

Ryo Shimizu
<ryo@netbsd.org>

AsiaBSDCon 2023 WIP

mailto:ryo@netbsd.org

What is NVMM?

NVMM - NetBSD Virtual Machine Monitor

Currently only works on x86_64.
I’m porting nvmm to netbsd/aarch64 ARMv8.0

Q: Why ARMv8.0? Why not use ARMv8.1 VHE?
 (VHE:Virtualization host extension)

A: Because everyone's favorite raspberry Pi is
 ARMv8.0 :-)

 The number of ARMv8.x devices has been
 increasing there recently, but there are
 still many ARMv8.0 devices.

I need to create an MD backend for aarch64

What should I make?

userland

kernel

● Separate EL1 highvisor and EL2 lowvisor in the same way that linux's
kvm/arm64 does.

● Switches to EL2 by HVC instruction with context switching parameters.
● It is important to note that EL2 cannot directly access variables in EL1
kernel virtual address. because EL2 is running in Physical Address. the
VA of a parameter would be convert to PA on EL1, and passes it to EL2.

● If ARMv8.1 VHE is used, It should be more simple and fast implementation
because it can run the netbsd kernel with EL2.

And one more thing to do - pmap(9)

● The nvmm process has two virtual memory maps (struct
vm_map). One is used for normal user processes, while
the other is used for the Guest Physical Addresses (GPA)
of the virtual machine that nvmm creates.

● When a guest virtual machine attempts to access
unmapped guest physical memory, nvmm uses the GPA
virtual memory map to perform a page-in operation using
the uvm(9) and pmap(9) functions.

● Since aarch64 uses the stage2 MMU to translate the GPA
to the Host Physical Address, it's necessary for pmap(9)
to support stage2 translation tables. This is because the
page table entry descriptor formats for the stage1 and
stage2 tables in the aarch64 MMU are slightly different.

Basic Operation

netbsd userland(EL0): nvmm_vcpu_run(3) -> nvmm ioctl(2)

netbsd kernel(EL1): nvmm aarch64 highvisor: HVC -> EL2netbsd kernel(EL1): nvmm aarch64 highvisor: HVC -> EL2

netbsd kernel(EL2): nvmm aarch64 lowvisor: VM context switching (aka. VMEnter)netbsd kernel(EL2): nvmm aarch64 lowvisor: VM context switching (aka. VMEnter)

guest VM (EL0,EL1): running VM…

 :

guest VM (EL0,EL1): IRQ or TRAP -> EL2

netbsd kernel(EL2): nvmm aarch64 lowvisor: VM context switching (aka. VMExit)netbsd kernel(EL2): nvmm aarch64 lowvisor: VM context switching (aka. VMExit)

netbsd kernel(EL2): nvmm_aarch64 lowvisor: ERET -> EL1netbsd kernel(EL2): nvmm_aarch64 lowvisor: ERET -> EL1

netbsd kernel(EL1): nvmm aarch64 highvisor: nvmm ioctl(2) returnsnetbsd kernel(EL1): nvmm aarch64 highvisor: nvmm ioctl(2) returns

netbsd userland(EL0): nvmm_vcpu_run(3) returned

-

G
ue
st
ph
ys
ic
al
ad
dr
es
s
pa
ge

in

-
G
ue
st
ph
ys
ic
al
ad
dr
es
s
pa
ge

in

_
_

nvm
m

vcpu
run

How is the progress?

 <DEMO>

● It would be about 20%?
● Hopefully, it will be completed by the end of this year.

(?)
● I'm working on the interrupt part now.
● It is still unstable on MULTIPROCESSOR due to

bodge TLB/CPU cache handling :-(
● My goal (for now) is to make it work stably on a

uniprocessor environment.

Conclusion

– Im working on porting nvmm/aarch64.
– working on ARMv8.0.
– working to the extent that the netbsd

kernel boots.

 Any question?

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8

