
Cross-compilation in pkgsrc

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

AsiaBSDcon 2015
Tokyo, Japan

March 15, 2015

pkgsrc: portable package build system

I https://www.pkgsrc.org/

I Framework for building third-party software on Unix-like
operating systems.

I > 15, 000 packages.
I Supported platforms:

I NetBSD (first platform, based on mid-’90s FreeBSD ports)
I GNU/Linux, GNU/kFreeBSD
I FreeBSD, OpenBSD, DragonflyBSD, MirBSD
I Haiku, MINIX 3
I Solaris / SmartOS / illumos
I OS X
I IRIX, AIX, OSF/1, HP-UX, QNX, Cygwin

I Works unprivileged, so you can use it in your home directory
on a server you don’t administer.

pkgsrc: portable package build system

I https://www.pkgsrc.org/

I Framework for building third-party software on Unix-like
operating systems.

I > 15, 000 packages.
I Supported platforms:

I NetBSD (first platform, based on mid-’90s FreeBSD ports)
I GNU/Linux, GNU/kFreeBSD
I FreeBSD, OpenBSD, DragonflyBSD, MirBSD
I Haiku, MINIX 3
I Solaris / SmartOS / illumos
I OS X
I IRIX, AIX, OSF/1, HP-UX, QNX, Cygwin

I Works unprivileged, so you can use it in your home directory
on a server you don’t administer.

Anatomy of a pkgsrc package

I DESCR – Human-readable description.
I Makefile – Machine-readable description.

I Tells where to download source code.
I Rules for how to configure, build, install.
I Etc.

I distinfo – Names, sizes, and hashes of source distribution.
Provides cryptographic integrity check.

I PLIST – Packing list: lists files installed by package.

I /usr/pkg/etc/mk.conf – Site configuration for package
options.

pkgsrc example: security/nettle, part 1

$NetBSD: Makefile,v 1.13 2013/11/26 09:22:19 martin Exp $

DISTNAME= nettle-2.7.1

PKGREVISION= 1

CATEGORIES= devel security

MASTER_SITES= http://www.lysator.liu.se/~nisse/archive/ \

ftp://ftp.lysator.liu.se/pub/security/lsh/

MAINTAINER= pkgsrc-users@NetBSD.org

HOMEPAGE= http://www.lysator.liu.se/~nisse/nettle/

COMMENT= Cryptographic library

LICENSE= gnu-lgpl-v2.1

USE_LANGUAGES= c

USE_LIBTOOL= yes

USE_TOOLS+= gm4 gmake

GNU_CONFIGURE= yes

SET_LIBDIR= yes

CONFIGURE_ARGS+= --disable-openssl --disable-shared

pkgsrc example: security/nettle, part 2

.include "../../mk/bsd.prefs.mk"

.if !empty(USE_CROSS_COMPILE:M[yY][eE][sS])

CONFIGURE_ENV+= CC_FOR_BUILD=${NATIVE_CC:Q}

.endif

INFO_FILES= yes

TEST_TARGET= check

PKGCONFIG_OVERRIDE= hogweed.pc.in

PKGCONFIG_OVERRIDE+= nettle.pc.in

.include "../../devel/gmp/buildlink3.mk"

.include "../../mk/bsd.pkg.mk"

Building and installing a package1

which socat

socat not found

cd /usr/pkgsrc/net/socat

bmake install

=> Bootstrap dependency digest>=20010302: found digest-20121220

=> Fetching socat-1.7.2.4.tar.gz

...

=> Checksum SHA1 OK for socat-1.7.2.4.tar.gz

...

===> Installing dependencies for socat-1.7.2.4

...

=> Tool dependency checkperms>=1.1: found checkperms-1.11

=> Full dependency readline>=6.0: found readline-6.3nb3

...

=> Creating binary package /tmp/.../socat-1.7.2.4.tgz

===> Install binary package of socat-1.7.2.4

which socat

/usr/pkg/bin/socat

1On NetBSD, can use base system’s make, but everywhere else we bootstrap
devel/bmake for pkgsrc.

Binary packages: build once, install many times

I Building from source is necessary: verify source, audit
programs, modify, etc.

I Building from source is slow: run compiler on lots of source
code.

I Do it once, save the result, install binary packages after.

builder# cd /usr/pkgsrc/net/socat

builder# bmake package

client# PKG_PATH=/nfs/builder/usr/pkgsrc/packages

client# export PKG_PATH

client# pkg_add socat

Binary package bulk builds

I NetBSD provides binary packages for NetBSD on many
architectures2.

I Joyent provides binary packages for OS X3 and illumos4.

I I build binary packages for my own machines.

I You can too!

2
ftp://ftp.NetBSD.org/pub/pkgsrc/packages/NetBSD/

3
http://www.perkin.org.uk/pages/pkgsrc-binary-packages-for-osx.html

4
http://www.perkin.org.uk/pages/pkgsrc-binary-packages-for-illumos.html

Cross-compiling NetBSD

I Every NetBSD build is a cross-build.

I build.sh tools builds cross-toolchain.

I build.sh kernel=GENERIC distribution builds NetBSD
with the cross-toolchain.

Cross-compiling pkgsrc

I Use NetBSD build.sh tools distribution to get
started.5

I USE CROSS COMPILE=yes

I MACHINE ARCH=powerpc

I TOOLDIR=/usr/obj.evbppc/tooldir.NetBSD-6.1.amd64

I CROSS DESTDIR=/usr/obj.evbppc/destdir.evbppc

uname -m

amd64

cd /usr/pkgsrc/net/socat

bmake package

...

cd /usr/pkgsrc/packages.powerpc/All

pkg_info -Q MACHINE_ARCH socat-1.7.2.4.tgz

powerpc

5See doc/HOWTO-use-crosscompile for details.

Dependencies

I Some packages depend on other packages.
I tor program uses libevent library at run-time.

I net/tor depends on devel/libevent.

I Compiling tor program requires event.h at build-time
I net/tor also build-depends on devel/libevent.

I Compiling libxcb requires turning XML into C header files
with xsltproc.

I x11/libxcb tool-depends on textproc/xsltproc.

I Also bootstrap-depends, like tool-depends but for parts of the pkgsrc

infrastructure.

Cross-compiling dependencies

I Use Intel Xeon to build x11/xterm, run on your
powerpc-based thin client.

I x11/xterm must be built for MACHINE ARCH=powerpc.
I x11/xterm depends on x11/libxcb6.

I x11/libxcb must be built for MACHINE ARCH=powerpc.

I x11/libxcb tool-depends on textproc/xsltproc.
I textproc/libxsltproc must be built for

MACHINE ARCH=x86 64.

6Via x11/libX11.

Build-depends vs tool-depends

I Both build-depends and tool-depends need to exist at
build-time.

I Build-depends are cross-built and installed into
/usr/obj.evbppc/destdir.evbppc/usr/pkg/...

I Example: C libraries, needed for linker.

I Tool-depends are natively built and installed into
/usr/pkg/...

I Example: xsltproc, cross-compiler.
I When built, TARGET ARCH set to cross-compilation target.

Complications part 1: mixing up build-depends and
tool-depends

I Originally, pkgsrc had only build-depends.

I x11/libxcb build-depended on textproc/xsltproc.

I Solution: change build-depends to tool-depends where
appropriate.

Complications part 2: package builds tools internally

I Some packages depend on external tools like x11/libxcb

depends on textproc/xsltproc.

I Others use internal tools, like security/nettle above.

I These try to use CC, which may be powerpc--netbsd-gcc

for cross-compilation.

I Can’t run the result on x86!

I Solution: set CC FOR BUILD, maybe patch package to use it
instead.

.if !empty(USE_CROSS_COMPILE:M[yY][eE][sS])

CONFIGURE_ENV+= CC_FOR_BUILD=${NATIVE_CC:Q}

.endif

Complications part 3: file existence tests

I Package wants to know whether /dev/urandom will exist
when run.

I Uses GNU autoconf to ask whether /dev/urandom exists
now, when built.

I Build machine and target system may be different!

I But we know /dev/urandom will exist.

I Solution: tell autoconf up front.

.if !empty(USE_CROSS_COMPILE:M[yY][eE][sS])

.if ${OPSYS} == "NetBSD" || ${OPSYS} == "OpenBSD" || ...

CONFIGURE_ENV+= ac_cv_file__dev_urandom=yes

.endif

.endif

Complications part 3’: file existence tests in pkgsrc

I From x11/libdrm in the past:

.if !exists(/usr/include/sys/atomic.h)

libdrm won’t find system atomic ops, use a package.

. include "../../devel/libatomic_ops/buildlink3.mk"

.endif

I Solution: don’t look in /usr/include — look in
/usr/obj.evbppc/destdir.evbppc:

.if !exists(${CROSS_DESTDIR}/usr/include/sys/atomic.h)

libdrm won’t find system atomic ops, use a package.

. include "../../devel/libatomic_ops/buildlink3.mk"

.endif

Complications part 4a: configure run-tests

I Similar to file existence tests.

I Program wants to know sizeof(long) at compile-time.

I Compiles a test program to print it, runs test program.

I Can’t do that if building on 64-bit amd64 for 32-bit powerpc!

I Solution: binary search with compile-time assertions using
cross-compiler.

I (Yes, seriously! GNU autoconf supports this with
AC CHECK SIZEOF.)

Complications part 4b: configure run-tests

I Some are harder to replace.

I Tell the answers up front, maybe with patches.

I From shells/zsh:

.if !empty(USE_CROSS_COMPILE:M[yY][eE][sS])

.if ${OPSYS} == "NetBSD"

CONFIGURE_ENV+= zsh_cv_shared_environ=yes

CONFIGURE_ENV+= zsh_cv_shared_tgetent=yes

CONFIGURE_ENV+= zsh_cv_shared_tigetstr=yes

CONFIGURE_ENV+= zsh_cv_sys_dynamic_execsyms=yes

.endif

.endif

Complications part 5: problem children

I Some packages go to great effort to resist cross-compilation.
I Perl
I Python

I Workaround: just build on your powerpc thin client and ship
binary packages back to x86 build machine to continue.

I (Solution: chainsaws and rototillers. Fix the build systems!7)

7It can be done: OpenWrt does it, with a lot of work. If you would like to
help adapt their approach to pkgsrc, talk to me!

Related work

I OpenWrt: cross-compiled packages for Linux-based network
appliances.

I Linux-only.
I Not general-purpose package system.
I Much smaller than pkgsrc.

I distcc: run pkgsrc on thin client, run compiler remotely on
x86 build machine.

I Complex to set up: many moving parts (literally).
I Hard to parallelize.
I Compiler is a big part but not all of run-time.

I FreeBSD ports: run native compiler in user-mode emulator.
I Many moving parts (figuratively).
I Emulators are slow.
I Less clean separation between host and target.

Future work

I Cross-OS compilation. Use SmartOS x86 cloud cluster to
build for MACHINE PLATFORM=NetBSD-7.0-powerpc.

I User interface improvements.
I Can’t do bmake package MACHINE ARCH=powerpc for stupid

reasons.
I (When we switch to MACHINE PLATFORM reasons will go away.)
I Setting up cross-compiling requires a manual step to work

around broken GNU libtool.

I Bulk builds.
I pbulk doesn’t understand build-depends vs tool-depends.

I Unprivileged builds for privileged installs.
I Native and cross packages must both point at /usr/pkg.
I (Unprivileged builds for unprivileged installs work fine — not a

problem with privileges, just with different paths.)

Thank you!

Questions?

