MCLinker - the final toolchain frontier

Jorg Sonnenberger

March 16, 2013

Abstract

LLVM and Clang provide the top half of an inte-
grated BSD licensed cross-platform toolchain. The
MCLinker project implements the remaining parts.
It is compact, modular and efficient. Currently
supported platforms are ELF systems running X86
(32bit and 64bit), ARM and MIPS. MIPS64 and
Hexagon are work-in-progress.

1 Introduction

Following the GPL3 announcement of the Free Soft-
ware Foundation, the LLVM project gained a lot
of traction. The Clang front-end allows replac-
ing GCC for C and C++ code on many impor-
tant platforms. The Machine Code layer provides
an integrated assembler, replacing the dependency
on external assemblers for most situations. The
combination provides a powerful toolchain with full
support for cross-compilation. For a long time,
the only major component missing to replace GNU
binutils has been a linker. This gap is now filled by
the Machine Code Linker (MCLinker) project.

This paper first introduces the architecture of
MCLinker and compares it to GNU 1d. The perfor-
mance for linking large programs is evaluated and
compared with GNU Id and Google gold. A de-
tailed status report of the implementation is pre-
sented as well as list of future projects.

2 Architecture

MCLinker is a modern, modular linker. It is de-
signed to process input in three separate phases:

e Building the input tree based on command line
and implicit default values.

e Resolve symbols.

e Determine output positions, apply relocations
and write output files.

GNU 1d doesn’t have a clear phase separation;
individual steps are re-applied iteratively until all
input files are processed and all resolvable symbols
are resolved. The result is complicated and cache-
unfriendly code.

Google gold on the other hand mixes the first two
phases. Symbols that can’t be resolved in the first
round are retried later. This choice improves the
maintainability of performance of the linker code,
but is still more complicated than the design of
MCLinker. It is useful to note that gold supports
multi-threading during the relocation processing to
speed up linking large input sets.

2.1 Input tree

The input tree is the first intermediate representa-
tion (IR) used by MCLinker. It contains vertices
for every input file and all positional options. Posi-
tional options are options like —start-group or —as-
needed that change the handling of a subset of the
input files. Input files can form subtrees, e.g. linker
archives form a subtree with a child node for every
archive member. Edges in the input graph are ei-
ther positional relationships for options or inclusion
links for archives.

2.2 Symbol resolution

Symbol resolution is implemented using tree itera-
tion. As result of symbol resolution, the low-level
IR is created: the fragment reference graph. This
graph represents the individual sections found dur-
ing input process and the symbolic dependencies
between them.

The input tree is traversed and for every input
file it is checked whether it must be included in the
output. An input file is included if it was explicitly
mentioned on the command line or if it provides
a definition for a currently undefined symbol. If
the input is to be included, its sections and symbol
table are processed. When the tree iteration hits
the start of a linker group, the current position is
pushed onto a stack. Iteration continues until the
corresponding end is seen. The linker now checks if
any new undefined reference was found while pro-
cessing this group. If so, the process starts again
from memorized position.

The data structures used for symbol resolution
are highly optimized to maximize cache locality.
The symbol attributes and the initial part of the
name share a cache line on modern CPUs. This
helps the CPU when linking large programs with

many smaller functions; C++ applications are well-
known for such characteristics.

2.3 Layout

The layout step is the first part of the last linking
phase. It is responsible for deciding what sections
should be written in which order and to what posi-
tion. It merges sections as necessary or drops them,
if they are redundant (e.g. multiple inline defini-
tions for C++ methods). At the end of this phase,
the symbol values are finalized.

Defering the section merging until such a late
step in the linking process has the advantage of
avoiding many redundant computations. The list
of all input sections is known at this point and af-
ter a single ordering pass, addresses can be assigned
directly.

2.4 Relocation

The relocation step follows the layout step and is re-
sponsible for determining the symbol values in the
various places that reference the symbols. It may
prepare to modify the instructions to replace more
costly code with simpler sequences. This helps
platforms with limited immediate value ranges like
ARM and MIPS to load short (relative) address di-
rectly instead of using constant tables. It can also
be used to use more efficient access methods for
Thread Local Storage (TLS).

2.5 Writing

Once the relocation step is done, all that is left is
applying the relocations to the input sections and
writing the result to the output file with any meta-
data necessary for the file format. MCLinker ag-
gressively uses memory mapped files when possible.
This leverages the page lookup table (TLB) cache
and improves page locality. It helps improves the
use of the OS file system cache.

3 Performance

To measure the performance of MCLinker, the
llvm-tblgen and clang binaries were built using the
normal options in NetBSD (-O2, no -g). The fi-
nal linker invocation was repeated using MCLinker,
GNU 1d and Google gold. For MCLinker the cur-
rent development version of March 11 was used.
GNU Id and gold are both from GNU binutils
2.22.90.

MClLinker | GNU 1d | gold
llvm-tblgen 0.05s 0.10s | 0.04s
clang 0.69s 1.41s | 0.44s

The resulting binaries have the following size:

| MCLinker [GNU Id | gold
llvm-tblgen
text 2,123,527 | 1,827,773 | 1,786,483
.data 2,408 2,664 2,520
.bss 5,360 5,912 2,520
clang
text | 34,299,746 | 26,917,022 | 26,698,448
.data 21,984 22,112 22,112
.bss 47,624 47,736 47,704

Both MCLinker and gold are significantly faster
than GNU Id. MCLinker is clearly pulling in too
many objects, which is responsible for the much
larger binaries. This is likely also reponsible for
a good part of the performance difference to gold.
Evidently, further analysis is needed.

Of special interest for embedded wuse is

the memory footprint of the different linkers:
MCLinker GNU Id gold

llvm-tblgen | 17,508KB | 17,700KB | 17,528KB
clang 176MB 150MB 182MB

The peak Resident Memory Size shows clearly
that both MCLinker and gold are optimised for in-
memory processing. Since they are reading the full
symbol tables of all input files first, they require
more mMemory.

4 Implementation status

Linker functionality falls into two categories. The
first is generic features like symbol versioning which
are handled in the platform independent core. The
second is features specific to a target platform like
the handling of the different relocation types.

4.1 Platform independent

Most features necessary for ELF systems are im-
plemented. This includes static and shared linkage
as well partially linking objects to form a new re-
locatable object. Weak symbols are overwritten by
strong definitions. The different visibility types are
handled. Missing for shared libraries is the process-
ing of DT_NEEDED entries and loading the sym-
bols of the referenced objects. This means that cur-
rently only symbols in libraries explicitly requested
on the command line are found, when standard
ELF behavior is to recursively scan libraries and
their dependencies. This omission is not absolved
by recent versions of GNU 1d switching to the same
broken semantic.

C++ requires constructor and destructor sup-
port. The compiler uses .ctors or .init_array sec-
tions (or .dtor and .fini_array for destructors) to
implement this. MCLinker has full support for ei-
ther form. It doesn’t try to convert one mecha-
nism into the other due to the slightly different
ordering rules. Support for COMDAT-sections is

present. This allows defining the implemention of
a function in more than one object file and let-
ting the linker pick one. It is used for implicit
template specialisations. The .eh_frame sections
necessary for exception handling are correctly pro-
cessed and the associated .eh_frame_hdr section is
created. The latter provides a fast binary search
table to reduce runtime overhead. One issue in this
area is the missing support for relocations into the
.eh_frame section. This is needed for support the
older __register_frame_info style shared library in-
terface.

The platform-independent part of TLS support
is present. This concerns the proper merging of
the .tdata and .tbss sections and the corresponding
segments.

Support for symbol versioning is missing. For
NetBSD, it is only used by libgcc at the moment, so
it is primarily an issue for missing MCLinker builds
with non-MCLinker ones. It is far more important
for FreeBSD though.

Linker scripts are required in certain situations
that need more granular control over the image lay-
out. For NetBSD, this concerns RUMP and the
kernel. It is planned to add this feature during the
second quarter of 2013.

Support for other binary formats like Mach-O is
planned, but not implemented.

4.2 NetBSD/i386

NetBSD/i386 needs a few workarounds for the lack
of linker scripts. With a fallback to using GNU
Id, a NetBSD release build can be finished. The
result works well with few regressions seen in the
ATF testsuite results. The only remaining platform
specific issues is the incomplete support for TLS re-
laxations, i.e. converting dynamic TLS relocations
into faster relocations for the main binary.

4.3 NetBSD/amd64

AMDG64 is the youngest platform supported by
MCLinker; the initial changes were added by
H.J. Lu in early February. It is still maturing.
NetBSD/amd64 shows the same issues as NetBS-
D/i386 and has some additional problems with cer-
tain relocation types. At the time of writing, this
primarily affects libc and libstdc++.

4.4 ARM and MIPS

ARM and MIPS are the original platforms for most
of the MCLinker work. Since last year, it is possible
to build a full Android system on those platforms.
NetBSD has not been tested yet though. Support is
currently limited to the 32bit variants of the ARM
and MIPS ABIs.

5 Future work

The biggest priority for the MCLinker project is to
finish the missing platform independent features.
This means adding symbol versioning and linker
script support. Another important item is support
for Link Time Optimisation (LTO). Open research
questions include the impact of fine-grained layout
decisions by creating individual sections for every
function in the compiler and letting the linker figure
out the best placement.

Support for the alternative 32bit ABI on X86
(X32), MIPS64 and Hexagon is work-in-progres.

6 Summary

MCLinker provides a cross-compiling friendly linker
for many platforms targetted by the BSDs. It is
making huge progress towards fully replacing GNU
1d on i386 and AMD64 for NetBSD, with a similar
state easily reachable for ARM and MIPS. A GPL
free toolchain is within reach now.

