SLAVE_ERR
RESET
WRITE
EN_DMA

P_EN_CNT
P_TC

BURST_SIZE
P_DIAG

P_TCI_DIS
P_EN_NEXT
P_DMA_ON
P_A_LOADED
P_NA_LOADED
ID

R   
R

R
RW
W
RW1
RW
RW
RW
R
RW
RW1
R
RW
RW
R
RW
RW
R
R
R
R

PP_DMA or PP Ctrl interrupt, or (TC=1 and P_TCI_DIS=0)
PP DVMA received an SBus ERR ack; clears on 
   E_INVAL or P_RESET write with ’1’
’11’ if P–FIFO draining, else ’00’
Enables P_INT and ERR_INT to cause system Enet Int.
Marks all of P–FIFO as invalid.  Reads as ’0’
Indicates wrong–sized access to SCSI reg’s.  W/’1’ to clear
When set, invalidates P–FIFO and resets ESP
DMA direction for PP DVMA; 1 = to memory
Enables DMA transfers to/from PP
  rsvd
Enables internal byte counter, to be decremented on xfers
Set when byte count expires.  W/1 to clear if P_EN_NEXT=1
  rsvd
Set to 0x1 for use in campus–2
Disables drain/reset of P–FIFO on writes to P_ADDR
  rsvd
Disables P_TC from generating an interupt
Enables next address/count autoload; requires P_EN_CNT=1
DMA is not disabled due to any hardware/software reason
Address and byte count are valid during chained transfer
NEXT_ADDR and NEXT_COUNT written but not used
Device ID = 0xA
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A.II.6.3.3 Parallel Port DVMA Address Register

BIT NAME TYPE MEANING

D<31:0> A<31:0> read–write Virtual address used in PP DVMA access

If the P_EN_NEXT bit in the PP CSR is set then a write to the PP DVMA address register will write to the

NEXT_ADDRESS register instead.  If P_EN_NEXT is set when the byte count expires and the NEXT_ADDRESS has

been loaded since the last time this occurred, then NEXT_ADDRESS is copied into the address register.  See the

DMA2 spec for further details.

A.II.6.3.4 Parallel Port DMA Byte Count Register

BIT NAME TYPE MEANING

D<31:24>
D<23:0>

Reserved
COUNT

R
RW

Read as ’0’, writing has no effect                     
PP DMA transfer count

This counter is decremented each time a byte is transferred between the DMA2 and the device connected to the

parallel port in a DMA cycle.  When the counter reaches ’0’ the P_TC bit in the PP CSR is set.  Loading with ’0’ causes

the maximum transfer (2**24 bytes).  If the P_EN_NEXT bit in the PP CSR is set then a write to the PP DMA count

register will write to the NEXT_COUNT register instead.  If P_EN_NEXT is set when the byte count expires and the

NEXT_COUNT has been loaded since the last time this occurred, then NEXT_COUNT is copied into the count regis-

ter.  See the DMA2 spec for further details.

A.II.6.3.5 Parallel Port Test Control/Status Register

Provided for diagnostic purposes; see the DMA2 specification.

A.II.6.3.6 Parallel Port Hardware Configuration Register

15 014 8

TEST

67

DSW rsvd DSS

Field Description Type

TEST
DSW
DSS

Allows buried registers to be accessed
Data strobe width, in SBus clocks
Data setup before data strobe, in SBus clocks

RW
RW
RW

A.II.6.3.7 Parallel Port Operation Configuration Register

15 014 8

MEM

67

rsvd

13 12 11 10 9 4 3 2

rsvdDATA DSEL BDS ADS DIAG BOP AOP SRST IDLE

Field Description Type

MEM
DATA
DSEL
BDS
ADS
DIAG
BOP
AOP
SRST
IDLE

Enable memory clear operation
Data sourced will be all 1’s or all 0’s
Enables data strobe to be bidirectional
Enables BUSY to be bidirectional
Enables ACKNOWLEDGE to be bidirectional
Enables diagnostic mode
BUSY operation 1 = use BSY
ACKNOWLEDGE operation; 1 = use ACK
Resets the parallel port; must be released by SW
Indicates that PP state machines are idle

RW
RW
RW
RW
RW
RW
RW
RW
RW
R
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A.II.6.3.8 Parallel Port Parallel Data Register

This 8–bit read/write register is used for programmed I/O when P_DMA_EN = 0; if the DIR bit of the Transfer

Control Register is ’0’ this register is written to send data, when it is ’1’ it is used to read the data latched with the last

data strobe.

Diagnostic loopback is possible by doing a single DMA cycle followed by a single PIO cycle.

A.II.6.3.9 Parallel Port Transfer Control Register

7 04 3 2 1

rsvd DIR BUSY ACK DS

Field Description Type

DIR
BUSY

ACK

DS

1 = write to external device, 0 = read from external device
Read shows value of busy pin; write with BDS = 1 and DIR = 1
  drives the value onto busy.
Read shows value of ack pin; write with ADS = 1 and DIR = 1
  drives the value onto ack.
Read shows value of data_strobe; write with DSEL = 0 or 
   (DSEL = 1 and DIR = 0) drives the value onto data_strobe

RW
RW

RW

RW

A.II.6.3.10 Parallel Port Control Output Register

7 03 2 1

rsvd INIT AFXN SLCT_IN

Field Description Type

INIT
AFXN
SLCT_IN

Initialize: driven onto the init pin
Auto Feed: driven onto the afxn pin
Select In: driven onto the slct_in pin

RW
RW
RW

A.II.6.3.11 Parallel Port Status Input Register

7 03 2 1

rsvd  PE SLCT ERR

Field Description Type

PE
SLCT
ERR

Paper Empty: reads the pe pin
Select: reads the slct pin
Error: reads the err pin

RW
RW
RW
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A.II.6.3.12 Parallel Port Interrupt Control Register (Interrupts on SBus L2)

15 014 8

DI

6713 12 11 10 9 4 3 2

AI BI PI SI EI DIE AIE BP SP

15

BIE PP PIE SIE EIP EIE

Field Description Type
DI
AI
BI
PI
SI
EI
DIE
AIE
BP
BIE
PP
PIE
SP
SIE
EP
EIE

Data Strobe Interrupt Pending; write ’1’ to clear
Acknowldege Interrupt Pending; write ’1’ to clear
Busy Interrupt Pending; write ’1’ to clear
Paper Empty Interrupt Pending; write ’1’ to clear
Select Interrupt Pending; write ’1’ to clear
Error Interrupt Pending; write ’1’ to clear
Enable DI on rising edge of data_strobe
Enable AI on rising edge of ack
Busy interrupt polarity; 1 = rising edge, 0 = falling edge
Enable BI on edge of busy selected by BP
Paper Empty polarity;  1 = rising edge, 0 = falling edge
Enable PI on edge of paper_empty selected by PP
Select interrupt polarity; 1 = rising edge, 0 = falling edge
Enable SI on edge of select selected by SP
Error interrupt polarity; 1 = rising edge, 0 = falling edge
Enable EI on edge of select selected by EP

RW1
RW1
RW1
RW1
RW1
RW1
RW
RW
RW
RW
RW
RW
RW
RW
RW
RW

A.II.6.4 DBRI Interface

A.II.6.4.1 DBRI Port Description

Campus–2 provides a Dual Basic–Rate ISDN (DBRI) interface.  This DVMA device resides on the SBus, and

shares the address space of the on–board slot with the DMA2 chip.  Connections for this interface are an ISDN Terminal

Endpoint (TE) and Network Termination (NT) plus a bus that uses the AT&T Concentration Highway Interface (CHI)

for communication with an external device.

TE and NT together provide a standard connection for an ISDN layer–1 4–wire interface.  The CHI interface al-

lows for connection to an external device; the planned device is a CODEC interface in a multimedia peripheral called

SpeakerBox.  CHI is accessed through the multi–function audio/AUI connector with a break–out pigtail cable.  It is

intended to connect to the Speakerbox project from the MMP group.

A.II.6.4.2 DBRI Port Address Map

PA<35:00> REGISTER SIZE TYPE

4–byte
4–byte
4–byte
4–byte
4–byte
4–byte

0xEF8010000
0xEF8010004
0xEF8010008
0xEF801000C
0xEF8010020
0xEF8010024

DBRI Control/Status Register (REG0)
DBRI Mode and Interrupt Reg (REG1)
DBRI Parallel I/O Register (REG2)
DBRI Test Mode Register (REG3)
DBRI Program Counter Reg (REG8)
DBRI Interrupt Queue Pointer Reg (REG9)

RW  
RW
RW
RW
RW
RW

A.II.7 Bugs/Features

MID Register:  A bug in the first implementation of the MID register makes this function unusable in this system.

The description of the MID Register in section 5.4.3 describes general workarounds for this bug.
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A.II.8 Board Partition

There are 7 ASICs in the Campus–2 design.  The MSI (MBus/SBus Interface) implements the M–to–S and S–

to–M functions, including the IOMMU, write buffers in both directions, the SBus arbiter, and the MBus arbiter.  The

M–to–S asynchronous error registers and the arbiter enable register reside in this chip, along with all SBus–related and

IOMMU related registers.  This chip was developed as part of Galaxy (A.I)

The EMC (ECC Memory Controller) interfaces the MBus to main memory.  It contains ping–pong write buffers,

ECC generation and check logic, and the ECC error registers.  It also generates the controls to the memory SIMM’s.

For VRAM SIMMs it provides the extra address controls and timing.

The SEC (SBus/EBus Controller) implements the Sun–4M multiprocessor interrupt logic, and interfaces the sys-

tem to the 8–bit slave I/O on the E–bus (’E’ stands for ’Eight–bit’.  Well, what did you expect?).   The SEC is accessed

through the SBus, although it is not an SBus device.  The SEC uses a special multiplexed mode to receive address

information from the MSI on the S_D bus, and does not connect to the S_A bus.  It also contains the system status and

control register.  The SEC was developed as part of the Galaxy program; some Galaxy pins that are not used on Cam-

pus2 (VME interrupts, P2_IRL and P3_IRL) are remapped via the C2_MODE pin into interface to a floppy controller,

a video controller, and a generic 8–bit slave device.

The DMA2 is an SBus device that interfaces the SBus to an on–board LANCE Ethernet, to an Emulex ESP100A

SCSI interface, and to a highly programmable parallel port..  This same ASIC can be used on an SBus expansion card.

The Campus–2 Clock chip generates system clocks for MBus, SBus, and the serial port devices; it also serves as

the board controller for JTAG scan testing.

MDI is a frame buffer controller that is used on the VRAM SIMM’s; it is described in A.II.4.2.3.

The VBC ASIC on the VRAM SIMM controls refresh of the VRAM.  It is not visible to software.

A.II.9 Official Product Designations

TBD.
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B.I: Module Notes: Viking/NE

Based on the Viking Microprocessor User Documentation, rev 2.00 11/01/90.  See that document for details.  

B.I.1 Module Overview

B.I.2 Cache Details

B.I.2.1 Instruction Cache Details

B.I.2.2 Data Cache Details

B.I.2.3 External Cache Details

B.I.3 Cache Coherence, Store Buffers, and Memory Models

B.I.3.1 Cache Coherence

B.I.3.2 Store Buffers

B.I.3.3 Memory Models

B.I.4 Module Registers: differences from core (section 4)

B.I.5 MMU Details

B.I.6 ASI’s Implemented

B.I.7 Module Control Space Address Map

B.I.8 IU PSR Number

B.I.9 Module–Specific Quirks
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B.I.1 Module Overview

The Viking/NE module consists of a chip developed jointly by Texas Instruments and Sun. The processor is a su-

perscalar SPARC processor and cache system.  The module contains the Viking chip (TMS390Z50) with internal IU,

floating–point, I– and D–caches, and MMU.  The module runs synchronous with the 40 MHz MBus clock.

A physical Viking/NE module could have one or two Viking/NE logical modules on it.  Both uni– and dual–pro-

cessor modules may be built.  (Official name(s) TBD).

A similar module with an External Cache (E–$) consists of a Viking chip plus an external cache controller MXCC

and 8 pipelined 128K x 9 SRAM chips (some versions may use 128K x8).   That module is called Viking/E$, and it is

defined in appendix B.III.  The module type is identified by examining bit 11 of the Module Control Register (MCR).

If the bit is ’1’ then this is the correct model; if the bit is a ’0’ then the Viking/E$ appendix applies.

The module in appendix B.III will be considered the standard module; wherever possible this appendix will identi-

fy differences in Viking/NE.

B.I.2 Cache Details

The Viking/NE system utilizes a Harvard architecture with a 20KB physical–address set–associative cache for

instruction access, and a 16KB physical–address set–associative cache for data access.  The caches participate in the

MBus level–2 coherence protocols.  Snooping is implemented via the D–$ and E–$ directories.  The  data cache can be

pin–programmed to be either a write–through cache with a no–write–allocate policy or a copy–back cache with write–

allocate.  The latter is required for Viking/NE.

D–CACHEI–CACHE

20 KB,
5–WAY SET ASSOCIATIVE 
64 SETS
64–BYTE BLOCK SIZE
32–BYTE SUB–BLOCK SIZE
PHYSICALLY ADDRESSED

16 KB 
COPY–BACK  WITH
   WRITE ALLOCATE
4–WAY SET ASSOCIATIVE 
64 SETS
32–BYTE BLOCK SIZE
PHYSICALLY ADDRESSED

MMU

64 TLB ENTRIES
FULLY ASSOC.

VIKING

MBus

B.I.2.1 Instruction Cache Details

The I–cache is 5–way set associative.  It consists of 64 sets with a block–size of 64 bytes, and each block is divided

into two sub–blocks of 32 bytes each.  Each set has an Stag (Set Tag) associated with it, and each line within the set has a

Ptag (Physical Tag) associated with it.

The Stag contains a lock bit for each line within the set to allow selective locking of cache lines, with the exception

of line 0x0; writes to that bit are ignored.  Also visible in the Stag are the MRU (most–recently used) limited history bits

used to implement the set replacement algorithm.  Details of the algorithm are available in the Viking User’s Guide.

All bits can be read and written for diagnostic and locking purposes.
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The Ptag for each block in the I–$ directory contains the physical tag PA<35:12> for the block plus a valid bit for

each sub–block.  The I–$ snoops write activity and will invalidate accordingly.  If code modifies instructions, a SPARC

flush must be executed to ensure consistency; the flush will synchronize on the completion of all pending writes, and

will also flush the instruction prefetch buffer.  The I–$ can be initialized with a flash–clear mechanism. This is required

after power–up.

The state of I–cache tags and data are unaffected by Watchdog or system reset.  The I–cache is enabled by the IE bit

in the MCR.

B.I.2.1.1 Instruction Cache Tag Address Format (ASI = 0xC)

31 012 11 6 5 3 230 29 28 26 25

000T rsvd L rsvd S rsvd

Field Description

T
L
S
rsvd

Type of tag; 1 = Set Tag (stag), 2 = Physical Tag (ptag), 0 = 3 = reserved
Line within set (0–4); (5–7) = reserved
Set (1 of 64)
  reserved: these bits are ignored

B.I.2.1.2 Instruction Cache Ptag Format  (64–bit access only)

63 02358 57 56 55 24

rsvd rsvdV<1:0> PA<35:12>

Field Description Type

V<1:0>

PA<35:12>
rsvd

Valid bit for the 32–byte sub–blocks; V<1> corresponds to the
 high–order sub–block (A<4> = 1) and V<0> to the low–order.
Physical tag address bits
  reserved: read as ’0’

RW  

RW
R

B.I.2.1.3 Instruction Cache Stag Format   (64–bit access only)

63 0413 12 8 7 5

rsvd rsvd LOCK<4:1>MRU<4:0> rsvd

1

Field Description Type

MRU<4:0>
LOCK<4:1>
rsvd

Access history bits used in the partial–LRU algorithm
Lock bits for blocks <4:1> within the set.
  reserved: read as ’0’

RW  
RW
R

B.I.2.1.4 Instruction Cache Data Address Format (ASI = 0xD)

31 012 11 6 5 3 229 28 26 25

000rsvd L rsvd S DW

Field Description

L
S
DW
rsvd

Line within set (0–4); (5–7) = reserved
Set (1 of 64)
Double–word within line
  reserved: these bits are ignored
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B.I.2.1.5 Instruction Cache Flash Clear (ASI = 0x36)

31 030

T rsvd

Field Description Type

T

rsvd

Type: 0 = clear all Valid and MRU bits in PTags and Stags.
1 = clear all Lock bits in Stags.
  reserved: ignored

W  

W

B.I.2.2 Data Cache Details

The D–cache is 4–way set associative.  It consists of 128 sets with a block–size of 32 bytes; there is no sub–block-

ing.  Each set has an Stag (Set Tag) associated with it, and each line within the set has a Ptag (Physical Tag) associated

with it.  In the Viking/NE module the D–$ is configured as a copy–back cache with a write–allocate policy.

The Stag contains a lock bit for each line within the set to allow selective locking of cache lines, with the exception

of line 0x0.  Also visible in the Stag are the MRU (most–recently used) limited history bits used to implement the set

replacement algorithm.  Details of the algorithm are available in the Viking User’s Guide.   All bits can be read and

written for diagnostic and locking purposes.

The Ptag for each block in the D–$ directory contains the physical tag PA<35:12> plus a valid, dirty, and shared bit

for the block. The D–$ can be initialized with a flash–clear mechanism. This is required after power–up.  The state of

D–cache tags and data are unaffected by Watchdog or system reset.

B.I.2.2.1 Data Cache Tag Address Format (ASI = 0xE)

31 012 11 5 4 3 230 29 28 26 25

000T rsvd L rsvd S rsvd

27

Field Description
T
L
S
rsvd

Type of tag; 1 = Set Tag (stag), 2 = Physical Tag (ptag), 0 = 3 = reserved
Line within set (0–3)
Set (1 of 128)
  reserved: these bits are ignored

B.I.2.2.2 Data Cache Ptag Format

63 02357 56 55 24

rsvd rsvdV PA<35:12>

49 48 47 41 40 39

D rsvd S rsvd

Field Description Type

V
D
S
PA<35:12>
rsvd

Valid bit for the 32–byte block
Dirty
Shared
Physical tag address bits
  reserved: read as ’0’

RW  
RW
RW
RW
R
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B.I.2.2.3 Data Cache Stag Format

63 0312 11 8 7 4

rsvd rsvd LOCK<3:1>MRU<3:0>

1

rsvd

Field Description Type

MRU<3:0>
LOCK<3:1>
rsvd

Access history bits used in the partial–LRU algorithm
Lock bits for blocks within the set.
  reserved: read as ’0’

RW  
RW
R

B.I.2.2.4 Data Cache Data Address Format (ASI = 0xF)

31 012 11 5 4 3 228 27 26 25

000rsvd L rsvd S DW

Field Description

L
S
DW
rsvd

Line within set (0–3)
Set (1 of 128)
Double–word within line
  reserved: these bits are ignored

B.I.2.2.5 Data Cache Flash Clear (ASI = 0x37)

31 030

T rsvd

Field Description Type

T

rsvd

Type: 0 = clear all Valid and MRU bits in PTags and Stags.
1 = clear all Lock bits in Stags.
  reserved: ignored

W  

W

B.I.2.2.6 D–Cache Data Prefetching

In Viking/NE mode data prefetch is not supported, and the PF bit in the MCR is ignored.  This is different from

Viking/E$.

B.I.3 Cache Coherence, Store Buffers, and Memory Models

B.I.3.1 Cache Coherence

B.I.3.1.1 Cache Flushing

Since Viking caches are physically addressed the contents of cache lines always corresponds to a backing store in

physical memory.  For this reason no flush mechanism is supported; there is never a need to dereference the contents of

any cache line.

For diagnostic purposes, flushes can be forced by accessing a different physical address that maps to the same

cache line, i.e. a displacement flush.  A D–$ set can be flushed by reading in 4 cacheable addresses that map to the same

set, i.e. modulo [4KB], or by using the D–$ flash–clear mechanism.  Similarly the entire I–$ can be flushed with the

flash–clear operation.  Flash–clear invalidates all tags; selective invalidaton can be done by clearing specific valid bits

through the diagnostic ASI path.
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B.I.3.1.2 Cache Aliasing

Since all caches in this system are physically addressed there is no aliasing rule needed.

B.I.3.1.3 Cache Snooping

The D–$ snoops all coherent MBus transactions based on the physcial address, and will implement the standard

MOESI model of cache coherence.  Snoop hits cause the MBus level–2 signals MSH* and MIH* to be asserted in cycle

A+3 if appropriate.

The I–$ snoops all transactions that go by on the MBus, including those initiated by this processor’s D–$ side.  A

snoop hit on any CI, CRI, or CWI will cause the I–$ to invalidate that line.  A snoop hit on a CR will cause the I–$ to

assert MSH* in cycle A+3.  The I–$ sees all stores as they leave the IU pipeline.  The SPARC flush instruction

merely flushes the IU pipeline in Viking/NE.

B.I.3.2 Store Buffers

B.I.3.2.1 Store Buffer Operation

Viking implements a store buffer which behaves as a FIFO; internally it is configured as a fully–associative cache

of 8 double–words.  In Viking/NE the store buffer is used to hold copybacks of modified cache data, as well as non–

cached stores.

The store buffer is automatically drained upon a context switch.  If a store buffer exception occurs as a result of the

copyout, the trap will be reported to the IU before the sta to the context register completes, so the contents of the CTX

register will reflect the context that owns the store buffer trap.  Upon resuming execution after the trap, the store to CTX

will complete.

The store buffer is enabled by the SB bit in the MCR.

B.I.3.2.2 Store Buffer Exceptions

When a fault occurs on a buffered store, it is reported to the IU as a data_store_error trap (priority 2, type 0x2b).  In

order for the error to be reported the NF bit in the MCR must be 0x0 and traps must be enabled.  Upon the detection of a

store buffer fault (due to a report of an error from the MBus) the store buffer is frozen, the SB bit in the MCR is cleared,

and the store buffer will retain all pending stores including the faulting one. A buffer copyout is not initiated.  All subse-

quent store accesses are synchronous and behave as if the store buffer is disabled.  Nominally these stores belong to the

trap handler, and so belong to a different, unrelated thread of execution.  Note that this is a synchronous trap issued for

an asynchronous event, similar to an interrupt.

The trap handler can retry the store operation by obtaining the data, address, size, and cacheability information

from the store buffer using diagnostic access.  The store can be recreated by using an ASI bypass with sta; the AC bit in

the MCR should be set to match the C bit in the store buffer tag.  The trap handler should set the NF bit prior to retrying

the store.  After the sta the handler can examine the SFSR to determine the error status. After the fault status is deter-

mined the OS can decide what action to take.

Alternatively the trap handler can re–issue the faulted store by simply re–enabling the store  buffer.  When a store

buffer exception occurs, the store buffer pointers retain their present value.   Setting NF=0 will prevent another store

buffer trap from being taken if the store sees another exception.  In this case, the store buffer will still turn off, even with

NF=0.  However, the store buffer error remains pending, and the IU–pipe doesn’t see it until NF=1.  A bit in the store

buffer  control register indicates the presence of a pending (unacknowledged) store buffer error,  or the code could

check if the store buffer is still enabled after the store.
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Store order can be maintained even in the presence of an error; the trap handler simply retries all pending stores in

the order they were placed in the buffer.

After handling an error, the trap handler can return the store buffer to operation by clearing all valid bits, setting the

drain pointer equal to the fill pointer in the Store Buffer Control Register, and then setting the SB bit in the MCR to 0x1.

A quirk in the Viking/NE module is that a store buffer error will cause both a type 0x2b trap (priority 2) and

a broadcast level–15 module_error interrupt.  The trap will be taken first, but afterwards there will be a pending

level–15 broadcast interrupt waiting for this module.

B.I.3.2.3 Store Buffer Control Register (ASI = 0x32)

31 09 8

rsvd

7 6 5 3 2

FPTRDPTREREMSE

Field Description

SE
EM
ER

DPTR

FPTR

Store Buffer Enabled: shadow of bit in MCR
Store Buffer Empty:  1 = Empty.  Set to ’1’ at reset.
Store Error Pending: set when a store buffer error occurs when
  traps are disabled.  Cleared when the trap is taken.
Drain Pointer: indicates the buffer entry that is at the head
  of the queue

Fill Pointer: indicates the next entry that will be written to.

TYPE

R
R
R

RW

RW

The store buffer is full if the fill pointer equals the drain pointer and there are valid entries.  The buffer is empty if

the two pointers are equal and there are no valid entries.  The pointers increment modulo 8.

B.I.3.2.4 Diagnostic Access to the Store Buffer

B.I.3.2.4.1 Store Buffer Tag Address Format (ASI = 0x30)

31 03 2

rsvd

6 5

ENTRY 000

Field Description
ENTRY
rsvd

Store buffer entry number
  reserved: these bits are ignored

B.I.3.2.4.2 Store Buffer Tag Format

63 03543 36

rsvd SP PA<35:00>

42 41 40 39 38 37

V C SIZESB

Field Description
SP
B

V
S
C
SIZE
PA<35:00>
rsvd

Store Barrier Pointer: Used in PSO to mark the synchronization point
Burst Mode Access: Indicates that the next entry in the buffer
  corresponds to the next address, and thus can be issued in a burst
Valid entry
Supervisor: Indicates that the store was issued by a supervisor thread
Cacheable: Indicates that this store is a cacheable access
Size of access: 00 = byte, 01 = half–word, 10 = word, 11 = double–word
Physical address of the store.  Must be size–aligned or an error will occur
  reserved: these bits are ignored
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B.I.3.2.4.3 Store Buffer Data Address Format (ASI = 0x31)

31 03 2

rsvd

6 5

ENTRY 000

Field Description
ENTRY
rsvd

Store buffer entry number (double–word access)
  reserved: these bits are ignored

B.I.3.3 Memory Models

Viking is capable of operating in three modes of ordering:  strong sequential ordering, Total Store Ordering (TSO),

and Partial Store Ordering (PSO).  The first is the standard model of data ordering in which all loads and stores com-

plete in order of issue.  The latter two models are those defined in the SPARC Architecture Manual version 8.

Strong ordering is achieved by disabling the internal store buffer.  This is done by setting the SB bit in the MCR to

0x0.  TSO is enabled by setting the SB bit to 0x1 and the PSO bit in the MCR to 0x0.  PSO is enabled by setting both SB

and PSO to 0x1.  TSO is the nominal memory model in Sun–4M and in SPARC V.8.  PSO requires explicit synchroniza-

tion of stores; stores are guaranteed to be ordered only with respect to the SPARC synchronization instruction stbar.

B.I.4 Module Registers: differences from core (section 4)

B.I.4.1 Module Control Register: differences from core (section 4.1)

Bit <7>: PSO, rw. 1 = PSO mode, 0 = TSO mode.  Always set to ’0’ in Sun–4M systems.

Bit <8>: DE, rw.  Data–cache enable

Bit <9>: IE, rw. Instruction–cache enable.

Bit <10>: SB, rw.  Store buffer enable.

Bit <11>: MB, ro.  0 = E–cache mode, this is a Viking/E$ module and the D–$ is write–through. 1 = MBus

mode, this is a Viking/NE module and the D–$ is copy–back mode (if ’0’ then appendix B.III applies).

Bit <12>: PE, rw.  Parity check enable;    Always set to ’0’ in Viking/NE systems

Bit <13>: BT, rw.  Boot mode.  0 = normal operation, 1 = boot mode.  This bit functions exactly like bit

<14> in the generic register specification in section 4.1.

Bit <14>: SE, rw.  Snoop Enable:  when ’1’ snooping is enabled for the I–$ and D–$.

Bit <15>: AC, rw.  Alternate cacheable.  When the MMU is disabled or when the PTE is not used for

translation (i.e. for MMU bypass accesses) this bit provides the cacheability status of all transactions with the excep-

tion of boot–mode instruction fetches, which are never cacheable. This bit affects both the internal I–$ and D–$.

This functions differently from some modules, which will use the AC bit as an advisory for the MBus address phase but

will not cache these references.  In Sun–4M machines care must be taken to not accidentally attempt cacheable ac-

cesses to non–memory devices or an error acknowledge will result.

Bit <16>: TC, rw.  Table–walk cacheable in E–$.     Always set to ’0’ in Viking/NE systems

Bit <18>: PF, rw.  Data Prefetch enable.  Ignored in Viking/NE.

Bits <27:24>: SRMMU VER = 0x0, ro. Mask revisions will show only in the IU PSR.

Bits <31:28>: SRMMU IMPL = 0x4, (Texas Instruments), ro
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B.I.4.2 Context Table Pointer Register: differences from core (section 4.2)

The Context Table Pointer Register has bits CTPR <31:8> = CTP <35:12>, and bits CTPR <7:0> are reserved.

Depending on the number of contexts supported the CTP may have any number of bits from <18:12> zeroed;  the con-

text table must be size aligned.  CTP <17:12> is the logical OR of CTPR <13:8> and CTX <15:10>. Thus if there are 10

context bits, CTPR<31:8> represent  CTP<35:12> and the context regsiter bits CTX<9:0> represent CTP<11:2>, with

CTP<1:0> = 00; the context table would have to be 4K aligned.  At the far end of the spectrum, if there are 16 context

bits then CTPR<31:14> represent CTP<35:18>, CTX<15:0> = CTP<17:2>, and again CTP<1:0> = 00; then the con-

text table would have to be 256K aligned.  Any size in between is also supported.  At a minimum the table must be 4K

aligned.

B.I.4.3 Context Register: differences from core (section 4.3)

N = 15, thus up to 64K contexts are supported.

B.I.4.4 Synchronous Fault Status Register: differences from core (section 4.4.1)

Bit <12>: UC: Uncorrectable Error. In addition to uncorrectable errors, Viking/NE will post this bit if

it receives a RETRY acknowledge on the MBus.  This should never occur in a Sun–4M system.

Bit <13>: VMP: Viking Master Parity Error.  Not used in Viking/NE modules.

Bit <14>: P: Parity Error.  Not used in Viking/NE modules. 

Bit <15>: SB: Store Buffer Error.  Indicates that a store buffer error has been detected (see section

B.I.3.2.2).  In Viking/NE assertion of this bit causes assertion of the module_error interrupt pin; it will deassert

when this register is read.

Bit <16>: CS: Control Space Access Error.  Set if a lda, sta, or swapa returns an access error, except for

bus error on ASI’s 0x8 – 0xB and 0x20 – 0x2F or for bus error on MMU probe operations.  Normally these errors will

occur if there is an invalid ASI space, an incorrect size of access, or an invalid address within a valid ASI space.  MFAR

will hold the correct address in case of a CS error, although the ASI is not captured anywhere.

Bit <17>: EM: Error Mode Reset Taken.  When set this indicates that the processor has taken a watchdog

reset.  In Viking/NE this substitues for the WD bit in the reset register, which is not supported.  Assertion of this

bit causes assertion of the module_error interrupt pin; it will deassert when this register is read.

B.I.4.5 Synchronous Fault Address Register: differences from core (section 4.4.2)

As allowed in the SRMMU specification this register will never hold the address of an instruction fault; that in-

formation will be found in the saved PC/NPC.  A special diagnostic path allows for this register to be written as well as

read at ASI = 0x4, VA = 0x00001400.

B.I.4.6 Asynchronous Fault Status and Address Registers: differences from core (section 4.5)

Viking does not support an AFSR/AFAR, even though it contains write buffers which allows write operations to

complete asynchronous to the instruction flow.  Any error reported asynchronously will be captured in MXCC regis-

ters.  See B.I.3.2.2 ’Store Buffer Exceptions’ for more information.

B.I.4.6 Reset Register: differences from core (section 4.6)

There is no Reset Register internal to Viking. The Watchdog Reset status is found in SFSR bit <17>.

 Assertion of WD will cause assertion of the Module Error output.  This interrupt is cleared by reading the

SFSR.  Snooping is maintained during either an SI or a WD reset.
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B.I.4.7 MBus Port Address Register Register: differences from core (section 4.6)

31 0316 15 8 7 4

MDEV MREV MVENDrsvd

Field Description Type

MDEV
MREV
MVEND
rsvd

MBus device number: = 0x0 (Viking/NE) 
Device revision number = 0x0
MBus vendor number = 0x4 (Texas Instruments)
  reserved, read as ’0’

R
R
R
R

The MBus Port Address Register can only be accessed via module control space.

B.I.5 MMU Details

The MMU contains 64 fully–associative TLB entries with a limited–history LRU replacement algorithm.  The

page tables are not cacheable in Viking/NE.  The Viking MMU implements the full set of PROBE types.

The limited–history replacement algorithm first sweeps TLB entries sequentially until all TLB’s have the valid bit

set.  From that point the next access to any TLB will set its ’used’ bit; replacement cycles will take the first TLB that is

not ’used’. At the time that all TLB entries have the ’used’ bit set, all ’used’ bits except the last one to be set are cleared,

and all history is lost.  The demap–all operation will clear all ’used’ and ’valid’ bits.

The root pointer and the most recently used level–2 PTP are also cached in the MMU.  A context switch will invali-

date the cached root pointer.  Upon the first miss after a context switch, an extra level of table–walk is supported in

order to fetch that context’s root pointer.  The level–2 PTP cache is invalidated upon writes to the context register or the

context table pointer register, or upon table–walks that do not use that PTP (in which case a new level–2 PTP is obtained

for the cache).  This cached PTP is used only for table–walks, M–bit updates, and probe–entire operations.  If level–2 is

a PTE then it is not cached.

A table walk is not atomic on the MBus.  Updates to the Modified and Referenced bits will guarantee correctness as

follows:  (1) if this is the first access to the page and it is not a store, the MMU will do an atomic swap operation to set the

’R’ bit; if the swap return ’R’ and ’M’ both set (by another processor) then another swap is performed to set both ’R’ and

’M’; (2) if this is a store access and the ’M’ bit is not set in the PTE, a simple store is done with both ’R’ and ’M’ set.

Because hardware may be iteratively updating the PTE when software is attempting to write a new value or invali-

date the entry, update algorithms must synchronize all processors and do a cooperative TLB flush in order to guarantee

consistency.

B.I.5.1 TLB RAM Diagnostic Access Address Format

31 0718 17

rsvd rsvd

12 11 10 8

SEL rsvdENTRY

Field Description

ENTRY
SEL

rsvd

Entry in Page Descriptor Cache (1 of 64)
Selects portion of TLB to access.  0 = VA, 1 = Context, 2 = LOCK bit, 
3 = PTE, 4 = Root Pointer (cached), 5 = level–2 PTP (cached), 6 = Level–2
Vaddr (cached)
  reserved: these bits are ignored
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B.I.5.1.2 VA Format (sel = 0 and sel = 6)

31 012 11

rsvdVA<31:12>

Field Description Type

VA<31:12>

rsvd

Virtual address tag.  Depending on PTE level, not all
 bits are significant.
  reserved, read as ’0’

RW

R

B.I.5.1.3 Context Format (sel = 1)

31 016 15

rsvd CTX<15:0>

Field Description Type

CTX<15:0>
rsvd

Context Tag.
  reserved, read as ’0’

RW
R

B.I.5.1.4 LOCK Format (sel = 2)

31 01

rsvd LOCK

Field Description Type

LOCK
rsvd

If ’1’, the contents of this TLB entry will not be replaced
  reserved, read as ’0’

RW
R

B.I.5.1.5 PTE Format (sel = 3)

31 01

LVL

8 7 6 5 4 2

C M V ACCPPN<35:12>

Field Description Type

PPN<35:12>
C
M
V
ACC
LVL

Physical Page Number
Cacheable
Modified
Valid TLB entry
Access Permission; smae as SRMMU
PTE level; 0 = root, 1 = region, 2 = segment, 3 = page.

RW
RW
RW
RW
RW
RW

B.I.5.1.6 Root Pointer Cache Format (sel = 4)

31 0

ROOT POINTER (see 7.1.3)

B.I.5.1.7 Level–2 PTP Cache Format (sel = 5)

31 0

LEVEL–2 PTP (see 7.1.3)
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B.I.6 ASI’s Implemented

ASI FUNCTION

0x2
0x3
0x4
0x6

0x8
0x9
0xA
0xB

0xC
0xD
0xE
0xF

0x20–0x2F

0x30
0x31
0x32
0x36
0x37
0x38
0x39
0x40–0x41
0x44
0x46–4C

Reserved in Viking/NE systems
Ref MMU Flush/Probe
Module Registers
SRMMU Diagnostic I/D–TLB

User Instruction
Supervisor Instruction
User Data
Supervisor Data

I–$ Cache Tag
I–$ Cache Data
D–$ Cache Tag
D–$ Cache Data

SRMMU bypass, PA<35:32> = ASI<3:0>

Store Buffer Tags
Store Buffer Data 
Store Buffer Control
I–cache Flash Clear
D–cache Flash Clear
MMU Breakpoint Diagnostics  (See Viking Specification for details)
BIST Diagnostics  (See Viking Specification for details)
Emulation temps [1–2] (See Viking Specification for details)
Emulation Data In1 (See Viking Specification for details)
Emulation Registers (See Viking Specification for details)

SIZE

  ––
Word
Word
Word

All
All
All
All

Double
Double
Double
Double

All

Double
Double
Single
Word
Word
Double
Word
Word
Word
Word

Alternate space accesses with reserved or unassigned ASI’s will result in an error trap.

B.I.7 Module Control Space Address Map

Name

0xFFnFFFFFC MBus Port Address Register for MID ’n’

PA<35:0>

B.I.8 IU PSR Number

Bits <27:24> VER = 0x0

Bits <31:28> IMPL = 0x4 (Texas Instruments)

B.I.9 Module–Specific Quirks

This module violates the MBus specification for coherent snooping with MIH* in cycle A+2; instead it invokes

MBus Specification Appendix B.7, and provides MIH* in cycle A+3.

Since this is a module with physically addressed caches there is no VA superset provided in the address phase of

MBus transactions.

The Viking/NE module does not provide a place where the software can read the MID directly.  See 5.4.3 for a

description of mechanisms for determining MID.
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Unlike the Viking/E$ module this module has no hardware support for Bcopy/Bfill.

If Viking/NE  receives an error acknowlege from the MBus on a data store, it will post a level–15 module_error

broadcast interrupt, and will also take a store_buffer_exception (priority 2, trap type 0x2b).

Note that locking all TLB entries can lead to a deadlock (infinite table walk) and so must be avoided.
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B.II: Module Notes: Ross 605/64K

Based on Cypress Semiconductor ’SPARC RISC Users Guide’ Second Edition, February 1990, with corrections

based on conversations with Ross Semiconductor.  Note that differences between this appendix and the Cypres book

represent errata in the Cypress book!!

B.II.1 Module Overview

B.II.2 Cache Details

B.II.3 Module Registers: differences from core (section 4)

B.II.4 Additional Registers Specific to this Module

B.II.5 MMU Details

B.II.6 ASI’s Implemented

B.II.7 Module Control Space Address Map

B.II.8 IU PSR Number

B.II.9 Module–Specific Quirks

B.II.10 Module Write Buffers

B.II.11 Exiting Boot State
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B.II.1 Module Overview

The Ross 605 module consists of a chipset developed by Cypress Semiconductor/Ross Technologies.  The proces-

sor set is a 1–scalar SPARC processor and cache system.  The chipset includes the CY7C601 IU, a CY7C602 FPU, a

CY7C605 CMU (Cache Controller and MMU) and two CY7C157 16KB x 16 pipelined cache SRAM.  The entire chip-

set runs synchronous with the 40 MHz MBus clock.

This logical module appears in two phsyical implementations, the Ross 6001 module (uniprocessor) and the Ross

6002 module (dual processor, i.e. two logical modules in one physical module).  The 6001 is used for bringup purposes

only, and the 6002 is used as a real product at Sun.

B.II.2 Cache Details

The Ross 605 system utilizes a 64 KB virtual–address direct–mapped cache, with one cache shared by both

instruction access and data access.  The cache participates in the MBus level–2 coherence protocols.  Snooping is im-

plemented via a virtually–indexed, physically tagged ’dual’ directory.  The data cache can be programmed to be either

a write–through cache with a no–write–allocate policy or a write–back cache with write–allocate.  The latter is recom-

mended for use in Sun–4M systems.

The cache consists of 2048 blocks of 32 bytes each. The tag for each block in the main directory contains the virtu-

al tag VA<31:16>, the context number, a valid bit and a Supervisor bit. The ’dual’ directory contains the physical tag

for that block, along with a valid, shared, and modified bit.

In write–back mode, aliases are detected by checking the physical address of the miss with the ’dual’ tag on the

current occupant of the cache block. If an alias is detected then the miss can be serviced without accessing the system

memory.  Cache alias size is 64 KB.

CACHE DATA

SELECTS BYTE(S) 
WITHIN WORD

BYTE 0 BYTE 1 BYTE 2  BYTE 3

BYTE 4       ETC...

BYTE 31

BYTE 0 BYTE 1 BYTE 2  BYTE 3

BYTE 4       ETC...

SELECTS LWORD 
WITHIN BLOCK

VIRTUAL ADDRESS

PVTAG

MPTAG

A31 A16 A15 A5 A4 A2 A1 A0

BLOCK
NUMBER

LWORD BYTE
VIRTUAL PAGE NUMBER 

(COMPARED TO VTAG)

SELECTS BLOCK

VTAG(31:16) CTXT(11:0) V SH S r

SH M V rPTAG(35:12)

Cache consists of 2048  
blocks of 32 bytes each

MBUS SNOOP  
ADDRESS

31 16 15 4 3 2 1 0

31 8 7 6 5 4 0
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B.II.2.1 Cache Virtual Tag Format (PVTAG)

31 016 15 4 3 2

CTX rsvd

1

V SH SVTAG

Field Description Type

VTAG    
CTX
V
SH
S
rsvd

Virtual Tag VA<31:18>    
Context Number CTX<11:0>
Valid cache entry
Shared
Supervisor mode
  reserved: read as ’0’

RW  
RW
RW
RW
RW
R

B.II.2.2 Dual Directory Tag Format  (MPTAG)

31 08 4

rsvdV

567

PTAG SH M

Field Description Type

PT         
SH
M
V
rsvd

Physical Tag PA<35:12>    
Shared block
Modified
Valid cache entry
  reserved: read as ’0’

RW  
RW
RW
RW
R

B.II.2.3 Addresses for Cache Diagnostic Access

Cache Line

0
1
2
3

...

2047

PVTAG (ASI = 0xE)

0x00040000  
0x00040020  
0x00040040  
0x00040060

0x0004FFE0

MPTAG (ASI = 0xE)

0x00000000  
0x00000020  
0x00000040  
0x00000060

0x0000FFE0

0x00000000  
0x00000020  
0x00000040  
0x00000060

0x0000FFE0

Data (ASI = 0xF)

B.II.2.4 Cache Flushing

The cache in the Ross 605 module is flushed locally by each processor.  Flushing involves use of the cache flush

ASI’s with sta accesses.

B.II.2.5 Cache Snooping

The Ross 605 provides VA<19:16> and monitors VA<15:12> in the MBus VA Sueprset field; this is sufficient to

snoop a 64 KB cache.  An important note is that there is no way to disable snooping, even when the cache is dis-

abled; this means that all cache tags in all modules must be invalidated prior to enabling any of the caches in the

system.
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B.II.3 Module Registers: differences from core (section 4)

B.II.3.1 Module Control Register: differences from core (section 4.1)

Bit <10>: CB, rw.  Only copy–back mode is used in Sun–4M, so this bit should be set to ’1’.

Bit <11>: MR, rw. Memory Reflection:  should always be set to ’0’ in Sun–4M usage.

Bits <18:15>: MID<3:0>, rw.  Ross 605 does not read the pins of the module connector to establish the

MID, so the MID must be set by boot firmware.  This must be done very early in the boot process (see B.II.10).

Bits <23:19>, ro.  Unassigned, read as ’0’.

Bits <27:24>: SRMMU VER = 0xF, (CY7C605), ro 

Bits <31:28>: SRMMU IMPL = 0x1 (Cypress Semiconductor), ro.

B.II.3.2 Context Table Pointer Register: differences from core (section 4.2)

The Context Table Pointer Register has bits <31:10> = CTP <35:14>, and bits <9:0> are reserved.  This means that

the context table must be 16KB–aligned in memory.

B.II.3.3 Context Register: differences from core (section 4.3)

N = 11, thus 4096 contexts are supported.

B.II.3.4 Synchronous Fault Status Register: differences from core (section 4.4)

The SFSR is clear–on–read in this implemetentation.

B.II.3.5 Asynchronous Fault Status Register: differences from core (section 4.5)

Clearing of the AFSR is controlled by reads of the AFAR.  The AFSR should be read prior to the AFAR, and the

AFAR should only be read if AFV (AFSR bit <0>)is asserted.  This avoids a race condition between asynchronous

faults being posted and accesses to the asynchronous fault registers.

B.II.3.6 Reset Register: differences from core (section 4.6)

This register is clear–on–read.

Snooping is maintained during either an SI or a WD reset.

B.II.3.7 MBus Port Address Register Register: differences from core (section 4.6)

The CY7C605 does not support an MBus Port Register.

B.II.4 Additional Registers Specific to this Module

Name

0x00001000
0x00001100
0x00001200
0x00001300
0x00001400

Root Pointer Register (RPR)
Instruction Access PTP (IPTP)
Data Access PTP (DPTP)
Index Tag Register (ITR)
TLB Replacement Control Register (TRCR)

Address (ASI = 0x4)
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B.II.4.1 Root Pointer Register

rsvd

31 6 5 0

RP

1

V

Field Description Type

Root Pointer:   This is the Context level table  PTP (page table
pointer).  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset, or on writes to the Context Reg-
ister or to the Context Table Pointer Regsiter.

RW

RW

RP

V

rsvd Reserved. R

B.II.4.2 Instruction Access PTP Register

rsvd

31 4 3 01

VIPTP

Field Description Type

Instuction Access PTP (page table pointer).  Contains the level–2
PTP for IFETCH.  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset.
   reserved

RW

RW
R

IPTP

V
rsvd

B.II.4.3 Data Access PTP Register

rsvd

31 4 3 01

VDPTP

Field Description Type

Data Access PTP (page table pointer).  Contains the level–2 PTP for
Data access.  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset.
   reserved

RW

RW
R

DPTP

V
rsvd

B.II.4.4 Index Tag Register

rsvd

31 0218 17 16 15 1

rsvdITAG DTAG

Field Description Type

Tag for the IPTP register (level 1 and level 2)
Tag for the DPTP register (level 1 and level 2)
   reserved

RW
RW
R

ITAG
DTAG
rsvd
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B.II.4.5 TLB Replacement Control Register

rsvd

31 0614 13 8 7 5

rsvd RC IRC

Field Description Type

Replacement Counter for TLB random replacement
Initial Replacement Counter
   reserved

RW
RW
R

RC
IRC
rsvd

Bith RC and IRC are reset to ’0’ upon power–on reset.  In order to support TLB locking, the IRC can be set to a

non–zero value.  The IRC is used as an initialization value for RC; whenever RC reaches maximum count, it is pre-

loaded with the value in IRC on the next increment.  Locked TLB entries can be read/written through control space

accesses (ASI = 0x6).  When writing to the IRC field, write the same value to the RC field to ensure that the next–re-

placement pointer points to the unlocked area.

B.II.5 MMU Details

The MMU contains 64 TLB entries with a random replacement algorithm.  The page tables are not cacheable and

must be kept valid in main memory.

Upon the first miss after a context switch, an extra level of table–walk is supported in order to fetch that context’s

root pointer.  A small cache keeps the most recently accessed PTP for the root level and one each for the level–2 PTP

used for data and instruction access.  This cache is visible as the RPR, IPTP, DPTP, and ITR registers.  The IPTP and

DPTP cache is flushed upon any TLB flush or upon  any table walk  for an instruction or data access, respectively.  The

entire PTP cache is flushed when the Context Register or the Context Table Pointer Register is written.  A table walk is

atomic, that is, MBSY* is held asserted for the duration of a table–walk (up to 5 accesses to main memory in the case of

a first–write to a page), and the LOCK bit in MBus address phase is asserted for table–walks.

PROBE_ENTIRE is the only probe type supported by this SRMMU implementation.

The IPTP and DPTP are not updated during table walks caused by address alias detection or copy–back flushes.

B.II.5.1 TLB RAM Diagnostic Access Format

31 08 7 6 5 3 2 1

PA C M VACC ST

Field Description Type

V
ST
ACC
M
C
PA

Valid Entry
Short translation Bits.  0 = page level and 3 = root.
Access Permission (per SRMMU)
Modified; this page has been written to
Cacheable page
Physical address <35:12>; some or all is valid depending on
  the ST field.

RW  
RW
RW
RW
RW
RW
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B.II.5.2 TLB CAM Diagnostic Access Format

31 012 11

VA<31:12> CTX<11:0>

Field Description Type

VA
CTX

Virtual Address tag for this entry
Context tag for this entry

RW  
RW

B.II.5.3  Addresses for TLB Diagnostic Access (ASI = 0x6)

TLB Entry

0
1
2
3

...

63

TLB RAM

0x00000000  
0x00000008  
0x00000010  
0x00000018  

0x000001F8

TLB CAM

0x00000004  
0x0000000C 
0x00000014  
0x0000001C 

0x000001FC

B.II.6 ASI’s Implemented

Alternate space accesses with unsupported ASI’s will be ignored (writes are ignored, reads provide garbage data).

This module has no hardware support for block copy or block fill.

Access with ASI = 0x1 is identical to access with ASI = 0x20 (Bypass, PA<35:32> = 0x0) with the exception that

the MBL (local/boot mode) bit is asserted in the address phase.  This bit is ignored in Sun–4M systems.

See the Ross 605 specification for details related to cache diagnostics, TLB diagnostics, TLB probes, cache flush-

ing, and TLB flushing.

ASI FUNCTION

0x1
0x3
0x4
0x6

0x8
0x9
0xA
0xB
0xE
0xF

0x10
0x11
0x12
0x13
0x14

0x20–0x2F

Local Bus Mode (not used in Sun–4M)
Ref MMU Flush/Probe I/D–TLB
Module Registers
SRMMU Diagnostic I/D–TLB

User Instruction
Supervisor Instruction
User Data
Supervisor Data
I/D–$ Cache Tag (A<18> = 0), MPTAG (A<18> = 1)
I/D–$ Cache Data

Flush I/D cache by page
Flush I/D cache by segment
Flush I/D cache by region
Flush I/D cache by context
Flush I/D cache by ’user’

SRMMU bypass, PA<35:32> = ASI<3:0>
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B.II.7 Module Control Space Address Map

The CY7C605 has no MBus slave port.

B.II.8 IU PSR Number

Bits <27:24> VER = 0x1 (Cypress Semiconductor)

Bits <31:28> IMPL = 0x1

B.II.9 Module–Specific Quirks

The CY7C605 does not sense the MBus Module ID from the connector pins.  Instead the MID must be initialized in

software.  The MID can be read in the MID Register; this register is provided specifically for this module.

The CY7C605 does not provide User/Supervisor information in the address phase of MBus transactions; for this

reason any error status captured in system asynchronous error registers will always appear to be a supervisor–mode

error, independent of the actual IU state.

CY7C605 support for reflective memory and for second–level cacheing is not used in Sun–4M systems.

Due to the nature of module write buffers and the way that asynchronous errors are captured the AFAR should not

be read unless the AFV bit in the AFSR is asserted (see B.II.4.5).

B.II.10 Module Write Buffers

The CY7C605 contains 32–bytes of data write buffer.  When the chip is programmed to be a copy–back cache, the

write buffer is used to hold 1 cache write–back (32 bytes, one address) or 1–4 non–cacheable writes (up to 4 double–

word stores and up to four addresses).  The write buffer maintains strong order among writes issued, and reads or shared

cacheable writes (coherent invalidates) will stall the IU if the write buffers are not idle.

A read of a non–cacheable entity (such as a hardware register, i.e. the M–to–S AFSR) will guarantee draining of

such write buffers at context switch.

B.II.11 Exiting Boot State

B.II.11.1 Exiting Boot State With MMU On

The transition from boot mode to normal operation is a delicate time.  In order to keep pipelines simple it is necces-

sary to make the transition from boot–mode ifetch to instruction fetch translation (see 3.1.2) while executing from the

same page; that is, the CY7C605 must be managed in a way that the same physical addresses are issued before, during,

and after the change in the BM bit.

The physical address range for the EPROM is 0xFF0000000 – 0xFF007FFFF.  Address bits <23:19> are don’t–

care (they are not decoded by the EPROM interface) and so they can have any value.  In boot–mode Ifetch pass–thru

mode, the VA–to–PA translation is PA<35:28> = 0xFF, PA<27:0> = VA<27:0>.  This means that VA<31:28> are also

don’t–care when the module is in boot–mode.  When boot mode is turned off, instruction fetches will be translated; the

translation of this virtual address to the EPROM physical address must be established so that the fetches just before and

just after the instruction that clears boot mode all fall on the same physical page.  Note that this means that

PA<27:24> = VA<27:24> = 0x0, PA<18:0> = VA<18:0>, and the rest of the address can be freely selected.
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B.II.11.2 Exiting Boot State With MMU Off

It is also legal to exit boot–mode with the MMU disabled; when boot–mode is turned off and the MMU is off, all

accesses happen in MMU pass–thru mode (see 3.1.2) where PA<35:32> = 0x0, and PA<31:0> = VA<31:0>.  In order to

guarantee correct operation, the page in which boot mode is turned off must be copied from the EPROM to main

memory at an address where PA<18:0> is identical to PA<18:0> in the EPROM address; the transistion from boot

mode to pass–thru will also involve a transition from EPROM fetch to main memory fetch.
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B.III: Module Notes: Viking/E$

Based on the Viking Microprocessor User Documentation, rev 2.00 11/01/90 and the Viking Cache Controller

(MXCC) Specification (draft, 2/19/91).  See those documents for details.  

B.III.1 Module Overview

B.III.2 Cache Details

B.III.2.1 Instruction Cache Details

B.III.2.2 Data Cache Details

B.III.2.3 External Cache Details

B.III.3 Cache Coherence, Store Buffers, and Memory Models

B.III.3.1 Cache Coherence

B.III.3.2 Store Buffers

B.III.3.3 Memory Models

B.III.4 Module Registers: differences from core (section 4)

B.III.5 MXCC Registers (ASI = 0x2)

B.II.6 MMU Details

B.III.7 ASI’s Implemented

B.III.8 Module Control Space Address Map

B.III.9 IU PSR Number

B.III.10 Module–Specific Quirks
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B.III.1 Module Overview

The Viking/E$ module consists of a chipset developed jointly by Texas Instruments and Sun. The processor set is a

superscalar SPARC processor and cache system.  The chipset includes the Viking chip (TMS390Z50) with internal IU,

floating–point, I– and D–caches, and MMU, the MXCC External Cache Controller (TMS390Z55), and 8 pipelined

128K x 9 cache SRAM (some versions may use 128K x 8).  The MBus interface of the MXCC runs synchronous with

the 40 MHz MBus clock, and the rest of the module runs synchronously at 50 MHz, with synchronization internal to the

MXCC.

A physical Viking/E$ module could have one or two Viking/E$ logical modules on it.  Both uni– and dual–proces-

sor modules will be built.  (Official names TBD).

A similar module without the External Cache consists of a Viking chip connected directly to the MBus.  That mod-

ule is called Viking/NE, and it is defined in appendix B.I.  The module type is identified by examining bit 11 of the

Module Control Register (MCR).   If the bit is ’0’ then this is the correct model; if the bit is a ’1’ then the Viking/NE

appendix applies.

B.III.2 Cache Details

The Viking/E$ system utilizes a Harvard architecture with a 20KB physical–address set–associative cache for

instruction access, a 16KB physical–address set–associative cache for data access, and a 1MB physical–address di-

rect–mapped second–level cache shared by both instruction access and data access.  The caches participate in the

MBus level–2 coherence protocols.  Snooping is implemented via the second–level ’External’ cache (E–$) directory.

The first–level data cache can be programmed to be either a write–through cache with a no–write–allocate policy or a

copy–back cache with write–allocate.  The former is required for Viking/E$.

D–CACHEI–CACHE

20 KB,
5–WAY SET ASSOCIATIVE 
64 SETS
64–BYTE BLOCK SIZE
32–BYTE SUB–BLOCK SIZE
PHYSICALLY ADDRESSED

16 KB 
WRITE–THROUGH  WITH
   NO WRITE ALLOCATE
4–WAY SET ASSOCIATIVE 
64 SETS
32–BYTE BLOCK SIZE
PHYSICALLY ADDRESSED

E–CACHE

1MB,
DIRECT–MAPPED
COPY–BACK WITH 
   WRITE ALLOCATE 
128–BYTE BLOCK SIZE
32–BYTE SUB–BLOCK SIZE
PHYSICALLY ADDRESSED
PHYSICALLY INDEXED

MMU

64 TLB ENTRIES
FULLY ASSOC.

VIKING

MXCC   and
SRAM

Physical
Address

MBus

B.III.2.1 Instruction Cache Details

The I–cache is 5–way set associative.  It consists of 64 sets with a block–size of 64 bytes, and each block is divided

into two sub–blocks of 32 bytes each.  Each set has an Stag (Set Tag) associated with it, and each line within the set has a

Ptag (Physical Tag) associated with it.
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The Stag contains a lock bit for each line within the set to allow selective locking of cache lines, with the exception

of line 0x0; writes to that bit are ignored.  Also visible in the Stag are the MRU (most–recently used) limited history bits

used to implement the set replacement algorithm.  Details of the algorithm are available in the Viking User’s Guide.

All bits can be read and written for diagnostic and locking purposes.

The Ptag for each block in the I–$ directory contains the physical tag PA<35:12> for the block plus a valid bit for

each sub–block.  The I–$ snoops write activity and will invalidate accordingly.  If code modifies instructions, a SPARC

flush must be executed to ensure consistency; the flush will synchronize on the completion of all pending writes, and

will also flush the instruction prefetch buffer.  The I–$ can be initialized with a flash–clear mechanism.

The state of I–cache tags and data are unaffected by Watchdog or system reset.  The I–cache is enabled by the IE bit

in the MCR.

B.III.2.1.1 Instruction Cache Tag Address Format (ASI = 0xC)

31 012 11 6 5 3 230 29 28 26 25

000T rsvd L rsvd S rsvd

Field Description

T
L
S
rsvd

Type of tag; 1 = Set Tag (stag), 2 = Physical Tag (ptag), 0 = 3 = reserved
Line within set (0–4); (5–7) = reserved
Set (1 of 64)
  reserved: these bits are ignored

B.III.2.1.2 Instruction Cache Ptag Format  (64–bit access only)

63 02358 57 56 55 24

rsvd rsvdV<1:0> PA<35:12>

Field Description Type

V<1:0>

PA<35:12>
rsvd

Valid bit for the 32–byte sub–blocks; V<1> corresponds to the
 high–order sub–block (A<4> = 1) and V<0> to the low–order.
Physical tag address bits
  reserved: read as ’0’

RW  

RW
R

B.III.2.1.3 Instruction Cache Stag Format   (64–bit access only)

63 0413 12 8 7 5

rsvd rsvd LOCK<4:1>MRU<4:0> rsvd

1

Field Description Type

MRU<4:0>
LOCK<4:1>
rsvd

Access history bits used in the partial–LRU algorithm
Lock bits for blocks <4:1> within the set.
  reserved: read as ’0’

RW  
RW
R
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B.III.2.1.4 Instruction Cache Data Address Format (ASI = 0xD)

31 012 11 6 5 3 229 28 26 25

000rsvd L rsvd S DW

Field Description

L
S
DW
rsvd

Line within set (0–4); (5–7) = reserved
Set (1 of 64)
Double–word within line
  reserved: these bits are ignored

B.III.2.1.5 Instruction Cache Flash Clear (ASI = 0x36)

31 030

T rsvd

Field Description Type

T

rsvd

Type: 0 = clear all Valid and MRU bits in PTags and Stags.
1 = clear all Lock bits in Stags.
  reserved: ignored

W  

W

B.III.2.2 Data Cache Details

The D–cache is 4–way set associative.  It consists of 128 sets with a block–size of 32 bytes; there is no sub–block-

ing.  Each set has an Stag (Set Tag) associated with it, and each line within the set has a Ptag (Physical Tag) associated

with it.  In the Viking/E–$ module the D–$ is configured as a write–through cache with a no–write–allocate policy.

The D–$ in this configuration is the first–level cache in a 2–level cache hierarchy.  The E–$ tags maintain full

inclusion on the contents of the D–$ and I–$, and so the E–$ is able to snoop the MBus on behalf of the first–level

caches.  In the case of a snoop hit the MXCC will send a coherent invalidate transaction on the Viking bus, which will

be snooped by the D–$ if the SE bit in the MCR is set, and the D–$ will invalidate the line as appropriate.

The Stag contains a lock bit for each line within the set to allow selective locking of cache lines, with the exception

of line 0x0.  Also visible in the Stag are the MRU (most–recently used) limited history bits used to implement the set

replacement algorithm.  Details of the algorithm are available in the Viking User’s Guide.   All bits can be read and

written for diagnostic and locking purposes.

The Ptag for each block in the D–$ directory contains the physical tag PA<35:12> plus a valid, dirty, and shared bit

for the block. In Viking/E$ the shared and dirty bits are not used.  The D–$ can be initialized with a flash–clear mecha-

nism.  The state of D–cache tags and data are unaffected by Watchdog or system reset.

B.III.2.2.1 Data Cache Tag Address Format (ASI = 0xE)

31 012 11 5 4 3 230 29 28 26 25

000T rsvd L rsvd S rsvd

27

Field Description
T
L
S
rsvd

Type of tag; 1 = Set Tag (stag), 2 = Physical Tag (ptag), 0 = 3 = reserved
Line within set (0–3)
Set (1 of 128)
  reserved: these bits are ignored
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B.III.2.2.2 Data Cache Ptag Format

63 02357 56 55 24

rsvd rsvdV PA<35:12>

49 48 47 41 40 39

D rsvd S rsvd

Field Description Type

V
D
S
PA<35:12>
rsvd

Valid bit for the 32–byte block
Dirty
Shared
Physical tag address bits
  reserved: read as ’0’

RW  
RW
RW
RW
R

B.III.2.2.3 Data Cache Stag Format

63 0312 11 8 7 4

rsvd rsvd LOCK<3:1>MRU<3:0>

1

rsvd

Field Description Type

MRU<3:0>
LOCK<3:1>
rsvd

Access history bits used in the partial–LRU algorithm
Lock bits for blocks within the set.
  reserved: read as ’0’

RW  
RW
R

B.III.2.2.4 Data Cache Data Address Format (ASI = 0xF)

31 012 11 5 4 3 228 27 26 25

000rsvd L rsvd S DW

Field Description

L
S
DW
rsvd

Line within set (0–3)
Set (1 of 128)
Double–word within line
  reserved: these bits are ignored

B.III.2.2.5 Data Cache Flash Clear (ASI = 0x37)

31 030

T rsvd

Field Description Type

T

rsvd

Type: 0 = clear all Valid and MRU bits in PTags and Stags.
1 = clear all Lock bits in Stags.
  reserved: ignored

W  

W

B.III.2.2.6 D–Cache Data Prefetching

Viking supports sequential data prefetch.  This feature is enabled when the PF bit in the MCR is set to 1.  Prefetch

will occur when Viking detects consecutive load misses to two consecutive cache blocks.  Prefetch data will not be

cached in the D–$; instead it is stored in the 32–byte prefetch buffer (not accessible via any diagnostic path).  Prefetch is

bounded by page boundaries.  Combined with store buffer block collection (reduction of store overhead by packing



July 19, 1991 Sun–4M Architecture Spec. Number: 950–1373–01
Rev. 50

– 110 –Sun Microsystems, Inc.

spatially local stores into fewer, larger stores) the prefetch feature is expected to accelerate certain classes of numerical

algorithms that tend to access large sequential arrays.  More details can be found in the Viking User’s Guide.

B.III.2.3 External Cache Details

The E–$ is a direct–mapped cache consisting of 8K blocks of 128 bytes each; each block is divided into 4 sub–

blocks of 32 bytes.  The E–$ operates as a copy–back cache with a write–allocate policy.  E–$ tags contain the physical

address bits PA<35:19> for the block, plus a shared, owned, valid, and pending bit for each of the four sub–blocks.  The

E–$ is enabled by the CE bit in the MXCC Control Register.

The E–$ maintains level–2 MBus consistency by snooping on physical addresses.  The E–$ directory is time–

shared between Viking and MBus snoop access; there is no dual directory in this module.  Coherent activity initiated on

the MBus by the E–$ does not provide meaningful VA Superset bits in the MBus address.

Diagnostic and control access to the E–$ are made in space ASI = 0x2.

Name

0x01000000 – 0x010FFFFF
0x01800000 – 0x018FFFFF
0x01C00000 – 0x01CFFFFF

E–cache data
E–$ tag
MXCC Control Registers

Address (ASI = 0x2)

B.III.2.3.1 E–Cache Data Address Format (ASI = 0x2)

31 07 6 5 4 3 225 24

BYTErsvd rsvd DW

23 22 20 19

10 BLOCK SUBB

Field Description

BLOCK
SUBB
DW
BYTE
rsvd

Cache block number
Sub–block number
Double–word within block
byte within double–word
  reserved: these bits are ignored

E–$ data can be accessed as byte, half–word, word, or double–word.

B.III.2.3.2 E–Cache Tag Address Format (ASI = 0x2)

31 07 625 24

rsvd rsvd

22 21 20 19

110 BLOCK rsvd

Field Description
BLOCK
rsvd

Cache block number
  reserved: these bits are ignored

E–$ tags can be accessed as double–words only.
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B.III.2.3.3 E–Cache Tag Format

63 036 35 19

rsvd rsvdPA<35:19>

18 16 123456789101112131415

S3 O3 V3 P3 S2 O2 V2 P2 S1 O1 V1 P1 S0 O0 V0 P0

Field Description Type

PA<35:19>
S<3:0>
O<3:0>
V<3:0>
P<3:0>
rsvd

Physical tag for E–$ line
Shared bit, sub–blocks <3:0>
Owned bit, sub–blocks <3:0>
Valid bit, sub–blocks <3:0>
Pening bit, sub–blocks <3:0>: Viking operation is pending
  reserved: read as ’0’, writing has no effect

RW  
RW
RW
RW
RW
R

B.III.2.3.4 E–Cache Data Prefetching

E–$ supports sequential data prefetch.  This feature is enabled when the PF bit in the MXCC Control Register is set

to 1.  Prefetch will occur when MXCC detects a burst read access to data whose next sequential sub–block is not valid.

Prefetch is bounded by block boundaries.  Only one prefetch can be pending at any time.

B.III.2.3.5 E–Cache Parity Protection

The E–$ has optional byte parity protection.  A module that has parity will have 128K x 9 SRAM instead of 128K x

8.  In order to determine if this is the case the following algorithm must be used, executing out of I–$ with no interven-

ing Viking bus cycles:

1) Enable parity checking in Viking by setting MCR bit <12> to ’1’ and in MXCC by setting MXCC

Control register bit <3> to ’1’.

2) Write a double–word to the E–$ using diagnostic access; do a stda to ASI 0x2 with address

0x01000000 and data of 0xaaaaaaaaaaaaaaaa.

3) Write a double–word to an MXCC tag with opposite parity; do a stda to ASI 0x2 with address

0x01800000 and with data of 0x5151515151515151.  The holding amplifiers on the bus will hold this parity.

4) Read back the data from the E–$ by issuing a ldda at address 0x01000000.  If the SRAM has parity bits

then the data will come back correctly; if not then the IU will take a data_access_exception trap with the cause being a

parity error, as indicated in the SFSR bit <14>.

If the module does support parity on the E–$ then the SRAM must be initialized by writing to each double–word

once in diagnostic mode using a stda at ASI 0x2 to the correct addresses (see B.III.2.3.1 for address information).  All

transactions between Viking and the MXCC and the E–$, and between the MXCC and the E–$ will be parity protected.

If parity is not supported then the bits set in step (1) must be cleared.

B.III.3 Cache Coherence, Store Buffers, and Memory Models

B.III.3.1 Cache Coherence

B.III.3.1.1 Cache Flushing

Since Viking caches are physically addressed the contents of cache lines always corresponds to a backing store in

physical memory.  For this reason no flush mechanism is supported; there is never a need to dereference the contents of

any cache line.
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For diagnostic purposes, flushes can be forced by accessing a different physical address that maps to the same

cache line, i.e. a displacement flush.  An E–$ line is flushed by reading a cacheable address that is identical modulo

[1MB].  A D–$ set can be flushed by reading in 4 cacheable addresses that map to the same set, i.e. modulo [4KB], or by

using the D–$ flash–clear mechanism.  Similarly the entire I–$ can be flushed with the flash–clear operation.

B.III.3.1.2 Cache Aliasing

Since all caches in this system are physically addressed there is no aliasing rule needed.

B.III.3.1.3 Cache Snooping

Viking/E$ maintains consistency in both the first–level I–$ and D–$ and the second–level E–$ by inclusion; the

E–$ always acts as backing store for the first–level caches, so the E–$ is always able to snoop MBus coherent transac-

tions on behalf of the internal caches.  The only message neccessary from the E–$ to the I–$ and D–$ is a simple ’invali-

date’ with a physical address.

When the E–$ is disabled the MXCC will forward all coherent invalidate, coherent read invalidate, and coherent

write invalidate operations on the MBus as a coherent invalidate on the Viking bus.  Note however that when the E–$ is

disabled all I–$ and D–$ misses will be sent to the MBus as a level–1 (non–coherent) transaction since the block sizes

are different; for this reason the E–$ should be enabled before the I–$ and D–$.

Also, the I–$ always snoops stores from the D–$ side, and maintains consistency. The SPARC flush instruction

merely forces the IU to wait until all store queues have drained to ensure that the I–$ is consistent.

B.III.3.2 Store Buffers

B.III.3.2.1 Store Buffer Operation

Viking implements a store buffer which behaves as a FIFO; internally it is configured as a fully–associative cache

of 8 double–words.  Snoops from the IU use the fully–associative path.  This store buffer eliminates most penalties for

the write–through operation of the D–$.  All stores that have successfully been translated by the MMU  are immediately

placed into the store buffer, allowing the processor to continue with no store penalty.  The IU will stall on a store only if

the store buffer is full or disabled, or if a TLB miss occurs.

Stores that are not placed in the store buffer include atomic operations, store–alternate operations, updates of ’R’

and ’M’ bits in the MMU tables, and stores when the store buffer is disabled.  Any of these stores will stall the IU, and

will not occur until any pending stores in the store buffer have been drained to the E–$; this guarantees that non–cached

and bypass operations all behave in a strongly ordered manner.

While the store buffer is structured as a cache, it operates as a FIFO for store operations.  Stores will be completed

in the order issued.  If the (doubleword) address of a load matches the (doubleword) address of a store that is currently in

the buffer, the load will stall until that write has completed.  If an instruction fetch address matches a store buffer entry

in that way, the fetch must wait until the store buffer has drained that entry to the E–$; data is not forwarded from the

store buffer to the instruction pipeline.

The store buffer also does burst collection.  While it does not accumulate bytes, it will turn sequences of memory

references within a cache block into burst write operations to the Viking bus.  This burst can be of arbitrary size within a

cache line.  Order of issue is maintained, and the burst will stop at any access that is to a different cache line, so TSO can

be maintained.  There is no way to use the store buffer without also using burst collection.
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The store buffer is automatically drained upon a context switch.  If a store buffer exception occurs as a result of the

copyout, the trap will be reported to the IU before the sta to the context register completes, so the contents of the CTX

register will reflect the context that owns the store buffer trap.  Upon resuming execution after the trap, the store to CTX

will complete.

The store buffer is enabled by the SB bit in the MCR.

B.III.3.2.2 Store Buffer Exceptions

When a fault occurs on a buffered store, it is reported to the IU as a data_store_error trap (priority 2, type 0x2b).  In

order for the error to be reported the NF bit in the MCR must be 0x0 and traps must be enabled.  Upon the detection of a

store buffer fault (due to a report of an error from the E–$ or the MBus) the store buffer is frozen, the SB bit in the MCR

is cleared, and the store buffer will retain all pending stores including the faulting one. A buffer copyout is not initiated.

All subsequent store accesses are synchronous and behave as if the store buffer is disabled.  Nominally these stores

belong to the trap handler, and so belong to a different, unrelated thread of execution.  Note that this is a synchronous

trap issued for an asynchronous event, similar to an interrupt.

The trap handler can retry the store operation by obtaining the data, address, size, and cacheability information

from the store buffer using diagnostic access.  The store can be recreated by using an ASI bypass with sta; the AC bit in

the MCR should be set to match the C bit in the store buffer tag.  The trap handler should set the NF bit prior to retrying

the store.  After the sta the handler can examine the SFSR to determine the error status. After the fault status is deter-

mined the OS can decide what action to take.

Alternatively the trap handler can re–issue the faulted store by simply re–enabling the store  buffer.  When a store

buffer exception occurs, the store buffer pointers retain their present value.   Setting NF=0 will prevent another store

buffer trap from being taken if the store sees another exception.  In this case, the store buffer will still turn off, even with

NF=0.  However, the store buffer error remains pending, and the IU–pipe doesn’t see it until NF=1.  A bit in the store

buffer  control register indicates the presence of a pending (unacknowledged) store buffer error,  or the code could

check if the store buffer is still enabled after the store.

Store order can be maintained even in the presence of an error; the trap handler simply retries all pending stores in

the order they were placed in the buffer.

After handling an error, the trap handler can return the store buffer to operation by clearing all valid bits, setting the

drain pointer equal to the fill pointer in the Store Buffer Control Register, and then setting the SB bit in the MCR to 0x1.

B.III.3.2.3 Store Buffer Control Register (ASI = 0x32)

31 09 8

rsvd

7 6 5 3 2

FPTRDPTREREMSE

Field Description

SE
EM
ER

DPTR

FPTR

Store Buffer Enabled: shadow of bit in MCR
Store Buffer Empty:  1 = Empty.  Set to ’1’ at reset.
Store Error Pending: set when a store buffer error occurs when
  traps are disabled.  Cleared when the trap is taken.
Drain Pointer: indicates the buffer entry that is at the head
  of the queue

Fill Pointer: indicates the next entry that will be written to.

TYPE

R
R
R

RW

RW
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The store buffer is full if the fill pointer equals the drain pointer and there are valid entries.  The buffer is empty if

the two pointers are equal and there are no valid entries.  The pointers increment modulo 8.

B.III.3.2.4 Diagnostic Access to the Store Buffer

B.III.3.2.4.1 Store Buffer Tag Address Format (ASI = 0x30)

31 03 2

rsvd

6 5

ENTRY 000

Field Description
ENTRY
rsvd

Store buffer entry number
  reserved: these bits are ignored

B.III.3.2.4.2 Store Buffer Tag Format

63 03543 36

rsvd SP PA<35:00>

42 41 40 39 38 37

V C SIZESB

Field Description
SP
B

V
S
C
SIZE
PA<35:00>
rsvd

Store Barrier Pointer: Used in PSO to mark the synchronization point
Burst Mode Access: Indicates that the next entry in the buffer
  corresponds to the next address, and thus can be issued in a burst
Valid entry
Supervisor: Indicates that the store was issued by a supervisor thread
Cacheable: Indicates that this store is a cacheable access
Size of access: 00 = byte, 01 = half–word, 10 = word, 11 = double–word
Physical address of the store.  Must be size–aligned or an error will occur
  reserved: these bits are ignored

B.III.3.2.4.3 Store Buffer Data Address Format (ASI = 0x31)

31 03 2

rsvd

6 5

ENTRY 000

Field Description
ENTRY
rsvd

Store buffer entry number (double–word access)
  reserved: these bits are ignored

B.III.3.3 Memory Models

Viking is capable of operating in three modes of ordering:  strong sequential ordering, Total Store Ordering (TSO),

and Partial Store Ordering (PSO).  The first is the standard model of data ordering in which all loads and stores com-

plete in order of issue.  The latter two models are those defined in the SPARC Architecture Manual version 8.

Strong ordering is achieved by disabling the internal store buffer.  This is done by setting the SB bit in the MCR to

0x0.  TSO is enabled by setting the SB bit to 0x1 and the PSO bit in the MCR to 0x0.  PSO is enabled by setting both SB

and PSO to 0x1.  TSO is the nominal memory model in Sun–4M and in SPARC V.8.  PSO requires explicit synchroniza-

tion of stores; stores are guaranteed to be ordered only with respect to the SPARC synchronization instruction stbar.
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B.III.4 Module Registers: differences from core (section 4)

B.III.4.1 Module Control Register: differences from core (section 4.1)

Bit <7>: PSO, rw. 1 = PSO mode, 0 = TSO mode.  Always set to ’0’ in Sun–4M systems.

Bit <8>: DE, rw.  Data–cache enable

Bit <9>: IE, rw. Instruction–cache enable.

Bit <10>: SB, rw.  Store buffer enable.

Bit <11>: MB, ro.  0 = E–cache mode, this is a Viking/E$ module and the D–$ is write–through. 1 = MBus

mode, this is a Viking/NE module and the D–$ is copy–back mode (in that case appendix B.I applies).

Bit <12>: PE, rw.  Parity check enable; turns on parity checking on Viking and cache RAM access.  This

should only be used if the E–$ has parity bits (see B.III.2.3.5).

Bit <13>: BT, rw.  Boot mode.  0 = normal operation, 1 = boot mode.  This bit functions exactly like bit

<14> in the generic register specification in section 4.1.

Bit <14>: SE, rw.  Snoop Enable:  when ’1’ snooping is enabled for the I–$ and D–$.

Bit <15>: AC, rw.  Alternate cacheable.  When the MMU is disabled or when the PTE is not used for

translation (i.e. for MMU bypass accesses) this bit provides the cacheability status of all transactions with the excep-

tion of boot–mode instruction fetches, which are never cacheable. This bit affects both the internal I–$ and D–$ and

the extenal E–$.  This functions differently from some modules, which will use the AC bit as an advisory for the MBus

address phase but will not cache these references.  In Sun–4M machines care must be taken to not accidentally attempt

cacheable accesses to non–memory devices or an error acknowledge will result.

Bit <16>: TC, rw.  Table–walk cacheable.  When ’1’ table–walk references can be cached in the E–cache.

Table–walk data is never cached in the internal cache.

Bit <18>: PF, rw.  Data Prefetch enable (see section B.III.2.2.6)

Bits <27:24>: SRMMU VER = 0x0, ro. Mask revisions will show only in the IU PSR.

Bits <31:28>: SRMMU IMPL = 0x4, (Texas Instruments), ro

B.III.4.2 Context Table Pointer Register: differences from core (section 4.2)

The Context Table Pointer Register has bits CTPR <31:8> = CTP <35:12>, and bits CTPR <7:0> are reserved.

Depending on the number of contexts supported the CTP may have any number of bits from <18:12> zeroed;  the con-

text table must be size aligned.  CTP <17:12> is the logical OR of CTPR <13:8> and CTX <15:10>. Thus if there are 10

context bits, CTPR<31:8> represent  CTP<35:12> and the context regsiter bits CTX<9:0> represent CTP<11:2>, with

CTP<1:0> = 00; the context table would have to be 4K aligned.  At the far end of the spectrum, if there are 16 context

bits then CTPR<31:14> represent CTP<35:18>, CTX<15:0> = CTP<17:2>, and again CTP<1:0> = 00; then the con-

text table would have to be 256K aligned.  Any size in between is also supported.  At a minimum the table must be 4K

aligned.

B.III.4.3 Context Register: differences from core (section 4.3)

N = 15, thus up to 64K contexts are supported.

B.III.4.4 Synchronous Fault Status Register: differences from core (section 4.4.1)

Bit <13>: VMP: Viking Master Parity Error.  Set when the MXCC detects a parity error on data sent from

Viking to MXCC on the Viking bus when Viking is the bus master.  Indicates broken hardware.

Bit <14>: P: Parity Error.  Indicates that a parity error has been detected on access to the E–$ or in commu-

nication with the MXCC.  If this bit is set, bit <12> (Uncorrectable Error) will also be set (see section B.III.2.3.5).

Bit <15>: SB: Store Buffer Error.  Indicates that a store buffer error has been detected (see section

B.III.3.2.2)
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Bit <16>: CS: Control Space Access Error.  Set if a lda, sta, or swapa returns an access error, except for

bus error on ASI’s 0x8 – 0xB and 0x20 – 0x2F or for bus error on MMU probe operations.  Normally these errors will

occur if there is an invalid ASI space, an incorrect size of access, an invalid address within a valid ASI space, or a bus

error on accessing space ASI = 0x2.  MFAR will hold the correct address in case of a CS error, although the ASI is not

captured anywhere.

Bit <17>: EM: Error Mode Reset Taken.  When set this indicates that the processor has taken a watchdog

reset.  In Viking/E$ this status also can be found in the MXCC Reset Register bit <2>.

B.III.4.5 Synchronous Fault Address Register: differences from core (section 4.4.2)

As allowed in the SRMMU specification this register will never hold the address of an instruction fault; that in-

formation will be found in the saved PC/NPC.  A special diagnostic path allows for this register to be written as well as

read at ASI = 0x4, VA = 0x00001400.

B.III.4.6 Asynchronous Fault Status and Address Registers: differences from core (section 4.5)

Viking does not support an AFSR/AFAR, even though it contains write buffers which allows write operations to

complete asynchronous to the instruction flow.  Any error reported asynchronously will be captured in MXCC regis-

ters.  See B.III.3.2.2 ’Store Buffer Exceptions’ for more information.

B.III.4.6 Reset Register: differences from core (section 4.6)

There is no Reset Regsiter internal to Viking.  The Reset register resides in the MXCC in ASI = 0x2 space.

 Assertion of WD will cause assertion of the Module Error output.   Snooping is maintained during either an SI or a

WD reset.

B.III.4.7 MBus Port Address Register Register: differences from core (section 4.6)

The MBus Port Address Register is defined as part of the MXCC register set in ASI = 0x2 space.

B.III.5 MXCC Registers (ASI = 0x2)

B.III.5.4 MXCC Registers

Name

0x01C00000 
0x01C00100 
0x01C00200 
0x01C00300 
0x01C00400 
0x01C00500 
0x01C00600 
0x01C00700 
0x01C00800 
0x01C00900 
0x01C00A00 
0x01C00B00 
0x01C00C00 
0x01C00D00 
0x01C00E00 
0x01C00F00 

Stream Data
Stream Source
Stream Destination
Reference/Miss Count
Interrupt Pending (Not Used in MBus systems)
Interupt Mask(Not Used in MBus systems)
Interrupt Pending Clear(Not Used in MBus systems)
Interrupt Generation(Not Used in MBus systems)
BIST (Built–in Selftest)
  Reserved
MXCC Control
MXCC Status
Module Reset
 Reserved
Error Registers
MBus Port Address Register

Address (ASI = 0x2)

Note:  All MXCC registers are accessed as 8–byte (double–word) only.
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B.III.5.4.1 Block Copy and Block Fill Operations

When configured for MBus use, the MXCC supports physically–addressed block copy or block fill operations on

32–byte blocks.  Block copy operations are done by filling the stream data register via a stream read, then writing it to

the destination with a stream write. A stream read is issued by writing the block address to the Stream Source Register;

a stream write is issued by writing the destination block address to the Stream Destination Register.  A block fill is

performed by writing the fill data to the Stream Data Register, then issuing a series of stream writes.  The IU can issue a

continuous series of stream writes and stream reads; hardware will interlock on pending operations.

B.III.5.4.1.1 Stream Source Register and Stream Destination Register Format

63 062 37

rsvd

36 35

PA<35:5>

5 4

00000CRDY

Field Description

RDY

C
PA<35:5>
rsvd

Ready: indicates that a pending stream read or stream write (Source 
  or Destination Register, respectively) has completed. Writes ignored.
Cacheable: indicates if the data is to/from cacheable space.
Physical address of the block to transfer.
  reserved: these bits are ignored, read as ’0’

TYPE

R

RW
RW
R

B.III.5.4.1.2 Stream Data Register Address Format

31 05 3 2

rsvdDW

6

rsvd

Field Description

DW
rsvd

Selects the double–word within the 32–byte block to be written
  reserved: these bits are ignored,  use ’0’

B.III.5.4.2 Reference/Miss Count Register

63 032 31

CMC CRC

Field Description Type

CMC
CRC

Cache Miss Count; increments on each E–$ miss
Cache Reference Count; increments on each E–$ reference

RW
RW

This register is used to track the E–$ hit ratio.  The counters are initialized by writing 0x0 to this register.  When bit

<31> becomes a ’1’ (in approximately 43 seconds) both CRC and CMC will freeze until bit <31> is cleared by software

(normally the entire counter will be reset by storing 0x0 again).
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B.III.5.4.3 MXCC Control Register

31 0

rsvd

12345689

PF MC PE CE

10

RC rsvdrsvd

Field Description Type

Read Reference Count: when set, only read references are
  counted in the Reference/Miss Counter
Prefetch Enable; triggers prefetch on burst read miss if next
  subblock is not in the E–$; stops at block boundaries.
Multiple Command Enable: normally set to ’1’.  Diagnostic.
1 = generate and check even parity.  0 = generate odd parity,
  checking is disabled.  ’0’ can be used to force parity errors.
Enable E–cache
  reserved; writes are ignored, reads as ’0’

RW  

RW

RW
RW

RW
R

RC  

PF

MC
PE

CE
rsvd

B.III.5.4.4 MXCC Status Register

63 040 39 38

rsvd

37 1234781112

SXP SM NCSPC SPC WP RP PPrsvdrsvd

Field Description Type

Store Exception Pending (definition is unclear..waiting for info)
Synchronous Mode: Shows if Viking is running at MBus speed.
Non–cacheable store pending count
Store–Pending Count
Write Miss Pending
Read Miss Pending
Prefetch Pending
  reserved; writes are ignored, reads as ’0’

R  
R
R
R
R
R
R
R

SXP
SM
NCSPC
SPC
WP
RP
PP
rsvd

B.III.5.4.5 Module Reset Register

31 2 1 03

rsvd WD SI rsvd

Field Description Type

RWD Watchdog Reset; write ’1’ to clear WD and to deassert the
  Module–Error Interrupt.

SI Software Internal Reset RW
Rrsvd Reserved, reads a ’0’, writing has no effect.

Write ’1’ to clear.

Software internal reset is provided for diagnostic purposes, and is not used for normal system operation.
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B.III.5.4.6 MXCC Error Register

63 062 61 60 59 58 353637383946475657

rsvdME CC VP CP AE EV CCOP<9:0> ERR<7:0> S PA<35:0>rsvd

Field Description Type

If any of the 4 errors (CC,VP,CP,AE) occur and the bit is 
  already set, the ME bit is set.
Cache Consistency Error (undexpected E–$ tag status)
Viking Bus Parity error on a Viking write (Viking is master)
Viking Bus Parity Error on MXCC read of E–$ (from MBus)
Asynchronous Error: Error from MBus on write or stream operation
which was already ack’ed to Viking.
Error Valid:  Indicates that this register contains error info.
CC Operation Code related to the error (see MXCC spec.)
Error code in ERR<2:0> or cache parity syndrome DPAR<0:7>
1 = Supervisor, 0 = User mode IU when error occurred
Physical address of the error
  reserved; writes are ignored, reads as ’0’

R  
R
R
R
RW
R
R
R
R

ME

CC
VP
CP
AE

EV
CCOP<9:0>
ERR<7:0>
S
PA<35:0>
rsvd

Individual bits in this register are write–1–to–clear.  This register is not affected by system reset.  To initialize it,

write to this register with data that is all 1’s, that is 0xFFFFFFFFFFFFFFFF.

 When CC, CP, or AE is set, the CCOP<7:0>, ERR<2:0>, S, and PA<35:0> fields are meaningful; the EV bit will

be set and the module error interrupt will be asserted.  In order to clear the error(s) that are posted, to  deassert the

Module_error interrupt, and to release the error register so that new error status can be captured, write back to this

register with the exact error information that was read; that way if a new error occurs between the read and the write to

the error register the corresponding error bit will still be set, and the module_error interrupt will still be asserted.  Note

however that the EV bit will not be set since those fields were frozen at the time the new error occurred, and status

related to the new error is lost (the only information is CC, CP, or AE).

If the ME bit is set, or if more than one of CC, CP, and AE is set then multiple errors have occurred and some error

status has been lost.

The CCOP<9:0> field indicates detailed status of the error that is posted.  (At this time the decode of the CCOP

field is not available; after production release, see the MXCC chip spec for further details).

If VP is set, the SFSR bit <13> will be set, and the SFAR will contain the corresponding address.

In the event of an AE, the ERR<7:0> field contains the error code in bits ERR<2:0>, defined as: 0x1 = Uncorrect-

able Error, 0x2 = Timeout Error, 0x3 = Bus Error, 0x4 = Undefined Acknowledge Error.  These codes represent the

acknowedges received from the MBus.  Codes 0x0, 0x5, 0x6, and 0x7 are not meaningful and should never occur when

EV is set.  Bits ERR<7:3> are not defined for AE.

For a CP error the ERR<7:0> field represents the parity syndrome for the E–$ access.  ERR<7> reflects a parity

error on data bits <63:56>, ERR<6> shows a parity error in data <55:48>, etc.

The decode of valid CCOP codes for MBus follow:
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CCOP<9:0> COMMAND MBUS 
COMMAND

Dcmd  rply  Pl  Xdst

Note

00110  
00110
00110
00101
10101
00010
00111
00110
01000
01001
01010
01011
11001
10011

00110
00110
00101
10101
00010
00111
01000
01001
01010
01011
11001

10011
00110
00110
01000

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

0
0
0
0

1
1
1
x
x
1
0
1
0
0
1
0
0
0

1
1
0
0
1
0
0
0
1
0
0

0
0
0
0

010
001
000
000
001
000
000
011
000
000
000
000
001
000

100
101
010
011
000
000
000
000
000
000
001

000
011
101
001

E$ ON

Burst Read Miss Reply              
Read Miss Reply
Write Miss Reply
Shared Write Reply
Shared LDST Reply
Stream Read Reply
Stream Write Reply
Prefetch Reply
NC Read Reply
NC Write Reply
NC Stream Read Reply
NC Stream Write Reply
NC LDST Reply
Flush Reply ACK

Burst Read Reply
Read Reply
Write Reply
LDST Reply
Stream Read Reply
Stream Write Reply
NC Read Reply
NC Write Reply
NC Stream Read Reply
NC Stream Write Reply
NC LDST Reply

Flush 
Bus Read Block
Bus Read Block
Bus NC Read

CR
CR
CI
CI or CRI 
CI or CRI [
CR
CWI
CR
NCR
NCW
NCR
NCW
NCR + NCW
NCW

NCR
NCR
NCW
NCR + NCW
CR
CWI
NCR
NCW
NCR
NCW
NCR+NCW

CR or CRI
CR
CRI
NCR

E$ OFF

Initiated 
from
MBus
side

x is a zero or one depending on what Mbus command is sent. Normally a CI command is sent. A CRI
is only sent if the line was invalidated between the tag look up and when the command was sent on Mbus.

A Flush command is sent to bcmd during a miss with owned sub–blocks and MXCC is bus owner. The
Flush command is initiated from the Mbus side of the MXCC.

B.III.5.4.7 MBus Port Address Register

31 0316 15 8 7 4

MDEV MREV MVEND

23242728

rsvd MID<3:0> rsvd

Field Description Type

MDEV
MREV
MVEND
MID<3:0>
rsvd

MBus device number: = 0x1        
Device revision number = 0x0
MBus vendor number = 0x4 (Texas Instruments)
MBus module ID (from MBus connector)
  reserved, read as ’0’

R
R
R
R
R
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B.III.5.4.8 BIST Register

This register is used to trigger and monitor a Built In Self–Test (BIST) cycle.  The BIST cycle is triggered by any

processor write to this address; the IU will be suspended for approximately one second while BIST is run, and then can

read the resulting signature in bits <30:0>.  The signature value is TBD.

B.III.6 MMU Details

The MMU contains 64 fully–associative TLB entries with a limited–history LRU replacement algorithm.  The

page tables are cacheable in the E–$ if MCR bit 16 is ’1’, but will never be cached in the D–$.

The limited–history replacement algorithm first sweeps TLB entries sequentially until all TLB’s have the valid bit

set.  From that point the next access to any TLB will set its ’used’ bit; replacement cycles will take the first TLB that is

not ’used’. At the time that all TLB entries have the ’used’ bit set, all ’used’ bits except the last one to be set are cleared,

and all history is lost.  The demap–all operation will clear all ’used’ and ’valid’ bits.

The root pointer and the level–2 PTP are also cached in the MMU.  A context switch will invalidate the cached root

pointer.  Upon the first miss after a context switch, an extra level of table–walk is supported in order to fetch that con-

text’s root pointer.  The level–2 PTP cache is invalidated upon writes to the context register or the context table pointer

register, or upon table–walks that do not use that PTP (in which case a new level–2 PTP is obtained for the cache).  This

cached PTP is used only for table–walks, M–bit updates, and probe–entire operations.  If level–2 is a PTE then it is not

cached.

A table walk is not atomic on the MBus.  Updates to the Modified and Referenced bits will guarantee correctness as

follows:  (1) if this is the first access to the page and it is not a store, the MMU will do an atomic swap operation to set the

’R’ bit; if the swap return ’R’ and ’M’ both set (by another processor) then another swap is performed to set both ’R’ and

’M’; (2) if this is a store access and the ’M’ bit is not set in the PTE, a simple store is done with both ’R’ and ’M’ set.

Because hardware may be iteratively updating the PTE when software is attempting to write a new value or invali-

date the entry, update algorithms must synchronize all processors and do a cooperative TLB flush in order to guarantee

consistency.

The Viking MMU implements the full set of PROBE types.

B.III.6.1 TLB RAM Diagnostic Access Address Format

31 0718 17

rsvd rsvd

12 11 10 8

SEL rsvdENTRY

Field Description

ENTRY
SEL

rsvd

Entry in Page Descriptor Cache (1 of 64)
Selects portion of TLB to access.  0 = VA, 1 = Context, 2 = LOCK bit, 
3 = PTE, 4 = Root Pointer (cached), 5 = level–2 PTP (cached), 6 = Level–2
Vaddr (cached)
  reserved: these bits are ignored
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B.III.6.1.2 VA Format (sel = 0 and sel = 6)

31 012 11

rsvdVA<31:12>

Field Description Type

VA<31:12>

rsvd

Virtual address tag.  Depending on PTE level, not all
 bits are significant.
  reserved, read as ’0’

RW

R

B.III.6.1.3 Context Format (sel = 1)

31 016 15

rsvd CTX<15:0>

Field Description Type

CTX<15:0>
rsvd

Context Tag.
  reserved, read as ’0’

RW
R

B.III.6.1.4 LOCK Format (sel = 2)

31 01

rsvd LOCK

Field Description Type

LOCK
rsvd

If ’1’, the contents of this TLB entry will not be replaced
  reserved, read as ’0’

RW
R

B.III.6.1.5 PTE Format (sel = 3)

31 01

LVL

8 7 6 5 4 2

C M V ACCPPN<35:12>

Field Description Type

PPN<35:12>
C
M
V
ACC
LVL

Physical Page Number
Cacheable
Modified
Valid TLB entry
Access Permission; smae as SRMMU
PTE level; 0 = root, 1 = region, 2 = segment, 3 = page.

RW
RW
RW
RW
RW
RW

B.III.6.1.6 Root Pointer Cache Format (sel = 4)

31 0

ROOT POINTER (see 7.1.3)
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B.III.6.1.7 Level–2 PTP Cache Format (sel = 5)

31 0

LEVEL–2 PTP (see 7.1.3)

Field Description Type

VFPA

TYPE
rsvd

Virtual Flush/Probe Address.  Depending on type, not all bits
  may be significant.
Demapping type.  0 = page, 1 = segment, 2 = region, 3 = con–
  text, 4 = entire MMU. 5–7 are reserved.
  reserved, writes are ignored.

RW  

RW
R
R

B.III.7 ASI’s Implemented

ASI FUNCTION

0x2
0x3
0x4
0x6

0x8
0x9
0xA
0xB

0xC
0xD
0xE
0xF

0x20–0x2F

0x30
0x31
0x32

0x36
0x37
0x38
0x39

0x40–0x41

0x44

0x46–4C

MXCC registers and E–$ access
Ref MMU Flush/Probe
Module Registers
SRMMU Diagnostic I/D–TLB

User Instruction
Supervisor Instruction
User Data
Supervisor Data

I–$ Cache Tag
I–$ Cache Data
D–$ Cache Tag
D–$ Cache Data

SRMMU bypass, PA<35:32> = ASI<3:0>

Store Buffer Tags
Store Buffer Data 
Store Buffer Control

I–cache Flash Clear
D–cache Flash Clear
MMU Breakpoint Diagnostics  (See Viking Specification for details)
BIST Diagnostics  (See Viking Specification for details)

Emulation temps [1–2] (See Viking Specification for details)

Emulation Data In1 (See Viking Specification for details)

Emulation Registers (See Viking Specification for details)

SIZE

Double
Word
Word
Word

All
All
All
All

Double
Double
Double
Double

All

Double
Double
Single

Word
Word
Double
Word

Word

Word

Word

Alternate space accesses with unsupported ASI’s will result in an error trap.
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B.III.8 Module Control Space Address Map

Name

0xFFn000000 – 0xFF10FFFFF
0xFFn800000 – 0xFF18FFFFF
0xFFnC00000 
0xFFnC00100 
0xFFnC00200 
0xFFnC00300 
0xFFnC00400 –  0xFFnC00700
0xFFnC00800 
0xFFnC00900 
0xFFnC00A00 
0xFFnC00B00 
0xFFnC00C00 
0xFFnC00D00 
0xFFnC00E00 
0xFFnC00EFC – 0xFFnFFFFFC
0xFFnFFFFFC

E–cache data
E–$ tag
Stream Data
Stream Source
Stream Destination
Reference/Miss Count
  Reserved (Not Used in MBus systems)
BIST
  Reserved
MXCC Control
MXCC Status
Module Reset
 Reserved
Error Registers
 Reserved
MBus Port Address Register

PA<35:0>

In this diagram ’n’ represents the MID of the processor being accessed.

Control space accesses to the Stream registers do not interlock on pending operations as they do for processor–side

accesses; the RDY bits must be polled.  Also writes to the Stream Data Register can only happen when there is no

processor–initiated stream operation in progress.

B.III.9 IU PSR Number

Bits <27:24> VER = 0x0

Bits <31:28> IMPL = 0x4 (Texas Instruments)

B.III.10 Module–Specific Quirks

This module violates the MBus specification for coherent snooping with MIH* in cycle A+2; instead it invokes

MBus Specification Appendix B.7, and provides MIH* in cycle A+7.

Since this is a module with physically addressed caches there is no VA superset provided in the address phase of

MBus transactions.

Note that locking all TLB entries can lead to a deadlock (infinite table walk) and so must be avoided.
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B.IV: Module Notes: Ross 604/64K

Based on Cypress Semiconductor ’SPARC RISC Users Guide’ Second Edition, February 1990, with corrections

based on conversations with Ross Semiconductor.

B.IV.1 Module Overview

B.IV.2 Cache Details

B.IV.3 Cache Flushing

B.IV.4 Module Registers: differences from core (section 4)

B.IV.5 Additional Registers Specific to this Module

B.IV.6 MMU Details

B.IV.7 ASI’s Implemented

B.IV.8 Module Control Space Address Map

B.IV.9 IU PSR Number

B.IV.10 Module–Specific Quirks

B.IV.11 Module Write Buffers

B.IV.12 Exiting Boot State
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B.IV.1 Module Overview

The Ross 604 module consists of a chipset developed by Cypress Semiconductor/Ross Technologies.  The proces-

sor set is a 1–scalar SPARC processor and cache system.  The chipset includes the CY7C601 IU, a CY7C602 FPU, a

CY7C604 CMU (Cache Controller and MMU) and two CY7C157 16KB x 16 pipelined cache SRAM.  The entire chip-

set runs synchronous with the 40 MHz MBus clock.  This is a level–1 module, meaning that it can only be used in a

uniprocessor system.  The MID for level–1 modules is hardwired to be 0xF, so it is not possible to use multiple level–1

modules in a system; this is due to hardware interlocks that use the MID, which is required to be unique for each master.

This logical module appears in one phsyical implementations, the Ross 6001 module (uniprocessor).  This module

is used only for system bringup purposes, and is not a product with Sun.

B.IV.2 Cache Details

The Ross 604 system utilizes a 64 KB virtual–address direct–mapped cache, with one cache shared by both

instruction access and data access.  The cache does not participate in the MBus level–2 coherence protocols.  The data

cache can be programmed to be either a write–through cache with a no–write–allocate policy or a write–back cache

with write–allocate.  The latter is recommended for use in Sun–4M systems.

The cache consists of 2048 blocks of 32 bytes each. The tag for each block in the main directory contains the virtu-

al tag VA<31:16>, the context number, a valid bit, a modified bit,  and a Supervisor bit.

In write–back mode, aliases are treated by checking the physical address of the modified line being displaced

against the physical address of the missed store access.  If they match then the tag is updated and no memory activity is

neeed.  Note that this check could require up to two table–walks to bring the physical addresses into the TLB’s.  Cache

alias size is 64 KB.

CACHE DATA

SELECTS BYTE(S) 
WITHIN WORD

BYTE 0 BYTE 1 BYTE 2  BYTE 3

BYTE 4       ETC...

BYTE 31

BYTE 0 BYTE 1 BYTE 2  BYTE 3

BYTE 4       ETC...

SELECTS LWORD 
WITHIN BLOCK

VIRTUAL ADDRESS

CACHE TAG

A31 A16 A15 A5 A4 A2 A1 A0

BLOCK
NUMBER

LWORD BYTE
VIRTUAL PAGE NUMBER 

(COMPARED TO VTAG)

SELECTS BLOCK
VTAG(31:16) CTXT(11:0) V M S r

Cache consists of 2048  
blocks of 32 bytes each

31 16 15 4 3 2 1 0
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B.IV.2.1 Cache Virtual Tag Format

31 016 15 4 3 2

CTX rsvd

1

V SVTAG M

Field Description Type

VTAG    
CTX
V
M
S
rsvd

Virtual Tag VA<31:18>    
Context Number CTX<11:0>
Valid cache entry
Modified cache line
Supervisor mode
  reserved: read as ’0’

RW  
RW
RW
RW
RW
R

B.IV.2.2 Addresses for Cache Diagnostic Access

Cache Line

0
1
2
3

...

2047

TAG (ASI = 0xE)

0x00000000  
0x00000020  
0x00000040  
0x00000060

0x0000FFE0

0x00000000  
0x00000020  
0x00000040  
0x00000060

0x0000FFE0

Data (ASI = 0xF)

B.IV.3 Cache Flushing

The cache in the Ross 604 module is flushed locally by the processor.  Flushing involves use of the I/D–cache flush

ASI’s with sta accesses.

B.IV.4 Module Registers: differences from core (section 4)

B.IV.4.1 Module Control Register: differences from core (section 4.1)

Bit <10>: CB, rw.  Only copy–back mode is used in Sun–4M, so this bit should be set to ’1’.

Bit <19>: MV, rw.  Multichip Valid; indicates that multiple 604’s are tied together to provide a larger

cache.  In Sun–4M configurations this bit mus be set to ’0’.

Bits <21:20>: MCM, rw.  Multichip mask.  Not used in Sun–4M

Bits <23:22>: MCA, rw.  Multichip address.  Not used in Sun–4M

Bits <27:24>: SRMMU VER = 0x1, ro; outdated prototypes have VER = 0x0

Bits <31:28>: SRMMU IMPL = 0x1 (Cypress Semiconductor), ro.

B.IV.4.2 Context Table Pointer Register: differences from core (section 4.2)

The Context Table Pointer Register has bits <31:10> = CTP <35:14>, and bits <9:0> are reserved.  This means that

the context table must be 16KB–aligned in memory.

B.IV.4.3 Context Register: differences from core (section 4.3)

N = 11, thus 4096 contexts are supported.
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B.IV.4.4 Synchronous Fault Status Register: differences from core (section 4.4)

Bit <13>: CT.  Copy–back Translation Error.  A translation fault occurred during a table–walk for the

flush of a modified cache line in copy–back mode.  The SFAR will contain the address of the missed cache access, not

the not the modified cache line address that caused the translation fault.  When this type of error occurs the cache tag

remains valid and the cache line will not be modified.

The SFSR is clear–on–read in this implemetentation.

B.IV.4.5 Asynchronous Fault Status Register: differences from core (section 4.5)

Clearing of the AFSR is controlled by reads of the AFAR.  The AFSR should be read prior to the AFAR, and the

AFAR should only be read if AFV (AFSR bit <0>)is asserted.  This avoids a race condition between asynchronous

faults being posted and accesses to the asynchronous fault registers.

B.IV.4.6 Reset Register: differences from core (section 4.6)

Bit <0> is called Software External Reset; writing a ’1’ to it will assert a reset output that is not used on Sun mod-

ules.  In order to ensure predictable operation, do not write a ’1’ to this bit.   This register is clear–on–read.

 Assertion of WD will not cause assertion of the Module Error output.  This is typical of level–1 modules.

B.IV.4.7 MBus Port Address Register Register: differences from core (section 4.6)

The CY7C604 does not support an MBus Port Register.  It is a level–1 MBus module.

B.IV.5 Additional Registers Specific to this Module

Name

0x00001000
0x00001100
0x00001200
0x00001300
0x00001400

Root Pointer Register (RPR)
Instruction Access PTP (IPTP)
Data Access PTP (DPTP)
Index Tag Register (ITR)
TLB Replacement Control Register (TRCR)

Address (ASI = 0x4)

B.IV.5.1 Root Pointer Register

rsvd

31 6 5 0

RP

1

V

Field Description Type

Root Pointer:   This is the Context level table  PTP (page table
pointer).  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset, or on writes to the Context Reg-
ister or to the Context Table Pointer Regsiter.

RW

RW

RP

V

rsvd Reserved. R
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B.IV.5.2 Instruction Access PTP Register

rsvd

31 4 3 01

VIPTP

Field Description Type

Instuction Access PTP (page table pointer).  Contains the level–2
PTP for IFETCH.  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset.
   reserved

RW

RW
R

IPTP

V
rsvd

B.IV.5.3 Data Access PTP Register

rsvd

31 4 3 01

VDPTP

Field Description Type

Data Access PTP (page table pointer).  Contains the level–2 PTP for
Data access.  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset.
   reserved

RW

RW
R

DPTP

V
rsvd

B.IV.5.4 Index Tag Register

rsvd

31 0218 17 16 15 1

rsvdITAG DTAG

Field Description Type

Tag for the IPTP register (level 1 and level 2)
Tag for the DPTP register (level 1 and level 2)
   reserved

RW
RW
R

ITAG
DTAG
rsvd

B.IV.5.5 TLB Replacement Control Register

rsvd

31 0614 13 8 7 5

rsvd RC IRC

Field Description Type

Replacement Counter for TLB random replacement
Initial Replacement Counter
   reserved

RW
RW
R

RC
IRC
rsvd

Bith RC and IRC are reset to ’0’ upon power–on reset.  In order to support TLB locking, the IRC can be set to a

non–zero value.  The IRC is used as an initialization value for RC; whenever RC reaches maximum count, it is pre-

loaded with the value in IRC on the next increment.  Locked TLB entries can be read/written through control space

accesses (ASI = 0x6).  When writing to the IRC field, write the same value to the RC field to ensure that the next–re-

placement pointer points to the unlocked area.
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B.IV.6 MMU Details

The MMU contains 64 TLB entries with a random replacement algorithm.  The page tables are not cacheable and

must be kept valid in main memory.

Upon the first miss after a context switch, an extra level of table–walk is supported in order to fetch that context’s

root pointer.  A small cache keeps the most recently accessed PTP for the root level and one each for the level–2 PTP

used for data and instruction access.  This cache is visible as the RPR, IPTP, DPTP, and ITR registers.  The IPTP and

DPTP cache is flushed upon any TLB flush or upon  any table walk  for an instruction or data access, respectively.  The

entire PTP cache is flushed when the Context Register or the Context Table Pointer Register is written.  A table walk is

atomic, that is, MBSY* is held asserted for the duration of a table–walk (up to 5 accesses to main memory in the case of

a first–write to a page), and the LOCK bit in MBus address phase is asserted for table–walks.

The IPTP and DPTP are not updated during table walks caused by address alias detection or copy–back flushes.

PROBE_ENTIRE is the only probe type supported in this SRMMU implementation.

B.IV.6.1 TLB RAM Diagnostic Access Format

31 08 7 6 5 3 2 1

PA C M VACC ST

Field Description Type

V
ST
ACC
M
C
PA

Valid Entry
Short translation Bits.  0 = page level and 3 = root.
Access Permission (per SRMMU)
Modified; this page has been written to
Cacheable page
Physical address <36:12>; some or all is valid depending on
  the ST field.

RW  
RW
RW
RW
RW
RW

B.IV.6.1 TLB CAM Diagnostic Access Format

31 012 11

VA<31:12> CTX<11:0>

Field Description Type

VA
CTX

Virtual Address tag for this entry
Context tag for this entry

RW  
RW

B.IV.7 ASI’s Implemented

Alternate space accesses with unsupported ASI’s will be ignored (writes are ignored, reads provide garbage data).

This module has no hardware support for block copy or block fill.

Access with ASI = 0x1 is identical to access with ASI = 0x20 (Bypass, PA<35:32> = 0x0) with the exception that

the MBL (local/boot mode) bit is asserted in the address phase.  This bit is ignored in Sun–4M systems.
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See the Ross 604 specification for details related to cache diagnostics, TLB diagnostics, TLB probes, cache flush-

ing, and TLB flushing.

ASI FUNCTION

0x1
0x3
0x4
0x6

0x8
0x9
0xA
0xB

0xE
0xF

0x10
0x11
0x12
0x13
0x14

0x20–0x2F

Local Bus Mode (not used in Sun–4M)
Ref MMU Flush/Probe D–TLB
Module Registers
SRMMU Diagnostic I/D–TLB

User Instruction
Supervisor Instruction
User Data
Supervisor Data

D–$ Cache Tag
D–$ Cache Data

Flush I/D cache by page
Flush I/D cache by segment
Flush I/D cache by region
Flush I/D cache by context
Flush I/D cache by ’user’

SRMMU bypass, PA<35:32> = ASI<3:0>

B.IV.8 Module Control Space Address Map

The CY7C604 has no MBus slave port.

B.IV.9 IU PSR Number

Bits <27:24> VER = 0x1 (Cypress Semiconductor)

Bits <31:28> IMPL = 0x1

B.IV.10 Module–Specific Quirks

The CY7C604 does not sense the MBus Module ID from the connector pins.  Instead the MID is hardwired to 0xF;

this is typical of level–1 modules.

The CY7C604 does not provide User/Supervisor information in the address phase of MBus transactions; for this

reason any error status captured in system asynchronous error registers will always appear to be a supervisor–mode

error, independent of the actual IU state.

The CY7C604 does not assert the module error signal upon watchdog reset since it is level–1.

The AFAR should be read only if AFV in the AFSR is asserted (see B.IV.4.5).

B.IV.11 Module Write Buffers

The CY7C604 contains 32–bytes of data write buffer.  When the chip is programmed to be a copy–back cache, the

write buffer is used to hold 1 cache write–back (32 bytes, one address) or 1–4 non–cacheable writes (up to 4 double–

word stores and up to four addresses).  The write buffer maintains strong order among writes issued, and reads or cache-

able writes (coherent invalidates) will stall the IU if the write buffers are not idle.
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A read of a non–cacheable entity (such as a hardware register, i.e. the M–to–S AFSR) will guarantee draining of

such write buffers at context switch.

B.IV.12 Exiting Boot State

B.IV.12.1 Exiting Boot State With MMU On

The transition from boot mode to normal operation is a delicate time.  In order to keep pipelines simple it is necces-

sary to make the transition from boot–mode ifetch to instruction fetch translation (see 3.1.2) while executing from the

same page; that is, the CY7C605 must be managed in a way that the same physical addresses are issued before, during,

and after the change in the BM bit.

The physical address range for the EPROM is 0xFF0000000 – 0xFF007FFFF.  Address bits <23:19> are don’t–

care (they are not decoded by the EPROM interface) and so they can have any value.  In boot–mode Ifetch pass–thru

mode, the VA–to–PA translation is PA<35:28> = 0xFF, PA<27:0> = VA<27:0>.  This means that VA<31:28> are also

don’t–care when the module is in boot–mode.  When boot mode is turned off, instruction fetches will be translated; the

translation of this virtual address to the EPROM physical address must be established so that the fetches just before and

just after the instruction that clears boot mode all fall on the same physical page.  Note that this means that

PA<27:24> = VA<27:24> = 0x0, PA<18:0> = VA<18:0>, and the rest of the address can be freely selected.

B.IV.12.2 Exiting Boot State With MMU Off

It is also legal to exit boot–mode with the MMU disabled; when boot–mode is turned off and the MMU is off, all

accesses happen in MMU pass–thru mode (see 3.1.2) where PA<35:32> = 0x0, and PA<31:0> = VA<31:0>.  In order to

guarantee correct operation, the page in which boot mode is turned off must be copied from the EPROM to main

memory at an address where PA<18:0> is identical to PA<18:0> in the EPROM address; the transistion from boot

mode to pass–thru will also involve a transition from EPROM fetch to main memory fetch.
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B.V: Module Notes: Ross 605/128K

Based on Cypress Semiconductor ’SPARC RISC Users Guide’ Second Edition, February 1990, with corrections

based on conversations with Ross Semiconductor.

B.V.1 Module Overview

B.V.2 Cache Details

B.V.3 Cache Coherence

B.V.4 Module Registers: differences from core (section 4)

B.V.5 Additional Registers Specific to this Module

B.V.6 MMU Details

B.V.7 ASI’s Implemented

B.V.8 Module Control Space Address Map

B.V.9 IU PSR Number

B.V.10 Module–Specific Quirks

B.V.11 Module Write Buffers

B.V.12. Exiting Boot State

B.V.13 Programming Notes on Multichip Operation
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B.V.1 Module Overview

The Ross 605/128K module consists of a chipset developed by Cypress Semiconductor/Ross Technologies.  The

processor set is a 1–scalar SPARC processor and cache system.  The chipset includes the CY7C601 IU, a CY7C602

FPU, two CY7C605 CMU (Cache Controller and MMU) and four CY7C157 16KB x 16 pipelined cache SRAM.  The

entire chipset runs synchronous with the 40 MHz MBus clock.

This module is very similar to the Ross605/64K module described in appendix B.II, except that a 128 KB cache is

supported through the use of two cascaded CY7C605 chips.  Each of these supports 64 KB of cache, differentiated by

the value of VA<16>.  This means that a single processor module has two (dependent) sets of Context and Context

Table Pointer Registers, two independent Reference MMU’s, two sets of Synchronous and Asynchronous Fault Status

and Fault Address Registers, two Reset Registers, etc.  This module does not conform to the generic core register ad-

dresses in section 4.

This module is a hypothetical module; the functions described should work, but this module has never been built

and tested at Sun.  If built, a physical module would contain one uniprocessor logical module, since each processor

requires two request/grant pairs in this design.  There are no plans to use this module in a product.

B.V.2 Cache Details

The Ross 605 system utilizes a 128 KB virtual–address direct–mapped cache, with one cache shared by both

instruction access and data access.  The cache participates in the MBus level–2 coherence protocols.  Snooping is im-

plemented via a virtually–indexed, physically tagged ’dual’ directory.  The data cache can be programmed to be either

a write–through cache with a no–write–allocate policy or a write–back cache with write–allocate.  The latter is used in

Sun–4M systems.

CACHE DATA

SELECTS BYTE(S) 
WITHIN WORD

BYTE 0 BYTE 1 BYTE 2  BYTE 3

BYTE 4       ETC...

BYTE 31

BYTE 0 BYTE 1 BYTE 2  BYTE 3

BYTE 4       ETC...

SELECTS LWORD 
WITHIN BLOCK

VIRTUAL ADDRESS

PVTAG

MPTAG

A31 A16 A15 A5 A4 A2 A1 A0

BLOCK
NUMBER

LWORD BYTE
VIRTUAL PAGE NUMBER 

(COMPARED TO VTAG)

SELECTS BLOCK

VTAG(31:16) CTXT(11:0) V SH S r

SH M V rPTAG(35:12)

Cache consists of 2048  
blocks of 32 bytes each

VA<16> selects between two
identical cache arrays

MBUS SNOOP  
ADDRESS

31 16 15 4 3 2 1 0

31 8 7 6 5 4 0

The cache consists of 4096 blocks of 32 bytes each. The tag for each block in the main directory contains the virtu-

al tag VA<31:16>, the context number, a valid bit, a shared bit  and a Supervisor bit. The ’dual’ directory contains the

physical tag for that block, along with a valid, shared, and modified bit.
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In write–back mode, aliases are detected by checking the physical address of the miss with the ’dual’ tag on the

current occupant of the cache block. If an alias is detected then the miss can be serviced without accessing the system

memory.  Cache alias size is 128 KB.

The 64 KB of cache supported by the first CY7C605 (referred to as CMU–0) are used for virtual addresses that

have VA<16> = 0; the cache supported by the second CY7C605 (CMU–1) supports virtual addresses with VA<16> = 1.

Normal cache operations (hits, misses, flushes) are serviced by the appropriate cache half, invisibly to software.  Only

control register operations need be aware of the dual–controller nature of this module.

B.V.2.1 Cache Virtual Tag Format  (PVTAG)

31 016 15 4 3 2

CTX rsvd

1

V SH SVTAG

Field Description Type

VTAG    
CTX
V
SH
S
rsvd

Virtual Tag VA<31:18>    
Context Number CTX<11:0>
Valid cache entry
Shared
Supervisor mode
  reserved: read as ’0’

RW  
RW
RW
RW
RW
R

B.V.2.2 Dual Directory Tag Format  (MPTAG)

31 08 4

rsvdV

567

PTAG SH M

Field Description Type

PT         
SH
M
V
rsvd

Physical Tag PA<35:12>    
Shared block
Modified
Valid cache entry
  reserved: read as ’0’

RW  
RW
RW
RW
R

B.V.2.3 Addresses for Diagnostic Access

605 #0 605 #1
Cache Line

0
1
2
3

...

2047

PVTAG (ASI = 0xE)

0x00840000  
0x00840020  
0x00840040  
0x00840060

     ...

0x0084FFE0

0x01050000  
0x01050020  
0x01050040  
0x01050060

     ...

0x0105FFE0

605 #0 605 #1

MPTAG (ASI = 0xE)

0x00800000  
0x00800020  
0x00800040  
0x00800060

     ...

0x0080FFE0

0x01010000  
0x01010020  
0x01010040  
0x01010060

     ...

0x0101FFE0

605 #0 605 #1

0x00800000  
0x00800020  
0x00800040  
0x00800060

     ...

0x0080FFE0

0x01010000  
0x01010020  
0x01010040  
0x01010060

     ...

0x0101FFE0

Data (ASI = 0xF)
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B.V.3 Cache Coherence

B.V.3.1 Cache Flushing

The cache in the Ross 605 module is flushed locally by that module’s processor.  Flushing involves use of the cache

flush ASI’s with sta accesses.  The dual–controller nature of the cache is not visible to software for flush operations.

B.V.3.2 Cache Snooping

The Ross 605 provides VA<19:16> and monitors VA<15:12> in the MBus VA Sueprset field; this is sufficient to

snoop the 128 KB cache.  An important note is that there is no way to disable snooping, even when the cache is

disabled; this means that all cache tags in all modules must be invalidated prior to enabling any of the caches in

the system.

B.V.4 Module Registers: differences from core (section 4)

Due to the fact that two CY7C605 parts are used, there are two complete sets of control registers.  The address map

for access to these registers differs from the generic core; in fact, the generic core addresses cannot be used.  The

605/128K address map is as follows:

Name

0x00800000
0x00800100
0x00800200
0x00800300
0x00800400
0x00800500
0x00800600
0x00800700
0x00801000
0x00801100
0x00801200
0x00801300
0x00801400

Module Control Register (MCR)
Context Table Pointer Register (CTPR)
Context Register (CTX)
Synchronous Fault Status Register
Synchronous Fault Address Register
Asynchronous Fault Status Register
Asynchronous Fault Address Register
Reset Register
Root Pointer Register (RPR)
Instruction Access PTP (IPTP)
Data Access PTP (DPTP)
Index Tag Register (ITR)
TLB Replacement Control Register (TRCR)

Address (ASI = 0x4)

CMU–0 CMU–1

0x01010000
0x01010100
0x01010200
0x01010300
0x01010400
0x01010500
0x01010600
0x01010700
0x01011000
0x01011100
0x01011200
0x01011300
0x01011400

B.V.4.1 Module Control Register: differences from core (section 4.1)

Bit <10>: CB, rw.  Only copy–back mode is used in Sun–4M, so this bit should be set to ’1’.

Bit <11>: MR, rw. Memory Reflection:  should always be set to ’0’ in Sun–4M usage.

Bits <18:15>: MID<3:0>, rw.  Ross 605 does not read the pins of the module connector to establish the

MID, so the MID must be set by boot firmware.  This must be done very early in the boot process (see B.V.10).

Bit <19>: MV, rw.  Multichip valid (see B.V.11, ’Multichip Startup’)

Bits <21:20>: MCM<1:0>, rw.  Multichip mask (see B.V.11, ’Multichip Startup’)

Bits <23:22>: MCA<1:0>, rw.  Multichip address (see B.V.11, ’Multichip Startup’)

Bits <27:24>: SRMMU VER = 0xF, (CY7C605), ro 

Bits <31:28>: SRMMU IMPL = 0x1 (Cypress Semiconductor), ro.

Care must be taken with any operation that modifies the Module Control Registers. It is vital that any change in

control information is made to both CY7C605’s in a controlled way, such as enabling the cache, enabling the MMU,

setting the ’C’ bit or boot–mode bit, etc.  The two module control registers will not be identically written; once the

multichip function is started, CMU–0 will have MCM = 0x2 and MCA = 0x2, and CMU–1 will have MCM = 0x2

and MCA = 0x3. Both will have the MV bit set to ’1’ when multichip operations have been started.  Any subsequent

updates to the two module control registers must maintain the values of these fields.
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The MID value in the two CMU’s will also differ.  The MID value needs to be determined prior to multichip

operation (it should be done as soon as possible in the boot sequence).  The number returned by the system MID Regis-

ter should be an even number.  CMU–0 gets this number, and CMU–1 gets that MID plus 1.  For example, if the read of

the MID Register returns ’0x8’, CMU–0 gets an MID of ’0x8’ and CMU–1 gets an MID of ’0x9’.  This difference also

must be maintained with each write to the module control registers.

A power–on reset will turn off the MV bit in both MCT’s, and will set the boot–mode bit in CMU–0; software reset

through the Reset Register or Watchdog reset will set the boot–mode bit in both CMU’s, and won’t affect the current

state of the MV bits.  If multichip operation was started, then boot–mode accesses will be shared by both CMU’s based

on VA<16>.

B.V.4.2 Context Table Pointer Register: differences from core (section 4.2)

The Context Table Pointer Register has bits <31:10> = CTP <35:14>, and bits <9:0> are reserved.  This means that

the context table must be 16KB–aligned in memory.  Both CTPR–0 and CTPR–1 must contain the same information;

when one is updated, the other should be updated to the same value immediately.

B.V.4.3 Context Register: differences from core (section 4.3)

N = 11, thus 4096 contexts are supported.  Both CTX–0 and CTX–1 must contain the same information; when one

is updated, the other should be updated to the same value immediately.

B.V.4.4 Synchronous Fault Status Register: differences from core (section 4.4)

The SFSR is clear–on–read in this implementation.  There is a set of synchronous fault status and address registers

in each of the CY7C605’s; when servicing a synchronous trap both SFAR–0, SFSR–0 and SFAR–1, SFSR–1 must be

checked.  Reading a particular SFSR clears it, and releases the corresponding SFAR.

B.V.4.5 Asynchronous Fault Status Register: differences from core (section 4.5)

Clearing of the AFSR is controlled by reads of the AFAR.  There is a set of asynchronous fault status and address

registers in each of the CY7C605’s; when servicing an asynchronous fault (level–15 interrupt caused by a module_er-

ror) both AFAR–0, AFSR–0 and AFAR–1, AFSR–1 must be checked.  AFSR–0 and AFSR–1 should be read prior to

reading AFAR–0 and AFAR–1, and the appropriate AFAR should be read only if AFV is asserted.  This is done to

prevent a race condition between asynchrnonous faults from the write buffers and accesses to the Asynchronous Fault

registers.

B.V.4.6 Reset Register: differences from core (section 4.6)

This register is clear–on–read.

Bit<1> of CMU–1 resets only that MCT, and bit <1> of CMU–0 resets both CMU–0 and the IU/FPU.  When issu-

ing a software reset to this module, write first to Reset Register–1, then Reset Register–0.  The first write will reset

CMU–1, and the second write will reset CMU–0, the IU, and the FPU.

Snooping is maintained during either an SI or a WD reset.
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B.V.4.7 MBus Port Address Register Register: differences from core (section 4.6)

The CY7C605 does not support an MBus Port Address Register.

B.V.5 Additional Registers Specific to this Module

Name

0x00801000
0x00801100
0x00801200
0x00801300
0x00801400

Root Pointer Register (RPR)
Instruction Access PTP (IPTP)
Data Access PTP (DPTP)
Index Tag Register (ITR)
TLB Replacement Control Register (TRCR)

Address (ASI = 0x4)

0x01011000
0x01011100
0x01011200
0x01011300
0x01011400

CMU–0 CMU–1

B.V.5.1 Root Pointer Register

rsvd

31 6 5 0

RP

1

V

Field Description Type

Root Pointer:   This is the Context level table  PTP (page table
pointer).  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset, or on writes to the Context Reg-
ister or to the Context Table Pointer Regsiter.

RW

RW

RP

V

rsvd Reserved. R

B.V.5.2 Instruction Access PTP Register

rsvd

31 4 3 01

VIPTP

Field Description Type

Instruction Access PTP (page table pointer).  Contains the level–2
PTP for IFETCH.  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset.
   reserved

RW

RW
R

IPTP

V
rsvd

B.V.5.3 Data Access PTP Register

rsvd

31 4 3 01

VDPTP

Field Description Type

Data Access PTP (page table pointer).  Contains the level–2 PTP for
Data access.  It is part of the page table pointer cache.
Valid.  Cleared on power–on reset.
   reserved

RW

RW
R

DPTP

V
rsvd
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B.V.5.4 Index Tag Register

rsvd

31 0218 17 16 15 1

rsvdITAG DTAG

Field Description Type

Tag for the IPTP register (level 1 and level 2)
Tag for the DPTP register (level 1 and level 2)
   reserved

RW
RW
R

ITAG
DTAG
rsvd

B.V.5.5 TLB Replacement Control Register

rsvd

31 0614 13 8 7 5

rsvd RC IRC

Field Description Type

Replacement Counter for TLB random replacement
Initial Replacement Counter
   reserved

RW
RW
R

RC
IRC
rsvd

Bith RC and IRC are reset to ’0’ upon power–on reset.  In order to support TLB locking, the IRC can be set to a

non–zero value.  The IRC is used as an initialization value for RC; whenever RC reaches maximum count, it is pre-

loaded with the value in IRC on the next increment.  Locked TLB entries can be read/written through control space

accesses (ASI = 0x6).  When writing to the IRC field, write the same value to the RC field to ensure that the next–re-

placement pointer points to the unlocked area.

B.V.6 MMU Details

The MMU contains 64 TLB entries with a random replacement algorithm.  The page tables are not cacheable and

must be kept valid in main memory.

Upon the first miss after a context switch, an extra level of table–walk is supported in order to fetch that context’s

root pointer.  A small cache keeps the most recently accessed PTP for the root level and one each for the level–2 PTP

used for data and instruction access.  This cache is visible as the RPR, IPTP, DPTP, and ITR registers.  The IPTP and

DPTP cache is flushed upon any TLB flush or upon  any table walk  for an instruction or data access, respectively.  The

entire PTP cache is flushed when the Context Register or the Context Table Pointer Register is written.  A table walk is

atomic, that is, MBSY* is held asserted for the duration of a table–walk (up to 5 accesses to main memory in the case of

a first–write to a page), and the LOCK bit in MBus address phase is asserted for table–walks.

The IPTP and DPTP are not updated during table walks caused by address alias detection or copy–back flushes.

This module supports two such MMU’s; they are identical but independent.  The MMU in CMU–0 responds to

virtual addresses with VA<16> = 0, and the MMU in CMU–1 responds to virtual addresses with VA<16> = 1.  When

locking TLB entries this fact must be kept in mind.

PROBE_ENTIRE is the only probe type supported by this SRMMU implementation.
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B.V.6.1 TLB RAM Diagnostic Access Format

31 08 7 6 5 3 2 1

PA C M VACC ST

Field Description Type

V
ST
ACC
M
C
PA

Valid Entry
Short translation Bits.  0 = page level and 3 = root.
Access Permission (per SRMMU)
Modified; this page has been written to
Cacheable page
Physical address <35:12>; some or all is valid depending on
  the ST field.

RW  
RW
RW
RW
RW
RW

B.V.6.2.TLB CAM Diagnostic Access Format

31 012 11

VA<31:12> CTX<11:0>

Field Description Type

VA
CTX

Virtual Address tag for this entry
Context tag for this entry

RW  
RW

B.V.6.4  Addresses for TLB Diagnostic Access (ASI = 0x6)

CMU–0 CMU–1
TLB Entry

0
1
2
3

...

63

TLB RAM

0x00800000  
0x00800008  
0x00800010  
0x00800018  

     ...

0x008001F8

CMU–0 CMU–1

TLB CAM

0x00800004  
0x0080000C 
0x00800014  
0x0080001C 

     ...

0x008001FC

0x01010000  
0x01010008  
0x01010010  
0x01010018  

     ...

0x010101F8

0x01010004  
0x0101000C 
0x01010014  
0x0101001C 

     ...

0x010101FC

B.V.7 ASI’s Implemented

Alternate space accesses with unsupported ASI’s will be ignored (writes are ignored, reads provide garbage data).

This module has no hardware support for block copy or block fill.

Access with ASI = 0x1 is identical to access with ASI = 0x20 (Bypass, PA<35:32> = 0x0) with the exception that

the MBL (local/boot mode) bit is asserted in the address phase.  This bit is ignored in Sun–4M systems.

See the Ross 605 specification for details related to  TLB probes and TLB flushing.
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ASI FUNCTION

0x1
0x3
0x4
0x6

0x8
0x9
0xA
0xB
0xE
0xF

0x10
0x11
0x12
0x13
0x14

0x20–0x2F

Local Bus Mode (not used in Sun–4M)
Ref MMU Flush/Probe I/D–TLB
Module Registers
SRMMU Diagnostic I/D–TLB (ref. B.V.6.4)

User Instruction
Supervisor Instruction
User Data
Supervisor Data
I/D–$ Cache Tag (A<18> = 0), MPTAG (A<18> = 1) (ref. B.V.2.3)
I/D–$ Cache Data (ref. B.V.2.3)

Flush I/D cache by page
Flush I/D cache by segment
Flush I/D cache by region
Flush I/D cache by context
Flush I/D cache by ’user’

SRMMU bypass, PA<35:32> = ASI<3:0>

B.V.8 Module Control Space Address Map

The CY7C605 has no MBus slave port.

B.V.9 IU PSR Number

Bits <27:24> VER = 0x1 (Cypress Semiconductor)

Bits <31:28> IMPL = 0x1

B.V.10 Module–Specific Quirks

The CY7C605 does not sense the MBus Module ID from the connector pins.  Instead the MID must be initialized in

software.  The MID can be read in the MID Register; this register is provided specifically for this module (see 5.4.3).

The CY7C605 does not provide User/Supervisor information in the address phase of MBus transactions; for this

reason any error status captured in system asynchronous error registers will always appear to be a supervisor–mode

error, independent of the actual IU state.

CY7C605 support for reflective memory and for second–level cacheing is not used in Sun–4M systems.

Due to the nature of module write buffers and the way that asynchronous errors are captured, the AFAR should not

be read unless the corresponding AFV bit in the AFSR is asserted (see B.V.5.4)

B.V.11 Module Write Buffers

The CY7C605’s contains 32–bytes of data write buffer each.  When the chip is programmed for multichip opera-

tion (as it is for this module) those write buffers are used only for copy–back operations; the buffering of non–cached

stores is disabled to prevent store order problems between the two independent FIFO’s.  While the chip is still in single–

chip mode the write buffer will hold either one 32–byte write–back or up to 4 non–cached stores.  The software should

ensure that the store buffers are drained prior to enabling multichip operation; this can be done by executing a non–

cachable read.
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B.V.12. Exiting Boot State

B.V.12.1 Exiting Boot State With MMU On

The transition from boot mode to normal operation is a delicate time.  In order to keep pipelines simple it is necces-

sary to make the transition from boot–mode ifetch to instruction fetch translation (see 3.1.2) while executing from the

same page; that is, the CY7C605 must be managed in a way that the same physical addresses are issued before, during,

and after the change in the BM bit.

The physical address range for the EPROM is 0xFF0000000 – 0xFF007FFFF.  Address bits <23:19> are don’t–

care (they are not decoded by the EPROM interface) and so they can have any value.  In boot–mode Ifetch pass–thru

mode, the VA–to–PA translation is PA<35:28> = 0xFF, PA<27:0> = VA<27:0>.  This means that VA<31:28> are also

don’t–care when the module is in boot–mode.  When boot mode is turned off, instruction fetches will be translated; the

translation of this virtual address to the EPROM physical address must be established so that several fetches just before

and just after the instruction that clears boot mode all fall on the same physical page.  Note that this means that

PA<27:24> = VA<27:24> = 0x0, PA<18:0> = VA<18:0>, and the rest of the address can be freely selected.

In a multichip module the exit from boot state is done prior to enabling multichip operation, so the above actvity

involves a system where CMU–0 has the MMU enabled, CMU–1 is still MV = 0.

B.V.12.2 Exiting Boot State With MMU Off

It is also legal to exit boot–mode with the MMU disabled; when boot–mode is turned off and the MMU is off, all

accesses happen in MMU pass–thru mode (see 3.1.2) where PA<35:32> = 0x0, and PA<31:0> = VA<31:0>.  In order to

guarantee correct operation, the page in which boot mode is turned off must be copied from the EPROM to main

memory at an address where PA<18:0> is identical to PA<18:0> in the EPROM address; the transistion from boot

mode to pass–thru will also involve a transition from EPROM fetch to main memory fetch.

B.V.13 Programming Notes on Multichip Operation

B.V.13.1 Notes on Multichip Startup

Prior to enabling multichip operation all instruction fetches are handled by CMU–0.  When enabling multichip

operation, it is very important the addresses used for those instructions live in an address space that is handled by

CMU–0 (i.e. VA<16> = 0) in order to prevent conflict between the two CMU’s during the period that one is multichip

enabled and the other is not.

Whenever changing the state of the module control registers, the register belonging to CMU–1 should be written

first, then the register belonging to CMU–0.

When enabling multichip operation, CMU–1 should have the module control register set with MCM = 0x2 and

MCA = 0x3, and MV = 1.  Next CMU–0 will have its module control register written with MCM = 0x2 and MCA = 0x2,

and MV = 1.  The same writes should initialize the MID fields as specified in B.V.10.  The code should not immediately

jump to addresses that have VA<16> = 1; to keep the pipelines uncomplicated and to prevent bus contention, the code

should execute at least 5 instructions with VA<16> = 0 after multichip operation has been enabled.

For reference (in case the reader is referring to the CY7C605 data sheet) the 605’s are designed in such way that

they respond to different addresses depending upon whether or not the MV bit is set; the addresses chosen in this appen-

dix are selected such that the 605’s will respond correctly independent of the MV status.
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B.V.13.2 Handling Watchdog Resets and SE Resets with MV Valid

A watchdog reset will reset both CMU–0 and CMU–1, as well as the IU and FPU.  The BM bit in both Module

Control Registers will be set.  The key difference between a WD reset and a POR reset is that the MV state of both

CMU’s is maintained; thus if multichip operation was enabled and a watchdog reset occurs, the bootmode instruction

fetches will be handled by both CMU’s as selected by VA<16>.  If the firmware chooses to disable multichip opera-

tion it is important to ensure that the VA being issued at that point in the code has VA<16> = 0 so that operation

will continue when CMU–1 stops responding.  CMU–1 should have MV disabled first, then CMU–0 should have MV

cleared so that CMU–0 will once again respond to all addresses.

SE resets (via the module Reset Registers) behave in a similar fashion.

B.V.13.3 Probing 64K vs. 128K Modules

Once the boot code has determined from the IU PSR that this is a CY7C601 IU, it needs to determine if the module

has a single CY7C604 (Appendix B.IV), a single CY7C605 (Appendix B.II) or a dual CY7C605 (this appendix).  This

must be done prior to any other reads or writes to module control registers.

The modules described in B.II and B.IV do not decode all address bits in ASI = 0x4 accesses, so the addresses used

for CMU–0 and CMU–1 in this appendix will also access the registers in those modules.  In order to determine which

kind of module is in use, first read the Module Control Register using ASI = 0x4 and VA = 0x00800000.  If the VER

field = 0x0 this is a CY7C604–based module (appendix B.IV).  If the VER field  = 0xF then this is a CY7C605; in that

case we must determine if this is a 64K or a 128K module.  This is done by writing different data to the CTX registers

CTX–0 (at VA = 0x00800200) and CTX–1 (at VA = 0x01010200) then reading them back.  If the last data written

appears at both addresses then this is a 64K module (appendix B.II), and if the two patterns persist this is a 128K module

(this appendix).

In order to simplify the firmware, it is safe to use CMU–0 addresses in place of the Section 4 generic module ad-

dresses for ASI = 0x4 accesses on all CY7C601–based modules; all three module types listed above will respond cor-

rectly.


