

Improving the modularity
of NetBSD’s compat code

Paul Goyette
pgoyette@netbsd.org

● Motivation
● Issues
● Approach/Solution
● Implementation and Status
● Recognition

Improving the Modularity
of NetBSDs COMPAT code

Motivation

● NetBSD prides itself on maintaining backwards
compatability, all the way back to version 0.9

● NetBSD also provides for modular kernel
components, loading functionality as needed

Motivation (“I got bitten, and
have the scars as proof!”)

● I personally run a stripped-down kernel, with as few
as possible built-in modules
– Some changes to sys/net/rtsock.c were made, and built-

in compat_70 builds were accomodated via #ifdef, but
– No provision was made for calling the compat_70 code

loaded as a module

● So even if I loaded the compat module my system
failed to run

Issues

● Building of compat module required careful
selection of options, resulting in #ifdef hell

● The resulting compat module was monolithic,
built with a single predefined set of options

● There was no reliable mechanism to prevent
module code from being unloaded while
executing

Kernel Options

● Lots of kernel configuration options available,
controlling whether or not certain code is
included, including calls to compat code

● By default, we only include compat for NetBSD
version 1.5 and above

● Modules are built with their own set of options
which might differ from those of the kernel

Kernel Options (cont.)

● There’s no clear way to determine if optional
code is included (e.g. a modular driver cannot
tell if its compat_xx ioctl() routines exist and
thus need to be called)

● Some code (notably, net/rtsock.c) assumes that
compat functionality is always built-in to the
kernel

Monolithic compat module

● Standard builds provide only a single module to
contain all selected compat options

● Contents are pre-determined at build time
● No provision for incrementally loading additional

compat code (for an earlier NetBSD version) if
needed, without first unloading the current
module

Preventing modunload()
of active modules

● Device driver modules can check for existing
units (or instances) of their device

● Buffer-queue strategy modules have a refcount
● Active syscalls “know” that they’re active, and

refuse to be dis-established

Preventing modunload()
of active modules (cont.)

● No equivalent mechanisms exist for a compat
module to determine if it can be unloaded

Approach/Solution

● Define a “module hook” mechanism for callers
to use when invoking optional code
– Call through a function pointer in all cases
– No #ifdef

● Split the monolithic compat module into many
version-specific modules

The module_hook

● Optional module code “sets the hook” when it is
loaded

● Caller defines a default action (or value) if the
hook is not set
– Frequently use ENOSYS
– Hook ioctl code can return EPASSTHROUGH if it

does not handle

The module_hook (cont.)

● Hooks are protected from being unloaded while
executing
– Use passive serialization to prevent new acquirers

of the localcount
– Use localcount to track active references (calls)
– Drain the localcount before unsetting the hook

The module_hook (cont.)

#define MODULE_HOOK(hook, type, args) \
extern struct hook ## _t { \
 kmutex_t mtx; \
 kcondvar_t cv; \
 struct localcount lc; \
 pserialize_t psz; \
 bool hooked; \
 type (*f)args; \
} hook __cacheline_aligned;

The module_hook (cont.)

● Each hook’s prototype can be unique, so they
are defined using macros.

#define MODULE_HOOK(hook, type, args) ...
#define MODULE_HOOK_SET(hook, waitchan, func) ...
#define MODULE_HOOK_UNSET(hook) ...
#define MODULE_HOOK_CALL(hook, args, default, retval) ...
#define MODULE_HOOK_CALL_VOID(hook, args, default) ...

The module_hook (cont.)

● Invoking the optional code – before
 ...
 default:
 if ((*compat_ccd_ioctl_60)(0, cmd, NULL, 0, NULL,
 NULL) == 0)
 make = 1;
 else
 Make = 0;
 ...

The module_hook (cont.)

● Invoking the optional code - after
 default:
 MODULE_HOOK_CALL(ccd_ioctl_60_hook,
 (0, cmd, NULL, 0, NULL, NULL), enosys(), hook);
 if (hook == 0)
 make = 1;
 else
 make = 0;

The module_hook (cont.)

● Setting and unsetting the hook
void
ccd_60_init(void)
{
 MODULE_HOOK_SET(ccd_ioctl_60_hook, "ccd_60",
 compat_60_ccdioctl);
}
void
ccd_60_fini(void)
{
 MODULE_HOOK_UNSET(ccd_ioctl_60_hook);
}

The module_hook (cont.)

● The hooks are defined as globals
sys/sys/compat_stub.h:

...
MODULE_HOOK(ccd_ioctl_60_hook, int, (dev_t, u_long, void *, int,
 struct lwp *, int (*f)(dev_t, u_long, void *, int, struct lwp *)))
...

sys/kern/compat_stub.c
...
struct ccd_ioctl_60_hook_t ccd_ioctl_60_hook;
...

Splitting the Monolithic
Module

● The second major change was to separate the
single monolithic compat module into many
individual version-specific compat modules
– Each compat_xx module depends on compat_xx_next
– The kern/syscalls.master file was updated to indicate

which specific module provides the functionality
(used for auto-loading the compat_xx modules)

Splitting the Monolithic
Module (cont.)

● The sheer number of versions involved caused
us to exceed some compile-time limits
– Maximum number of per-module dependencies

● #define MAXMODDEPS 10

– Maximum recursion depth for auto-loading module
dependencies

● #define MODULE_MAX_DEPTH 6

Status

● Merged to HEAD in mid-January, 2019
● Will be included in forthcoming NetBSD-9.0

Status (cont.)

● Mostly complete
– Compile-time restrictions removed

● Had to introduce some additional compat code for modstat(8)!

– Smaller version-specific modules created, all the
way back to NetBSD-0.9

– Most compat-code calls converted to use the hooks
– Similar changes made for compat_netbsd32

Status (cont.)

● Still a few areas needing more work
– Various machine-dependent bits and pieces
– Build-system infrastructure needs work for properly

building modules for XEN environment
– dev/gpio and dev/wscons/wsmux still have some

old-style compat calls
– Need a full audit to ensure we got everything

Possible Improvement

● The hook definition mechanism may be
excessively complex, with many “touch points”
– Define and allocate hooks in kern_stub.[ch]
– SET and UNSET the hook in implementation
– CALL the hook in appropriate places

Possible Improvement (cont.)

● Perhaps some sort of non-precedural definition
mechanism would help?

● Would an awk or sed script help for handling the
details?

Possible Improvement (cont.)

● Something like this, perhaps?
#HOOK compat_50_iflist_addr
#MODULE rts_50
#SOURCE compat/common/rtsock_50.c
#PROTOTYPE compat/net/if.h
int compat_50_iflist_addr(struct rt_walkarg *, struct ifaddr *,
 struct rt_addrinfo *);
#CODE
int
compat_50_iflist_addr(struct rt_walkarg *w, struct ifaddr *ifa,
 struct rt_addrinfo *info)
{
 /* ... */
}

Recognition

● I did most of the work, but would not have
succeeded without some major assistance!
– Taylor Campbell provided the basis for the

module_hook mechanism, and
– Christos Zoulas provided major encouragement as

well as help with some especially tricky parts (like
sys/net/rtsock.c)

Recognition (cont.)

● Additionally, the entire NetBSD developer and
user communities contributed by identifying and
fixing various issues that arose post-merge.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

