NetBSD LVM implementation

Adam Hamsik
haad@netbsd.org

EuroBSDcon 2009,
Cambridge, UK
September 2009.
Introduction

- Hard project to choose
- Missing major feature of a server OS
 - Linux, Aix, HP-UX, Solaris, FreeBSD has it
- Available disk space is growing
 - 3-4 terabytes are common in server
- Number of disks in a server is much higher than it used to be
Motivation

• Make administration of NetBSD servers much easier than it is now

• Learn something new about NetBSD internals
Talk outline

- Introduce Logical Volume Manager in general
- Introduce NetBSD LVM implementation
- explain how, why was it done
- give usage examples
- Q&A
Traditional disk partitioning methods

• DOS partitions
• BSD disklabel
• GPT partitions
 - new partitioning scheme developed by Intel as a part of EFI
Logical Volume Manager design

Physical Volume → Volume Group

Physical Volume → Volume Group

Physical Volume → Volume Group

Volume Group → Logical Volume

Volume Group → Logical Volume

Volume Group → Logical Volume

Logical Volume → Logical Volume

Logical Volume → Logical Volume

Logical Volume → Logical Volume
Details

• Every LVM implementation has some sort of Physical Volume which is placed on a hard disk

• Volume Group is a pool of available disk space from which virtual partitions can be created

• Logical volumes are virtual partitions which can be used in a system like normal disks
NetBSD LVM

- Done during Google Summer of Code 2008
- Simple BSD licensed kernel driver which maps real disk blocks to virtual ones
 - driver is called device-mapper
- Linux lvm tools which manage LVM metadata.
NetBSD LVM architecture
Device-mapper

- Clean and small reimplementaion of Linux device-mapper driver
- BSD licensed
- Implements new kernel/userspace protocol based on proplib library
- Implements linear and stripe targets
- SMP ready
Device-mapper architecture
DM implementation

• For every device in device-mapper there is a table which describes how are physical blocks mapped to virtual one

 vg01-home: 0 67108864 linear /dev/wd0a 1024

• Device can’t have more than one table loaded at time but one table can have more lines
Device-mapper targets

• Targets maps real block devices to virtual ones

• There are linear, stripe, mirror, multipath and snapshot targets in Linux

• In NetBSD linear and stripe targets were implemented which is enough to get LVM properly working
Future Work

- Cluster LVM support
- Adding new targets mirror and snapshot
- Implementation of DRBD like device which can be used for creation of raid disks through the network
More Info

- src/sys/dev/dm and src/external/gpl2/lvm2
- NetBSD mailing lists
- EuroBSDcon 2009 paper
Questions & Answers

???