
Netpgp and Signed Execution
Alistair Crooks

The NetBSD Foundation
agc@NetBSD.org

d415 9deb 336d e4cc cdfa 00cd 1b68 dcfc c059 6823
September 2012

Abstract
We have seen various types of digital signature being used to verify the provenance of data
for a long time - PGP signatures being used to show that the signed data can be trusted,
ssh signing random data to prove that the private key is known. This paper outlines
the steps we used to embed digital signature verification into the kernel, and to use this
functionality to verify a signature on a binary program, shared library, or interpreted script.
The net effect of this is to allow or deny execution of software on a machine, based on a
digital signature on the software itself. There are significant benefits to running approved
software based on its provenance, especially in the cloud, or on edge machines. Because
the signature assures the identity of the software provider (unless the keys are exposed),
software may be downloaded at a later date and run on the same machine, again secure in
the knowledge of its provenance.

1. Introduction
1.1 The Veriexec Framework

NetBSD has had an in-kernel verified execution facility since 2003 [Lymn2003] (by means
of checking a digest at execution time in the kernel to ensure that the digest matches one
of the provided ones on a whitelist of programs). There are various measures that can
be taken if a digest is missing from this list, or if there is a mismatch. The NetBSD Guide
[NetBSD2012] outlines the ways of using veriexec, and the actions that can take place on a
missing digest, or on a mismatch:

● In strict level 0, learning mode, Veriexec will act passively and simply warn about
any anomalies. Combined with verbose level 1, running the system in this mode
can help you fine-tune the signatures file. This is also the only strict level in which
you can load new entries to the kernel.

● Strict level 1, or IDS mode, will deny access to files with a fingerprint mismatch. This
mode suits mostly to users who simply want to prevent access to files which might
have been maliciously modified by an attacker.

● Strict level 2, IPS mode, takes a step towards trying to protect the integrity of
monitored files. In addition to preventing access to files with a fingerprint mismatch,
it will also deny write access and prevent the removal of monitored files, and enforce
the way monitored files are accessed. (as the signatures file specifies).

● Lockdown mode (strict level 3) can be used in highly critical situations such as
custom made special-purpose machines, or as a last line of defense after an attacker
compromised the system and we want to prevent traces from being removed, so we
can perform post-mortem analysis. It will prevent the creation of new files, and deny
access to files not monitored by Veriexec.

These are meant for different use cases. The digests are loaded with the kernel at
securelevel [NetBSD2005] at a low level, and the secure level should be raised after loading
the digests.

However, digests only assure that a file hashes to a certain value. It is possible that, with
the advent of faster methods of performing second pre-imaging attacks, that new files can
be built which will have the same digest value, but contain different contents.

If the secure level is not raised, or there is some other means of modifying the kernel's list
of digests, then it is possible for the veriexec mechanism to be side-stepped.

1.2 Digital Signatures

With the advent of a BSD-licensed digital signature mechanism [Crooks2009] - which does
not rely on a trusted third party such as PKI certificates to provide "trust" - we can take the
digest verifying mechanism of veriexec to the next level, and use digital signatures to prove
where software comes from - this is usually known as its "provenance".

A digital signature has many components, including a userid (which is generally an "email
address" string and a real name denoting identity), validity dates (date valid from,
date valid to), different types of document being signed, and other useful attributes.
Furthermore, with key signing parties, the signatures on PGP keys provide a web of trust
through which others attest to the known identity. This can be built upon to provide general
attestation that the identity used to sign software is known by a diverse number of people.
This identity and trust can be checked using the public key servers at pgp.mit.edu and
elsewhere. New keys can be downloaded (through gpg --recv-keys or hkpclient, part of
netpgp). There is no need to pay a third party to provide trust, especially when that third
party may have key management issues internally, or where no further checking of identity
(corporate or otherwise) takes place. In short, our trust comes from the users who have
already attested to government identification documents for the individuals. Where a “role
id” provides a digital signature, such as security-officer@NetBSD.org, the trust on that
signature is backed up by the individuals who have signed the security-officer key, and the
people who trust those individuals.

A signature may only be produced by someone who has both access to the private key,
and who knows the passphrase guarding the encrypted key (always assuming that the
key is passphrase protected). For this reason, signing of binaries and other files usually
takes place on single, well-guarded and well-protected machines, not on multi-user project
machines.

Because digital signatures can have validity dates, it is possible for signatures to not match
because the date has not yet arrived, or the expiration date has already passed. This can
be used in software licensing, but will not be covered here.

As the public key is available on public key servers, it is possible for software to ship without
a valid public key, allowing the key to be installed by different means at a later date. This
allows the public key to change. but has the drawback that less attention is paid when
installing a new key. DNS poisoning or hijacking could be used to provide substituted
identities and keys for server farms known to be installing or otherwise, including cloud
instances being spun up from known-good gold master images.

Key management practices were briefly mentioned earlier, and the attack on the DSA key
used by Sony to sign applications so that they could run on the PS3 [Register2010] has
been the subject of much media interest. While most people have now moved on from
using DSA keys (and using Elgamal to encrypt), it is worthwhile stressing that current
trends have ECDSA use growing rapidly, and RSA continuing to be the signature (and
encryption) used the most, from SSL certs to user keys. There are a number of reasons
for this, including the need for a good entropy source at signature time for DSA, the
early distrust of DSA due to rumoured trapdoor primes, its provenance from NIST, its use
of 4 individual numbers making it more complex than RSA, and the use of Elgamal for
encryption.

2. Identities and Trust

2.1 PGP Identities, Signing and Verification

[RFC4880] defines the PGP packet format, and the information contained therein. It
defines primary identities, which are made up of one or more user identities. Each of
these identities can have the identity credentials signed by other primary identities, to
assure others that the identity has been matched (usually to government-issued identity
documents). Often identities will cross-assure, and also endorse others credentials. From
this, the PGP web of trust is built.

A primary identity is made up of a number of subkeys. The first subkey is, by convention,
the key used for signing. Subsequent keys are used for encryption. Each subkey can have
different user identities related to it. A user identity usually relates to an email address; it
is a different personality of the key holder. A key or subkey is identified by a fingerprint -
a string of hexadecimal characters the same size as a SHA-1 digest. Again, by convention,
a user’s PGP key is known by the first key, the one that is used for signing. User identifiers
are known by (the hexadecimal representation of) a 64-bit integer, which corresponds in
PGP v4 to the last 8 octets of the fingerprint of the signing key.

In turn, each key and subkey is made up of public and private parts of the key. Data is
signed by using the private key to produce a BIGNUM, and teh signature is verified using
the public key part of the same key.

When data is signed, a digest is taken of the document. Before the digest is finalised,
some “hashed material” (principally the userid of the signer, and the signing date) is

appended to the input data. The digest is finalised, and the first two octets are recorded in
the signature to enable fast recognition at signature verification time. The finalised digest
is then signed using the private key of the signer, and a BIGNUM is recorded as being the
signature of the data. [RFC4880] differentiates between two types of input data - ordinary
data, and text doocuments, which are subject to different rules for calculating digests. Gpg
interprets these rules as follows: all line endings except the last one are converted from
Unix-style “\n” line endings, to DOS-style “\r\n” endings. The last line ending is removed
completely by gpg. This paper, and signed verification of binaries, will obviously focus on
binary data.

At verification time, the digest is again computed, and the hashed material is appended
before digest finalisation. The calculated digest can see quickly if it is worthwhile calculating
the validity of the BIGNUM by examining the first two octets (stored in the signature). If the
two octets match, the public key part is then used to match the BIGNUM representing the
signature.

As such, signatures are only as secure as the underlying digest algorithm against second
pre-imaging attacks (the ability to create a file with different contents which hashes to the
same digest). PGP keys can contain attributes specifying many things; amongst these is the
preferred digest algorithms for the key, presented in an ordered list.

2.2 Who do we trust?

To be able to use digitally signed binaries, we need to know who we can trust, and who
we cannot. Usually, in the form of project-provided binaries, this is not a hard decision.
However, this may not always be the case. Usually the security-officer will sign the
release hashes, but will they really take the time to verify every binary which is presented
to them, without knowing the provenance. Ken Thomson's 1984 ACM Turing Award
lecture "Reflections On Trusting Trust" [Thomson1984] raised awareness of the role of
compilers in
producing released software, and the dangers of trusting compilers blindly.

The NetBSD cross-build build.sh [Mewburn2003] script aids in this, when generating
signatures for a whole operating system. In addition, it is likely that some binary packages
will be needed, as well as some custom software (and immutable, important files), so a
number of identities are likely to be needed when signing all necessary files on a deployed
server. Armed with a fast computer, it is possible to cross-build, and cross-sign, a number
of files while being assured of the provenance of these files.

The difference between the PGP web of trust (or bottom-up assurance) is different to
the style of top-down assurance offered, usually as a commercial service, by Certifying
Authorities, or CAs. There have been numerous examples of CAs issuing certificates -
basically an entity’s public key signed by the CA) - without checking the details of the entity
fully. Other concerns are the internal key management policies used by CAs which allow
their own private keys to be stolen and used to issue fraudulent certificates. This whole side
of things is exacerbated by the fact that Internet commerce relies on SSL and certificates,
and the fact that certificate revocation policies, facilities and functionality are lacking. Again,
for the purposes of controlled execution by signed binaries, we will concentrate on the web
of trust model of assurance, which is a much better fit for open source software in general.
It is noted, in passing, that Microsoft’s Authenticode [Microsoft2012] relies on CA-issued
certificates.

2.3 Loading public keys into the kernel

The NetBSD kernel uses a veriexec mechanism to load digests into the kernel. This is done
using property lists (plists) being written into the /dev/veriexec device from userland early
in the boot process, and before raising the securelevel.

This mechanism is also used in our work to load public keys into the kernel. Because the
encoding of PGP packets is done in what is usually considered an unusual way [RFC4880],
and because parsing abilities in the kernel are somewhat limited, the public key information
has been unrolled into its constituent parts. The netpgpkeys(1) utility was modified to have
a new --trusted-keys argument, and is used to output the public key in a format which
can be easily transmitted to the kernel through the /dev/veriexec device. The line in the
public key has been wrapped below for readability:

% netpgpkeys --trusted-keys agc
netpgp: default key set to "c0596823"
key=d4159deb336de4cccdfa00cd1b68dcfcc0596823
name=Alistair Crooks <agc@alistaircrooks.com>
creation=1073907523
expiry=0
version=4
alg=1
n=C1D52B322E2C3BCCBDAA55A10A591DA2502B6619ED644289828C16ED75AFFB
9EE4F957B4E4D761171A139455C5F1D15320F5334ACD097E2C37844074D77A43
C2366F3BE4FFAC7454388E9B1013817D2D9735E6B45C75C9A71A8C9524C4F776
3E8849D43F8AA4E69FBCBD71A84045E92F1C6B8B3CD80AC0287D0A197DF10DC3
259C96731EDB7FE9E241A80831E6E5BEBAD3AF3AA2E5AFC55AFB4E86C475CFD0
E2BAFDF0B6213247886730B8129DDC8A05CB9DBEEC7FFE245182567D0BED3D37
B39E08474CFF1192AC7D60C04D8108A1107F1B97A5F2FAE3A48A262678F04159
30F5A2C2593DB5B0D2ADD30FA8679C5952F6601C909D1849FA0607FDC11822679D
e=29
%

2.4 Uses of public keys

At the present time, it is not possible to specify that certain signatures may only be used on
certain files. For that reason, it is essential that people using digital signatures combined
with the veriexec mechanism take great care to follow best practices for key management
and signing. This is only mentioned as the loss or leakage of a private key will mean rapid
re-deployment of different public keys and signatures, and this is not always possible in
production environments. However, this should be contrasted with the problems suffered
when certificates were found to have been malevolently issued and used [Register2011], or
the problems caused by lack of useful CRLs or OSCP in popular browsers and the ensuing
blacklisting of certain keys in November 2011, and the means of revocation of certain keys
suffered by web portals [Register2012].

3. Digital Signatures in the Kernel

3.1 Implementation

The standard version of netpgp in the NetBSD source tree uses libcrypto for its arbitrary
precision integer implementation. In May 2012, a separate branch was added, the
agc-netpgp-standalone branch, which uses its own libraries, based on libtommath
[StDenis2010]. A separate interface, to the same API as libcrypto’s BIGNUM interface,
was constructed, using libtommath’s mpi implementation to provide all the innteger
mathematics and bit-shifting.
This implementation has been added to the NetBSD kernel. In addition, the existing kernel
veriexec machinery has been modified to also recognise signatures and public keys, and
to parse them to retrieve the necessary information, PGP userids, validity dates and other
pertinent information.

At the user level, a new command, signaturectl(1), has been constructed to load,
unload, and query the kernel’s implementation of digital signatures through the /dev/
veriexec device. The functionality for this has subsequently been merged back into the
veriexecctl(8) program. A command for signing multiple binaries is described later.

3.2 Signature Loading

Again, the loading of digital signatures into the kernel is accomplished using the existing
veriexec and property list method of loading digests into the kernel.

Veriexec supports MD5, SHA1, SHA256, SHA384, SHA512, and RMD160 digests. To that
list, we add the RSA keyword, and special processing takes in place in kern_veriexec.c when
a plist object with the "RSA" keyword is received.

The following screenshot shows a public key and a signature for a single file being loaded
into a kernel built with signed execution:

Signaturectl can be used at any time to query the status of the file:

3.3 Signing Files in Bulk

To aid in signing a large number of files, a special utility has been produced called
multisign(1). It takes the credentials for the user's private key, and generates signatures for
all files specified on the command line.

Once again, only those files whose provenance is known should be signed, since, in fact,
people will be judged on the files they sign. If malware, viruses, keyloggers, trojaned files
or other software is signed, trust will be lost in the signing entity. For similar reasons, keys
and passphrases to those keys must be kept separate and not divulged to anyone or leaked
in any way.

3.4. Signature Verification in the Kernel

At execution time, or when the file is first accessed, the veriexec mechanism calculates the
digest value of the file. This is used as input to the signature calculation mechanism, and
then hashed material from the signature itself is appended, and then that is used as input to
the signature calculation mechanism.

If the resulting values match, then the signature has matched, and the file is considered to
be the same one that was signed.

The following screenshot shows the previously loaded signature for the ed(1) binary being
exercised by invoking ed.

The signature information above is in standard terminal colour, not the green kernel
printf colour, as this is information retrieved from the kernel by the signaturectl binary via
proplists over /dev/veriexec. The validity dates of the signature are displayed, along with
the “direct” status of the veriexec entry (because the ed(1) binary was directly invoked).
The “valid” entry status shows that the signature was verified by the kernel signed
execution mechanism.

The following screenshot shows what happens when an invalid signature is read. To
illustrate this, the valid signature for /bin/ed is taken and attempted to re-use for /sbin/
ping6. We shall use ping6 in this illustration since experience shows that usually this binary
is picked upon in systems for being relatively infrequently used, but being setuid root. In
the author’s experience, this binary is commonly used to carry malignant payload. We are
running this in development mode (with veriexec strictness level, so no action takes place
on a signature mismatch).

Controlled execution of signed binaries has been integrated with the /etc/rc.d system. One
of the details of veriexec itself is that, once the kernel securelevel has been raised after
boot, no more changes can be made to the veriexec strictness level. This screenshot shows
a query on the status of the /bin/ed binary directly after executing rc.d (including loading
keys and signatures).

3.5 Performance

The digest over the file only gets calculated when the file is accessed the first time. After
that, the original digest calculation is used.

[Lymn2003] notes that moving from a phase where the digest was calculated everytime the
file was accessed, to caching the results, brought significant performance improvements:

"The result of this caching mechanism takes a technique that made the machine run
70% slower (i.e. things took 1.7 times longer to run) to a point where the impact on
the system cannot be realistically measured."

Even the additional overhead of verifying the RSA signature with a 2048 bit RSA key,
which is not a heavyweight operation, makes no noticeable impact on the performance of a
system.

3.6 Possible Effects of Open Source Signed Execution

It is now possible to secure more adequately edge services and cloud instances, since the
bar to executing code on those machines has been raised. With a standard php installation,
for example, a file's presence in the php directory means that it can be executed remotely
by using the URI in a browser to cause php to open the file. In effect, the only software
which will run on a machine protected by signed execution is approved software.

As mentioned earlier, the time periods of being able to run software can be specified and
enforced. While this is not much use in the open source community, it is a benefit to others
out there who take our work and re-use it in commercial offerings. Consider company
which would like content available only after a specified time, and to have the content
unavailable after an evaluation period, or a licensing term.

Some firms are known to take BSD operating systems and embed them as the operating
system inside HSMs. This kind of operation is made much easier with signed execution of
binaries.

It is also now possible to move some of the security away from worrying about what
files are on a specific machine. IDS, in the form of crontab-based digest checkers, is not
necessary on a machine where you cannot open a file unless it is a known good version.
Veriexec provides us some of that, but signed execution takes that one stage further. This
form of IDS can be prohibitively expensive in terms of machine cycles to run, and the
lists of digests need to be kept up to date. In server farms where the machines are sized
without much overhead for efficiency, it is often too complicated to run digest checking on
a frequent enough basis to provide any integral security checking, and the digest database
needs to be protected in order to ensure that the correct digests are used to check the files.

Different keys may be used to assure the binaries whihc are run. The NetBSD security-
officer could sign the NetBSD binaries from the 6.0 release, for example. A company's
packaging team could sign the packages they produce. Please note that, at the present
times, pkgsrc packages and RPMs are both signed on the contents of the binary package,
and so new signatures will need to be made on (each file of) the contents of any external
packages which are used. It is usually the case, though, that any software release
will include binary packages built in-house specifically for the software release itself - see
for example FreeBSD's use of the nanobsd script to produce embedded software releases.

3.7 Upgrading and Patching

For the purposes of this document, patching is the practice of adding vendor-supplied
binary patches to a machine to update software on there. Upgrading is seen more as a full
operating system upgrade.

The best way to update some software on a machine is by making sure that horizontal
scaling is in place, and then take each instance out of rotation, and upgrade the machine.

This extends the best practice for upgrading VM instances in the cloud, where patching is
not done; rather new instances are spun up from a new gold master, and the old instance is
retired.

3.8 Code Availability

The code for this is now, or will be available in the very near future, on a branch in the
NetBSD code repository.

4. Future Work

It is hoped that the existing mechanism for verifying digital signatures within the kernel can
be extended to other parts of the kernel. For instance, signed system calls (the verification
of data provided as the argument to a system call) can easily be implemented, with the
verification of the identity of the user now moving from user level binaries and libraries to
inside the kernel.

5. Related Work

As has been described above, the controlled execution of signed binaries is an extension of
Lymn’s veriexec subsystem. It is a common element in mobile phones, games machines and
other personal devices - see below.

Various commercial entites have closed source implementations of signed binary execution.

Ubuntu Linux (10.04 LTS, Lucid Lynx) has an elfsign/elfverify feature built around CA certs
[Elfsign2012] and [ElfSignProcedure2012]

Microsoft have a CA cert-based implementation of signed code execution called
Authenticode [Microsoft2012]

Apple’s Mountain Lion release includes functionality called Developer Id and Gatekeeper
[Apple2012]. iPhone apps have had this for a longer time.

Sony’s PS3 uses code signing to allow applications to run on PS3s, and it was reported to
have been hacked (by brute force attacks) late in 2010 [Register2010]

6. Conclusion

We have shown that, building on top of the existing veriexec framework, an additional
means of using digital signatures is used to verify the open(2) of any file on a machine.
If the contents of the file do not match the expected contents, as signed by a person in a
position of trust in generating that software, the file will not be opened or used.

7. References
Apple2012 https://developer.apple.com/resources/developer-id/
Crooks2009 http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
Elfsign2012 http://www.hick.org/code/skape/papers/elfsign.txt
ElfSignProcedure2012

http://us.generation-nt.com/answer/want-sign-verify-binary-using-elfsign-pls-let-
me-know-procedure-help-205955331.html

Lymn2003 http://www.users.on.net/~blymn/veriexec/
Mewburn2003 http://www.mewburn.net/luke/papers/build.sh.pdf
Microsoft2012 http://technet.microsoft.com/en-us/library/cc750035.aspx
NetBSD2012 http://www.netbsd.org/docs/guide/en/chap-veriexec.html
Register2010 http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
Register2011 http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
Register2012
http://www.theregister.co.uk/2012/05/24/yahoo_ships_private_certificate_by_accident/
RFC4880 http://tools.ietf.org/html/rfc4880
StDenis2010 http://libtom.org/
Thomson1984 http://cm.bell-labs.com/who/ken/trust.html

https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
https://developer.apple.com/resources/developer-id/
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.ukuug.org/events/eurobsdcon2009/papers/netpgp.pdf
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.hick.org/code/skape/papers/elfsign.txt
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.mewburn.net/luke/papers/build.sh.pdf
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.netbsd.org/docs/guide/en/chap-veriexec.html
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2010/12/30/ps3_jailbreak_hack/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/
http://www.theregister.co.uk/2011/08/29/fraudulent_google_ssl_certificate/

