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Motivation

● NetBSD prides itself on maintaining backwards 
compatability, all the way back to version 0.9

● NetBSD also provides for modular kernel 
components, loading functionality as needed



  

Motivation (“I got bitten, and
have the scars as proof!”)

● I personally run a stripped-down kernel, with as few 
as possible built-in modules
– Some changes to sys/net/rtsock.c were made, and built-

in compat_70 builds were accomodated via #ifdef, but
– No provision was made for calling the compat_70 code 

loaded as a module

● So even if I loaded the compat module my system 
failed to run



  

Issues

● Building of compat module required careful 
selection of options, resulting in #ifdef hell

● The resulting compat module was monolithic, 
built with a single predefined set of options

● There was no reliable mechanism to prevent 
module code from being unloaded while 
executing



  

Kernel Options

● Lots of kernel configuration options available, 
controlling whether or not certain code is 
included, including calls to compat code

● By default, we only include compat for NetBSD 
version 1.5 and above

● Modules are built with their own set of options 
which might differ from those of the kernel



  

Kernel Options (cont.)

● There’s no clear way to determine if optional 
code is included (e.g. a modular driver cannot 
tell if its compat_xx ioctl() routines exist and 
thus need to be called)

● Some code (notably, net/rtsock.c) assumes that 
compat functionality is always built-in to the 
kernel



  

Monolithic compat module

● Standard builds provide only a single module to 
contain all selected compat options

● Contents are pre-determined at build time
● No provision for incrementally loading additional 

compat code (for an earlier NetBSD version) if 
needed, without first unloading the current 
module



  

Preventing modunload()
of active modules

● Device driver modules can check for existing 
units (or instances) of their device

● Buffer-queue strategy modules have a refcount
● Active syscalls “know” that they’re active, and 

refuse to be dis-established



  

Preventing modunload()
of active modules (cont.)

● No equivalent mechanisms exist for a compat 
module to determine if it can be unloaded



  

Approach/Solution

● Define a “module hook” mechanism for callers 
to use when invoking optional code
– Call through a function pointer in all cases
– No #ifdef

● Split the monolithic compat module into many 
version-specific modules



  

The module_hook

● Optional module code “sets the hook” when it is 
loaded

● Caller defines a default action (or value) if the 
hook is not set
– Frequently use ENOSYS
– Hook ioctl code can return EPASSTHROUGH if it 

does not handle



  

The module_hook (cont.)

● Hooks are protected from being unloaded while 
executing
– Use passive serialization to prevent new acquirers 

of the localcount
– Use localcount to track active references (calls)
– Drain the localcount before unsetting the hook



  

The module_hook (cont.)

#define MODULE_HOOK(hook, type, args)                           \
extern struct hook ## _t {                                      \
        kmutex_t                mtx;                            \
        kcondvar_t              cv;                             \
        struct localcount       lc;                             \
        pserialize_t            psz;                            \
        bool                    hooked;                         \
        type                    (*f)args;                       \
} hook __cacheline_aligned;



  

The module_hook (cont.)

● Each hook’s prototype can be unique, so they 
are defined using macros.

#define MODULE_HOOK(hook, type, args) ...
#define MODULE_HOOK_SET(hook, waitchan, func) ...
#define MODULE_HOOK_UNSET(hook) ...
#define MODULE_HOOK_CALL(hook, args, default, retval) ...
#define MODULE_HOOK_CALL_VOID(hook, args, default) ...



  

The module_hook (cont.)

● Invoking the optional code – before
        ...
        default:
                if ((*compat_ccd_ioctl_60)(0, cmd, NULL, 0, NULL,
                    NULL) == 0)
                        make = 1;
                else
                        Make = 0;
        ...



  

The module_hook (cont.)

● Invoking the optional code - after
        default:
                MODULE_HOOK_CALL(ccd_ioctl_60_hook,
                   (0, cmd, NULL, 0, NULL, NULL), enosys(), hook);
                if (hook == 0)
                        make = 1;
                else
                        make = 0;



  

The module_hook (cont.)

● Setting and unsetting the hook
void
ccd_60_init(void)
{
        MODULE_HOOK_SET(ccd_ioctl_60_hook, "ccd_60",
            compat_60_ccdioctl);
}
void
ccd_60_fini(void)
{
        MODULE_HOOK_UNSET(ccd_ioctl_60_hook);
}



  

The module_hook (cont.)

● The hooks are defined as globals
sys/sys/compat_stub.h:

...
MODULE_HOOK(ccd_ioctl_60_hook, int, (dev_t, u_long, void *, int, 
    struct lwp *, int (*f)(dev_t, u_long, void *, int, struct lwp *))) 
...

sys/kern/compat_stub.c
...
struct ccd_ioctl_60_hook_t ccd_ioctl_60_hook;
...



  

Splitting the Monolithic 
Module

● The second major change was to separate the 
single monolithic compat module into many 
individual version-specific compat modules
– Each compat_xx module depends on compat_xx_next
– The kern/syscalls.master file was updated to indicate 

which specific module provides the functionality 
(used for auto-loading the compat_xx modules)



  

Splitting the Monolithic 
Module (cont.)

● The sheer number of versions involved caused 
us to exceed some compile-time limits
– Maximum number of per-module dependencies

● #define   MAXMODDEPS         10

– Maximum recursion depth for auto-loading module 
dependencies

● #define   MODULE_MAX_DEPTH    6



  

Status

● Merged to HEAD in mid-January, 2019
● Will be included in forthcoming NetBSD-9.0



  

Status (cont.)

● Mostly complete
– Compile-time restrictions removed

● Had to introduce some additional compat code for modstat(8)!

– Smaller version-specific modules created, all the 
way back to NetBSD-0.9

– Most compat-code calls converted to use the hooks
– Similar changes made for compat_netbsd32



  

Status (cont.)

● Still a few areas needing more work
– Various machine-dependent bits and pieces
– Build-system infrastructure needs work for properly 

building modules for XEN environment
– dev/gpio and dev/wscons/wsmux still have some 

old-style compat calls
– Need a full audit to ensure we got everything



  

Possible Improvement

● The hook definition mechanism may be 
excessively complex, with many “touch points”
– Define and allocate hooks in kern_stub.[ch]
– SET and UNSET the hook in implementation
– CALL the hook in appropriate places



  

Possible Improvement (cont.)

● Perhaps some sort of non-precedural definition 
mechanism would help?

● Would an awk or sed script help for handling the 
details?



  

Possible Improvement (cont.)

● Something like this, perhaps?
#HOOK compat_50_iflist_addr
#MODULE rts_50
#SOURCE compat/common/rtsock_50.c
#PROTOTYPE compat/net/if.h
int compat_50_iflist_addr(struct rt_walkarg *, struct ifaddr *,
    struct rt_addrinfo *);
#CODE
int
compat_50_iflist_addr(struct rt_walkarg *w, struct ifaddr *ifa,
    struct rt_addrinfo *info)
{
      /* ... */
}



  

Recognition

● I did most of the work, but would not have 
succeeded without some major assistance!
– Taylor Campbell provided the basis for the 

module_hook mechanism, and
– Christos Zoulas provided major encouragement as 

well as help with some especially tricky parts (like 
sys/net/rtsock.c)



  

Recognition (cont.)

● Additionally, the entire NetBSD developer and 
user communities contributed by identifying and 
fixing various issues that arose post-merge.



  

Questions?
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