NetBSD 5.0

Introducing NetBSD 5.0

Andrew Doran
ad@netbsd.org

What is NetBSD?

A mature Unix-like operating system.
Focus areas:

Server, embedded, and hobby applications.
Scaling: from mobile phones to large servers.
Providing a platform for education and research.

Development coordinated by one of the first truly collaborative
Open Source projects to emerge on the net.

What is NetBSD 5.0?

The first NetBSD release to see full-time development funded by
donations.

The largest set of changes to the kernel since the inception of
the project.

A seven million line patch against 4.0.

Over 2 years in development.

Embedded role

An important market segment that helps to drive the system's
development, so I'll mention it here.

Popular because the system scales well, the price and license are
right, and it's easy to build upon.

Build any NetBSD platform from anywhere with a POSIX
environment and C/C++ compiler: from Solaris, Linux, Windows
(Cygwin), ...

S uname -s -m
Linux 1686
S cd netbsd-src

S ./build.sh -m sparc64 release

New in 5.0

Massive performance improvements on multicore hardware.
Journaling file system.

Power management: reliable suspend and resume.

Robust 1:1 threading implementation.

POSIX real-time extensions.

Processor sets, affinity, and offline/online.

Full kernel preemption for real-time threads.

File systems (including FUSE) running in user space.

Multiprocessor optimized malloc() for applications.

New In 5.0 (continued)

Integrated LDAP (OpenLDAP).

POSIX asynchronous I/0 and message queues.
Modularized thread scheduler.

Writable file systems on DVDs (UDF).
Extensive bug audit of core kernel code.
Many new runtime tuneables.

And much more!

New for workstation users

Fast boot: ~20 seconds from loader to GDM login prompt on
modern PCs.

Suspend and resume many laptops reliably, even multi-core.

Threaded applications can exploit the power of all CPUs. Notable
examples: video and audio transcoding.

Unified kernel image for native x86. There is now rarely any need
to compile a custom one.

Self-optimizing kernel: no penalty running on a single CPU
machine.

Xorg to replace XFree86.

.. for servers and embedded apps

Performance and reliability improvements almost everywhere.
Scale from 1 to 32 CPUs with no tweaks on qualified workloads.

Partition CPU resources as needed. Example: dedicate CPUs to
your realtime applications.

Realtime applications take advantage of kernel preemption (~5us
typical response on modern x86).

Logging file system: no more waiting for file system checks after
an unscheduled system shutdown.

.. for developers and hobbyists

Many new application facilities and APIls. Example: Solaris-
compatible atomic operations, with the same API in both kernel
and userspace.

Native Java on 1386 and soon amd64.

cc -m32: develop and test 32 bit applications on 64-bit hosts.

”

Extensive updates to the kernel programming guide - “section 9
of the system manual.

ATF: the Automated Testing Framework, for unit tests.

Better insight into how the system is performing and operating,
with new tools such as lockstat (kernel lock statistics), tprof
(performance-counter based kernel profiling), and mini crash
dumps on 1386 (no more 4GB kernel crash dumps).

Benchmarks

To illustrate performance improvements in 5.0.
Release versions of each OS installed and are:

“out of the box”, with no tweaking.
using hand-compiled software where important for fairness.

using similar file system configurations: 4GB /local with
journaling or soft updates, tmpfs /tmp

using identical application configurations

Your results may differ, terms and conditions apply, etc.

Benchmark: hackbench

Tests efficiency and scalability of the scheduler and IPC
mechanismes.

Created by and popular with Linux kernel developers.

Exposes problems with SMP scaling, and with high numbers of
active tasks.

Average time (sec) - smaller is better

hackbench IRC server simulation, 8 core Xeon E5320

60

0 20 40 60 80 100 120 140 160 180 200
Number of process groups

MNetBSD 4.0 FreeBSD 7.1
NetBSD 5.0 Fedora Core 10

Benchmark: MySQL sysbench

Simulates an OLTP style workload.

Tests efficiency and scalability of pthread library, malloc(), the
scheduler and IPC mechanisms, among others.

Used extensively during development of 5.0.

Run here in read-only configuration: write performance of the
DBMS and disk subsystem is a limiting factor we are not
interested in for this particular test.

my.cnf available on request.

TPS - higher is better

4500

4000

3500

2000

2500

2000

1500

1000

500

MySQL 5.0.51a sysbench OLTP, 8 core Xeon E5320

NetBSD 4.0
NetBSD 5.0

9 10 11 12
client threads

13

14 15 16 17 18 19 20

FreeBSD 7.1
Fedora Core 10 -

Benchmark: build.sh

NetBSD's build system.
A “software development” workload.

All tools bootstrapped: compiler, binutils, make, etc. The only
host tool that sees extensive use is /bin/sh.

In this test, a hand built gcc is used to bootstrap (for fairness).

Measures time taken to build a release of NetBSD in seconds:
smaller is better.

Fedora excels due to massive investment in improving efficiency
and scalability of Linux over the last few years. Our hats are off
to the GNU/Linux/Fedora developers.

We want to reverse the position with 6.0.

“build.sh -} 16 -m 1386 release”, 8 core Xeon E5320
Time in seconds

3500
3000
7500 |
2000 —
[l Fedora Core 10
B retBsD 5.0
B retBsSD 40
1500 — L FreeBsD 7.1
1000 —
500

The future: possible features for 6.0

Concurrent network stack.
255 core support on x86.
ZFS, Sun's new file system.

15 minutes from install CD to desktop with web and productivity
apps.

Further performance and scalability improvements to file and
virtual memory subsystems.

Modularized kernel on PC and server systems.
NUMA awareness.
Binary patches and upgrades.

NFS client performance improvements.

	NetBSD 5.0
	What is NetBSD?
	What is NetBSD 5.0?
	Embedded role
	New in 5.0
	New in 5.0 (continued)�
	New for workstation users�
	.. for servers and embedded apps�
	.. for developers and hobbyists
	Benchmarks
	Benchmark: hackbench
	Page 12
	 Benchmark: MySQL sysbench
	Page 14
	Benchmark: build.sh
	Page 16
	The future: possible features for 6.0

