
So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Virtualization under *BSD
The case of Xen

Jean-Yves Migeon – jym@NetBSD.org

EuroBSDcon 2011

18 août 2012

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Table of Contents I

1 So Xen. . . What is that thing ?
A brand ?
Why did it become so central ?
So Xen. . .

2 Xen, the hypervisor
Overview

3 The privileged domain : dom0
whoami : dom0
Xen tools
XenStore

4 Diving into Xen’s world
The smallest system : Xen and dom0
Virtual memory
Virtual memory layout : 32 bits
Virtual memory layout : 64 bits
Impacts of para-virtualization

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Table of Contents II

5 Virtualizing devices
Split device drivers
Grant table(s)
I/O rings
Event channels/ports

6 domUs : the unprivileged brethren
What are they ?
The big picture !

7 Virtualization and ahead
From PV to hardware
Hardware Assisted Virtualization
Device virtualization : IOMMU and SR-IOV
High availability : live migration, Remus

8 Conclusion

9 Backup
Xen’s history

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Table of Contents III

Turning an OS into a dom0

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

So Xen. . . A brand ?

An innocent question, really. . .

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Why did it become so central ?

x86 was not really virtualization friendly for kernels :

I certain sensitive instructions (SIDT) could not be trapped

I complex model : 4 privilege levels (rings), memory model uses
segments & pages, real mode. . .

Solutions up to then :

emulation very slow and error-prone (QEMU)

binary rewriting complex to get right (VMWare)

Xen chose a different path : para-virtualization . Guest knows that
it runs in a pseudo-virtualized x86 environment. Sensitive
instructions are replaced with hypervisor calls.

Open Source communities rapidly took interest in it, which
brought lots of momentum to the OS virtualization movement.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

So Xen. . .

Let’s look at what the majority sees through Xen nowadays :

I first and foremost, an hypervisor , designed (a bit) like a
microkernel :

• minimalist in nature
• drives : CPUs, (virtual) memory, and everything that is security

critical and requires high privileges

I a privileged domain, known as dom0 :
• implements most of the drivers (for hardware support)
• focal point for hypervisor’s management

I tools and services used to manage Xen’s system : start/stop
VMs, expose system information, control ressources. . .

• through xend , xm(1) , XenStore . . .

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Xen, the hypervisor

Minimalist in nature : drives hardware (like a pilot), delegates
navigation to dom0.

Some people classify Xen as a ”Type 1” VMM, meaning that it
runs directly on metal .

It does not give the steering wheel away, so it has to offer
abstractions somehow :

Syscalls Hypercalls

Signals/Interrupts Events/Ports

shm*, mmap(2) update va mapping()

POSIX mqueue(3) I/O rings

ACPI tables, sysctl(7) XenStore, Xenbus

Looks rather familiar, heh ,

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Piling up...

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

The privileged domain : dom0

Xen is minimalistic : almost no drivers. It needs a co-pilot that tells
him what to do to arrive at destination : the dom0 .

I the first general purpose OS to boot just after hypervisor

I para-virtualized – Xen does not hide from him (yet), dom0
has no direct access to hardware

I makes hypercalls to Xen to manage system :
• HDs, NICs, USB controllers,. . .
• administrativia : xm/xl(1)

I should be fairly small and reliable, as it virtualizes hardware
through driver backends (99,9% of the time)

Although it doesn’t drive, its almost as critical as Xen for
everyone’s safety.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Piling up...

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Xen tools

Lastly, we need tools and services to manage the whole
virtualization environnement.

They evolved over time, especially in :

functionality ballooning, CPU pinning, scheduling,. . .

low level APIs tools from one revision are not compatible with an
hypervisor of another rev (no backwards compat /)

Main control command :

Xen 3.∗ series : xm(1) , written in Python.
Xen 4.∗ series : xl(1) , in C, lighter than xm (deprecated).

Used for pretty much everything :

I start/pause/stop/suspend/migrate VMs
I get information from hypervisor (dmesg , info)
I control/monitor ressources (vcpu-∗ , mem-∗ , sched-∗ ,

block/network activity with xm top)

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Xen tools

There are more things happening in the background :

xend daemon that handles commands submitted via xm/xl

xenstored XenStore facility ; centralizes data about VMs and
virtual drivers. Used by domains to publish
information about them.

xenbackendd backend manager daemon ; handles events that
concerns backend drivers.

They used to implement their own mechanisms on-top of low level
libraries (libxc, libxenguest,. . .).

Recent versions of Xen (4 and up) provide libxenlight as a solid
foundation for the whole toolstack. Written in C, aims at being
lightweight.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Xen : system’s overview

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

XenStore

Central storage, accessible to running guests (dom0 & domUs)
and tools. It is a very simple tree that stores key ⇒ value pairs .

Accessible via :

I xenstore-ls, xenstore-read,. . . from userland

I xenbus(4), a communication channel between domains’
kernels

XenStore, via xenbus(4), allows a domain to query (and publish)
information about it .

Main use of this feature is for configuring split device drivers :
domains can register ”watches” that will be triggered when
something happens in XenStore (like a device’s state change).

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

XenStore

xenstore-ls /local/domain/35

...

device = ""

vbd = ""

768 = ""

state = "4"

backend = "/local/domain/0/backend/vbd/35/768"

ring-ref = "511"

event-channel = "5"

vif = ""

0 = ""

mac = "00:16:3e:00:00:32"

vifname = "xennet0"

tx-ring-ref = "510"

rx-ring-ref = "509"

...

memory = ""

target = "65536"

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Diving into Xen’s world

Xen + dom0 is the smallest possible system you can encounter.
Xen is nothing more than a hardware abstraction layer here.

As said, it hides the mess of x86 behind it ; which means that you
have to port your OS on Xen before it can acts as a dom0 .

Xen has ' 40 hypercalls 1. They cover low level x86 operations and
replace privileged ones : MMU PD/PT updates, interrupt/channel
setup, VCPU control, domains management.

As dom0 cannot have access to hardware anymore, Xen provides
structures to pass down information during boot :
xen start info, shared info t.

Moving a kernel out of its ”reserved” ring 0 has consequences.

1. documented in Xen headers, sys/arch/xen/include/xen3-public/xen.h

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Start info, shared info structures

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Virtual memory

As Xen virtualizes memory between different OS, it adds a third
level of indirection in the typical VM model :

virtual addresses the majority knows and uses daily

machine real addresses, managed by kernel via the MMU
and. . .

pseudo-physical implementation choice made by Xen 2 : only low
level parts have to know about virtualization and
MFNs, rest uses GPFNs.

2. to ease portability

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Virtual memory layout : 32 bits

I 4 level rings with 32 bits
• Xen runs in ring 0
• steals VM in the upper part

– 64 MiB (without PAE)
– 128 MiB (with PAE)

• pushes kernel to ring 1

I TLB flushes heavy with x86
• avoid full context switch
• use segmentation to protect

hypervisor from kernel

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Virtual memory layout : 64 bits

I 2 level rings with 64 bits
• Xen runs in ring 0
• pushes kernel to ring 3
• steals VM in the low portion

of upper part

I TLB flushes heavy with x86
• cannot use segmentation to

protect hypervisor here
• kernel and userland address

spaces are not mapped
together

• userland gets mapped in
kernel address space when
needed

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Impacts of para-virtualization

Luckily, the majority of a Unix kernel does not require supervisor
mode to run. Affected parts are mainly MD components :

I virtual memory handling , which is the most significant issue
• Xen helps here with assistance mechanisms via vm assist()

hypercall : shadow page tables, writable page tables

I initialization : OS boots in protected mode
• real mode is not managed, neither is V86.

I kernel runs in an unprivileged mode
• all privileged instructions have to be converted to their

hypercall equivalent
• kernel is not all-powerful anymore, so it cannot perform

operations that were allowed before : PD/PT overwrites,
segment games,. . .

Virtual memory is the difficult part : it is performance critical, and
hypercalls are not ”free” (context switch).

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Split device drivers

The Xen virtual drivers are ”split” in two parts :

backend handles multiplexing for the real device

frontend generic virtual driver, used by domUs

Type Backend Frontend

Block xbdback(4) xbd(4)

Network xvif(4) xennet(4)

PCI pciback(4) xpci(4)

Except for network and block devices, each Xen split driver type
implements its own communication model.

All split drivers rely on these to work :

I grant tables mechanism

I I/O rings

I event channels (also called ”ports”)

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Grant table(s)

Grant tables are the main facility used to establish memory
mappings between domains, and build IPCs ; most notably, I/O
rings .

Grant tables are setup through the grant table op hypercall.
When a page gets used as a grant table, it contains entries like :

struct grant_entry {

/* GTF_xxx: various type and flag information. */

uint16_t flags;

domid_t domid; /* domain being granted privileges */

uint32_t frame; /* MFN (real address >> PAGE_SHIFT) */

};

Once setup, a grant reference is returned. This ref is used by
domains to establish the mapping later, and is generally stored in
XenStore.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

I/O rings

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Event channels/ports

Event channels (aka. ports) are like virtual interrupts . They are
managed by a domain through the event channel op()

hypercall. They can be categorized into three types :

VIRQ interrupts associated with a virtual device, like a
timer (VIRQ TIMER).

PIRQ physical interrupts, bound to a real device. This is
mainly used by Xen and dom0 to virtualize real IRQs.

interdomain used to establish a virtual interrupt line between two
domains. Used in conjunction with I/O rings to
mimic real device functionality.

For interdomain communications, the event identifier is typically
stored in XenStore, and fetched by split device drivers to establish
the channel.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

domUs : what are they ?

The main interest of all this : running unprivileged guests, aka.
domUs .

Typically not allowed to access hardware , even via hypercalls.

It uses virtual devices for communication, via frontend drivers :

I XenStore, so it can query for virtual device configuration

I virtual console, xencons

I network device, xennet(4)

I block device, xbd(4)

These are very simple, generic devices : the main reason why it is
easier to port and run an OS as domU rather than a dom0.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

What are they

As virtualization capacities of x86 evolve, the frontier between
dom0 and domU becomes blurry . A domU can :

I run real devices , via PCI passthrough frontend (xpci(4))
• with a compromise on security, especially without IOMMU. . .

I host virtual driver backends , when you want to move things
out of dom0 3

domUs are stripped down versions of a dom0 ; even more so now
that hardware has improved virtualization support, where an
unmodified OS can run as a domU (with degraded I/O
performance).

3. see Qubes’ architecture for Storage Domain : http ://qubes-
os.org/files/doc/arch-spec-0.3.pdf

http://qubes-os.org/files/doc/arch-spec-0.3.pdf
http://qubes-os.org/files/doc/arch-spec-0.3.pdf

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

The big picture !

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

From PV to hardware

In the early days of Xen, virtualization was handled at software
level :

I patching source to replace instructions with hypercalls

I add abstractions (pseudo-physical addresses) for virtual
memory management

I writing down virtual drivers to act as real devices

I rely on a general purpose OS to perform multiplexing :
• bridging, routing for network
• using generic frameworks like disk(9)
• PCI ring to proxy PCI commands towards dom0

These can be replaced with hardware alternatives, except for the
code that has to configure them (Xen, and 'dom0).

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Hardware Assisted Virtualization, HVM

Emerged in 2006, rapidly supported by Xen (3.0) ; popularized the
technology : you could run Windows in a VM at 'native speed
(except I/Os).

HVM avoids modifying the domU OS ⇒ no requirement for PV :

I domU do not bother about virtualization : hypervisor does.

I hmm, remember the vmxassist issues when booting
FreeBSD, because Intel HVM cannot handle real mode ?

Para-virtualization Intel (VT-x) AMD (AMD-V)

PV cpuid : VMX flag cpuid : SVM flag

Hypervisor calls native x86 instructions

Pseudo-physical addr. EPT 4 RVI/NPT 5

PV frontends emulated devices, via QEMU-dm

4. Extended Page Tables
5. Rapid Virtualization Indexing/Nested Page Tables

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Device virtualization : IOMMU and SR-IOV

Device virtualization encompasses different topics :

IOMMU for I/O device ⇒ machine address translations

SR-IOV for sharing a device between different VMs

IOMMU is mainly handled by Xen 6 : it configures the unit so
that a device cannot access memory not belonging to the domU.

Single Root I/O virtualization allows any PCIe device to announce
physical and virtual functions. SR-IOV can be viewed as a device
virtualization solution, just like dom0 does with real hardware and
virtual drivers , except that it is implemented in hardware.

Both are transparent to domU guests. SR-IOV requires support in
dom0 (not supported with NetBSD). I/O virtualization is still an
evolving technology, at least under x86.

6. by passing ”iommu=1” to Xen during boot

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

High availability : live migration, Remus

Migration is the act of moving a domU from host A to host B . It
is ”live” when done at runtime with minimal downtime ('200ms).

Xen controls VM usage, so it knows what/when a guest modifies
its memory. Useful for migration : can propagate changes
on-the-fly while keeping the domU running.

Atop of that we can implement simple active-passive high
availability : have a VM act as the active part, and let changes
propagate to a passive one.

When a (hardware) failure occurs, zap. This is what Remus does,
broadly (Xen 4 and up). The challenge being that guest should
remain unaffected by the fault.

HVM is a bit more tricky to suspend though : more states have to
be preserved by Xen, like CPUs and emulated devices.

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Challenges

Xen :
I strong competition with KVM

• performance is often pushed forward
– not much about security (critical for an hypervisor)

• toolstack makes the difference (especially for cloud builders)
– KVM lacks maturity here, compared to Xen (EC2, Rackspace)

I not as user-friendly as a Virtualbox or KVM/QEMU

*BSD :
I difficult to get people on board

• especially to interact with Xen community
• although it has lots of interesting subjects : kernel, operating

system, userland, toolstack, GUIs. . .
I stack continues to grow : when does it stop ?

• HVM ⇒ Xen ⇒ kernel ⇒ jails ⇒ virtual machines/emulators
• less obvious for NetBSD : missed jails, so pushed Xen really

hard
I all efforts concentrated on Linux

• though running the same thing everywhere is kind of boring /

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Questions

Questions ?

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Xen. . . a tale ?

And to make things easier : its history for 3.x was. . . a bumpy ride :

2003-2005 1.0, 2.0
First stable releases : PV 7 only, Linux and
NetBSD. block/device virtual drivers.

2005 3.0

HVM 8 guests, 64-bits, SMP, new concepts :
XenStore and xenbus(4)
Buggy PAE. No support in upstream
Linux

2007 3.1
Lots of bug fixes, 32 bits PAE domains with
64-bits Xen
XenSource acquired by Citrix.

. . .

7. Para-Virtualization
8. Hardware Virtual Machine, e.g. Hardware virtualization

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Xen. . . a tale ?

2008 3.2
ACPI, PCI pass-through & IOMMUs, bug fixes
Xen Interface changes, incompatibilities be-
tween Linux distros

3.3
larger VT-x/VT-d support, power management.
Dumped !PAE support. XenSource’s Linux
stucked at 2.6.18

2009 3.4
Focusing on RAS 9, power management. FreeBSD-
8 runs as PV domU.

2010 4.0
Upstream support for Linux. Dumped xm/xend

(Python) for a lighter altnerative : xenlight (xl).

2011 4.1
CPU pools, super pages, memory inspection API
('VMsafe), xl refinements.

9. Reliability, Availability, Serviceability

So Xen. . .What is that thing ? Xen, the hypervisor The privileged domain : dom0 Diving into Xen’s world Virtualizing devices domUs : the unprivileged brethren Virtualization and ahead Conclusion Backup

Turning an OS into a dom0

Coincidently, making a dom0 is not really difficult when you
already have a PV domU. The biggest differences being :

I dom0 handles real devices, so interfaces have to be adapted :
• BIOS and ACPI mapping, for periph. enumeration.
• bus dma(9), bus space(9), and IRQs (through event channels).

I dom0 runs backend drivers, notably block (xbdback(4)) and
network (xvif(4)) devices.

I userland mechanisms expected by Xen tools : /kern/xen (or
/dev/xen) entries.

Portability helps a lot here : the ugliness does not spread to MI
parts, maintenance burden is acceptable. It took years for Linux to
have upstream support for dom0, NetBSD got Xen 3 dom0 with -4
with a port that remained stable.

	So Xen…What is that thing?
	A brand?
	Why did it become so central?
	So Xen…

	Xen, the hypervisor
	Overview

	The privileged domain: dom0
	whoami: dom0
	Xen tools
	XenStore

	Diving into Xen's world
	The smallest system: Xen and dom0
	Virtual memory
	Virtual memory layout: 32 bits
	Virtual memory layout: 64 bits
	Impacts of para-virtualization

	Virtualizing devices
	Split device drivers
	Grant table(s)
	I/O rings
	Event channels/ports

	domUs: the unprivileged brethren
	What are they?
	The big picture!

	Virtualization and ahead
	From PV to hardware
	Hardware Assisted Virtualization
	Device virtualization: IOMMU and SR-IOV
	High availability: live migration, Remus

	Conclusion
	Backup
	Xen's history
	Turning an OS into a dom0

