2016-03-11

NetBSD BoF at AsiaBSDCon 2016
Morito Memorial Hall, Tokyo University of Science

Ryo ONODERA
<ryo_on@yk.rim.or.jp>
<ryoon@NetBSD.org>

Originally released at 2016-02-21 on slideshare.net/ryo_on/
What is NetBSD?

➢ The descendent of BSD (Berkeley System Distribution) operating system.

➢ Ported to many architectures:
 ➢ Alpha, ARM, MIPS, PowerPC, m68k, 32/64-bit Sparc, SuperH, x86, x86_64, VAX
 ➢ Workin progress: OrenRISC 1000, RISC-V, 64-bit ARM

➢ NetBSD/amd64 is for Intel/AMD x86_64 architecture.
What is Google Compute Engine?

➢ One of Google Cloud Platform services.
➢ IaaS (Infrastructure as a Service).
➢ GCE provides paravirtualized virtual machine based on VirtIO.
 ➢ The OS must support VirtIO devices.
 ➢ You cannot use full virtualization at all.
➢ Free trial for 300 USD or 60 days (in 2016-01-10).
➢ GCE provides image files of Linux distributions and Windows Servers.
NetBSD and Google Compute Engine

➢ Recently vioscsi(4) is committed to NetBSD current. Google Compute Engine requires this device driver.

➢ For FreeBSD, virtio_scsi(4) is used for this device. It is included in 10.0 release or later.
Installing Google Cloud SDK and set it up

➢ Install Google Cloud SDK from pkgsrc/net/py-google-cloud-sdk. It is Python script.
 ➢ I have tested with Python 2.7.11 from pkgsrc/lang/python27.

➢ Install a web browser.
 ➢ I have used Firefox 43.0.4 from pkgsrc/www/firefox. Webkit-based web browsers should be supported (I have not tested yet).

➢ Run /usr/pkg/py27-google-cloud-sdk/bin/gcloud auth login.
 ➢ Firefox is invoked and you should input authentication information to the web page.
Create GCE project and create a disk image

➢ Create a project with ‘gcloud config set project netbsd-79925’
 ➢ Read https://cloud.google.com/compute/docs/docs/quickstart. However you can ignore
 how to create instance steps.

➢ Create NetBSD/amd64 current disk image
 ➢ Run ‘cd /usr/src && ./build.sh release && ./build.sh live-image’ and get NetBSD-
 7.99.25-amd64-live-sd0root.img.
 • ./build.sh live-image creates gzip-ed disk image, however you should use pre-compressed image to
 save your time to gunzip.
 • NetBSD-7.99.24-amd64-live-wd0boot.img image file is also created, however its root file system is
 on wd0. You cannot use this for GCE.

➢ Copy NetBSD-7.99.25-amd64-live-sd0root.img image file to your working directory as file name, disk.raw.
Prepare disk image

➢ Run ‘sudo vnconfig vnd0 disk.raw’ and allocate disk.raw file to /dev/vnd0.
➢ Run ‘sudo mount /dev/vnd0 /mnt && sudo chroot /mnt /bin/sh’ and prepare inside of the disk image.
 ➢ Run DHCP client for vioif0 network interface.
 ➢ Add ‘ifconfig_vioif0=dhcp’ to /etc/rc.conf.
 ➢ Add user and allocate ssh public key to the user.
 ➢ Run ssdhd automatically.
 ➢ Add ssdhd=yes to /etc/rc.conf.
➢ Run ‘sudo umount /mnt && sudo installboot -e -o console=com0 /dev/rvnd0a’ and you can get boot message via serial console.
➢ Deallocate disk.raw from /dev/rvnd0a and run ‘tar -Sczf netbsd79925.tar.gz disk.raw’. You can get the disk image for GCE as tar ball.
Upload the disk image and create virtual machine instance

➢ Put netbsd79925.tar.gz to Google Cloud Storage or https web site.
 ➢ To put the disk image to Google Cloud Storage with gsutil command or GCE web interface.
 ➢ For gsutil case, run ‘gsutil cp netbsd79925.tar.gz gs://netbsd-compute-engine/netbsd79925.tar.gz’.
➢ In case of Google Cloud Storage, run ‘gcloud compute images create netbsd79925 --source-uri gs://netbsd-compute-engine/netbsd79925.tar.gz’ and get a disk image for your instance.
➢ Create the virtual machine instance based on netbsd79925 and boot it.
 ➢ Run ‘gcloud compute instances create instance-1 --image netbsd79925 --zone us-east1-b --machine-type f1-micro’.
 ➢ The instance boots automatically.
➢ Get boot message from ‘gcloud compute instances get-serial-port-output instance-1 --zone us-east1-b’. You can download this boot message from web interface.
 ➢ You cannot control the virtual machine. You should use ssh for controlling the virtual machine.
(snip)

pci0 at mainbus0 bus 0: configuration mode 1
pcib0 at pci0 dev 1 function 0: vendor 8086 product 7110 (rev. 0x03)
piixpm0 at pci0 dev 1 function 3: vendor 8086 product 7113 (rev. 0x03)
piixpm0: SMBus disabled
virtio0 at pci0 dev 3 function 0
virtio0: Virtio SCSI Device (rev. 0x00)
vioscsi0 at virtio0: Features: 0x0
vioscsi0: qsize 8192
scsibus0 at vioscsi0: 253 targets, 1 lun per target
virtio0: interrupting at ioapic0 pin 11
virtio1 at pci0 dev 4 function 0
virtio1: Virtio Network Device (rev. 0x00)
vioif0 at virtio1: Ethernet address 42:01:0a:f0:00:02
vioif0: Features: 0x30020<CTRL_VQ,STATUS,MAC>
virtio1: interrupting at ioapic0 pin 11
isa0 at pcib0
com0 at isa0 port 0x3f8-0x3ff irq 4: ns16550a, working fifo
com0: console
com1 at isa0 port 0x2f8-0x2ff irq 3: ns16550a, working fifo
attimer0 at isa0 port 0x40-0x43
pcppi0 at isa0 port 0x61
midi0 at pcppi0: PC speaker
sysbeep0 at pcppi0
attimer0: attached to pcppi0
acpicpu0 at cpu0: ACPI CPU
sd0 at scsibus0 target 2 lun 0: <Google, PersistentDisk, 1> disk fixed
sd0: fabricating a geometry
sd0: 2048 MB, 2048 cyl, 64 head, 32 sec, 512 bytes/sect x 4194304 sectors
sd0: fabricating a geometry
(snip)
Copyright notice

https://creativecommons.org/licenses/by/4.0/

Copyright (c) 2016 Ryo ONODERA. All rights reserved
CreativeCommons Attribution 4.0 International (CC BY 4.0)