Sleeping Beauty — NetBSD on modern laptops

Jorg Sonnenberger <joerg@NetBSD.org>
Jared D. McNeill <jmcneill@NetBSD.org>

February 3, 2008

Abstract

This paper discusses the NetBSD Power Management Framework (PMF')
and related changes to the kernel. The outlined changes allow NetBSD to
support essential functions like suspend-to-RAM on most post-Y2K X86
machines. They are also the fundation for intelligent handling of device
activity by enabling devices on-demand.

This work is still progressing. Many of the features will be available
in the up-coming NetBSD 5.0 release.

1 Introduction

The NetBSD kernel is widely regarded to be one of the cleanest and most
portable Operating System kernels available. For various reasons it is also as-
sumed that NetBSD only runs well on older hardware. In the summer of 2006
Charles Hannum, one of the founders of NetBSD, left with a long mail men-
tioning as important issues the lack of proper power management and suspend-
to-RAM support. One year later, Jared D. McNeill posted a plan for attacking
this issue based on ideas derived from the Windows Driver Model. This plan
would evolve into the new NetBSD Power Management Framework (PMF for
short).
Major design goals were:

e The ability to suspend a running system, possibly including X11, and to
restore the same state later.

e The ability to disable devices and restore the full state. This includes e.g.
volume and current playback position for audio devices etc.

e Automatically sense which devices are not in use and place them into
reduced power states.

e Provide a messaging framework for inter-driver communication for event
notifications, e.g. hotkeys pressed by the user.

This paper will provide an overview of the core changes to the NetBSD
kernel, the goals that have been achieved, and the challenges that have been
faced along the way.

The first section will cover the PMF itself as it is the component with the
greatest impact on the overall kernel. Afterwards the AMDG64 and 386 specific
changes to the ACPI infrastructure will be discussed. Last but not least is the
special handling needed for video cards needed on many systems.



2 The NetBSD Power Management Framework

2.1 Overview

The NetBSD Power Management Framework (PMF) is a multi-layer device
power management framework with inter driver asynchronous messaging sup-
port. It was originally inspired by the Windows Driver Model power man-
agement framework, but has since evolved into a model better fitting for the
NetBSD kernel. The implementation is contained in:

e sys/kern/kern_pmf.c,
e sys/sys/pmf.h, and

e sys/kern/subr_autoconf.c.

2.2 Device interface

Device power management is implemented in layers:
e Device,
e Bus,
e Class (ie network, input, etc).

The basic entry points for a device driver to implement the PMF are pmf_de-
vice_register(9) and pmf_device_deregister(9). Both of these functions accept a
device_t as their first argument, and in the registration case it also accepts
optional driver-specific suspend and resume callbacks. These functions return
true on success, and false on failure.

Device bus power management support is inherited from the parent device
in the autoconfiguration tree. A device driver that attaches to the pci(4) auto-
matically inherits PCI Power Management support. The PCI bus handlers take
care of saving and restoring the common part of the PCI configuration part.
They are also responsible for removing power from the device and restoring it.

Device class power management support cannot be derived as easily, so a
device driver that requires class-level power management support will call the
appropriate pmf_class_<type>_register and deregister functions when register-
ing with the PMF. The currently implemented power management class types
are ‘network’, 'input’, and ’display’. Depending on the device class the regis-
ter function takes additional arguments, i.e. the “struct ifnet” address for a
network device.

Using this layered approach, the amount of duplicated code between device
drivers is reduced and the per-driver code minimized. One example of where
this is the wm(4) network driver. Since the PCI bus layer captures and restores
common PCI configuration registers and the network class layer is responsi-
ble for stopping and starting the interface, no additional device specific power
management code is required. Other device drivers such as bce(4) simply need
a single function call in their resume callback (with no suspend callback) to
restore the device to a fully operational state.

Due to its integration with the autoconfiguration subsystem, a device_t is
required to register with the PMF. This differs from the former powerhook(9)



framework in previous NetBSD releases, which implemented global system sus-
pend/resume by executing callbacks in order of registration with an opaque
cookie for an argument. This interface made it impossible to control the order
in which devices are suspended or resumed. With the PMF, global system sus-
pend/resume is implemented by traversing the autoconfiguration device tree,
ensuring that a device’s parent is powered up before it is initialized and that a
child device is suspended before its parent bus.

The most basic interfaces from kernel code to control device power are
pmf_device_suspend(9) and pmf_device_resume(9). A power management de-
vice driver will typically want to suspend and resume the entire autoconfig-
uration tree or a subtree. In the case of a global power state transition,
the power management device driver would use the pmf system_suspend(9),
pmf_system_resume(9), and pmf_system_shutdown(9) APIs. The “suspend” and
“shutdown” functions are nearly the same with the exception of two points; a
suspend will be aborted directly if any device in the autoconfiguration tree does
not implement the PMF, and a shutdown does not invoke the bus power manage-
ment layer support. Some additional support functions are available for power
management drivers; pmf_device_recursive_resume(9), pmf_device_recursive_sus-
pend(9), and pmf_device_resume_subtree(9). The first function can be used to
resume a specific devices and all its parents. The other functions suspend or
resume a subtree of the autoconfiguration tree.

Suspending drivers on shutdown using pmf_system_shutdown(9) avoids the
problem of active devices trashing the system after a reboot e.g. with DMA.
A number of drivers did this with ad hoc shutdown hooks before and doing it
in the PMF provides it consistantly for all devices. This part the PMF will be
extended at some point in the future to provide a separate optional hook for
finer control.

2.3 Event interface

The PMF introduces a message passing framework for inter-device driver com-
munication. Events can be directed (targetted to) a specific device, but in the
most typical case anonymous events are used. An anonymous event is essentially
a broadcast notification to all device drivers registered for that event.

One issue with making laptops “just work” was that there was no mechanism
to associate a hotkey event with an appropriate action. Making decisions on
how to handle events entirely in a userland script was considered too much of a
kludge, so it was decided that an inter-driver event framework was necessary.

Consider brightness control hotkeys on a laptop. Every hardware vendor
implements this in a different way, and the device that generates the hotkey
event is not necessarily the same device that gives control of the LCD backlight.
A hotkey device driver simply uses the pmf_event_inject(9) function to inject
a brightness control event (PMFE_DISPLAY BRIGHTNESS_UP, PMFE_DIS-
PLAY _BRIGHTNESS_DOWN) into the pmf event queue. A worker thread is
then woken up, and scans the list of callbacks created using the pmf_event_regis-
ter(9) and pmf_event_deregister(9) functions. Since this is an anonymous event
(device_t argument to pmf_event_inject(9) is NULL), all callbacks registered
for the appropriate PMF_DISPLAY _BRIGHTNESS_* event are executed. The
hotkey driver does not need to know or care if the console driver, generic ACPI
display driver, vendor-specific ACPI device driver, or other power control driver



will handle the event. As long as one of these drivers is present and working,
the brightness key press will “just work”.

For events that are better handled in userland, hotkey support was added to
sysmon_power(9) and powerd(8). This is typically used for associating a "lock
screen” key with xscreensaver, a ”display cycle” key with xrandr, "eject” key
with a DVD-ROM tray, and so on.

2.4 Vendor and model specific information

Sometimes there is no choice but to only apply a quirk in a device driver on
certain hardware platforms. A very simple API was added to the PMF to act
as a dictionary for obtaining information about the running system from within
device drivers. Platform dependent code is responsible for filling in these tables;
on AMD64 and 1386 information retrieved from DMI (aka SMBIOS) tables are
used.

The sony_acpi(4) driver uses this to apply workarounds in its initialization
routines on certain VAIO series notebooks.

3 ACPI improvements

3.1 ACPICA

The Intel ACPI Component Architecture (ACPICA) is an OS-independent ref-
erence implementation of the ACPI specification. NetBSD 4.0 shipped with the
two year old 20060217 release of the ACPICA, so it was decided that the third
party code should be updated to a newer release.

At the time of the ACPICA upgrade the latest version of ACPICA available
from Intel was 20061109, but it was known that other operating systems were
shipping newer releases. As the APIs are constantly evolving, a significant
amount of integration effort would have been been required regardless of the
release selected. It was decided to go with the release of ACPICA present in
FreeBSD -CURRENT at the time, 20070320.

The majority of changes required for the new APIs were mechanical, related
to renamed structures and structure members. Another issue involved a change
in the way that tables are accessed; previous releases of ACPICA pre-parsed
some tables and stored them in global pointers. This has been changed in some
cases to store a copy of the table in a global structure, and in other cases the
Operating System must map the table itself using AcpiOsMapMemory.

The operating system dependent (Osd) interfaces were also changed. The
following functions had minor signature changes:

e AcpiOsMapMemory,

e AcpiOsWaitSemaphore,

AcpiOsAcquireLock,

AcpiOsDeleteLock,

AcpiOsGetRootPointer,

AcpiOsGetThreadld.



In addition, new functions such as AcpiOsValidatelnterface and AcpiOsVal-
idateAddress were required, and AcpiOsQueueForExecution was renamed to
AcpiOsExecute.

In the process of tracing down various interrupt issues, the ACPI initial-
ization sequence was updated. The initialization was split into two phases.
The first phase is just long enough to load the MADT. That table is required
for interrupt setup, especially when using the IOAPIC. The second phase can
therefore directly hook up the ACPI System Configuration Interrupt and finish
the initialization sequence. This replaces the lazy interrupt setup code in the
AMDG64 and 1386 code.

This ACPICA update exposed a fundamental design flaw in the NetBSD
Embedded Controller driver, requiring it to be rewritten from scratch.

Since this work has completed a new ACPICA web site, http://www.acpica.
org, has appeared offering a 20080123 release for download.

3.2 Embedded Controller

The Embedded Controller (EC) is one of the central hardware components of
ACPI. The ACPI virtual machine is using the EC to access various devices
without requiring the attention of the CPU. It is also used by the hardware
to notify the ACPI VM about changes in the system configuration using the
System Configuration Interrupt (SCI).

The EC has a very simple interface using two one-byte ports. The first port
is used to send commands to the EC and read back the current processing status.
The second port (data port) is used for operands of the commands. The EC
understands the five commands “query”, “read”, “write”, “enable burst” and
“disable burst”. Operands like the address of a “read” or “write” or the return
value for a “query” are transfered using an internal buffer in the EC. When this
buffer is empty and new data can be send, a flag is set and an interrupt is sent.
The same happens for reading data from the EC.

This interface forces the driver to communicate asynchronously with the
hardware. As this is often undesirable, the burst mode was added. It allows a
driver to send commands and data back-to-back with the full attention of the
EC. If the EC can’t process a command in a timely manner, it can disable the
burst mode itself.

The old EC driver as inherited from FreeBSD tried to deal with this mess
by using a mixture of interrupt mode and polling mode. It was very hard to
follow the flow of control and add locking without introducing dead locks. For
that reason, the EC driver was rewritten from scratch as part of the jmcneill-pm
branch.

The first important observation for the new driver was the symmetry between
the entry points. The driver has to deal with three request types: reads, writes
and SCIs. SCIs are special events raised by the EC, read and write operations
are originated in the system. The access to the driver can therefore be serialised
by a single mutex shared between the three entry points. For the processing of
the SCIs a kernel thread is the simplest solution, but a work queue could have
been used as well.

The second observation for the driver design is that most of the complications
in the interface are a result of not using the state flow of the EC in the driver.
The actions in the driver are much easier to formulate as finite state machine.



As soon as one of the the entry points obtains the driver lock, it writes the
address for read or write access and the command to process. Afterwards it just
waits for completion. The interrupt handler drives the state machine. If it finds
a request for a SCI, it signals the kernel thread to wake up. Depending on the
state of the machine, it writes the address or transfers the data byte. When a
command is done, it wakes up the blocking originating thread.

One problem of this approach is that it depends on the hardware properly
sending interrupts. Many EC implementations don’t do that though. Linux
and FreeBSD dealt with this by using the burst mode. A simpler alternative is
to just poll the hardware after some time using a callback. In other words, if
the hardware doesn’t send an interrupt, simulate it.

The second problem is that during early boot, suspend and resume neither
interrupts nor timeouts are processed. Polling the EC directly is similiar again
to how lost interrupts are processed. Experiments have shown that spinning a
bit is generally helpful as most EC commands finish in less than 5ms. Polling
has to be done with care though. On a Lenovo Thinkpad R52, a busy loop
without delay completely kills the EC, it doesn’t even provide the emergency
powerdown. Similiar issues exist with other vendors. Tests have shown that at
least 100ms intervals are needed for pure polling.

The new driver has proven to be robust and much easier to adopt to new
vendor bugs.

3.3 Suspend support

Proper support for suspend to RAM is one of the most often requested features
in the Open Source world. The Advanced Power Management interface pro-
vided this without much complexity in the Operating System. As Microsoft has
pushed ACPI for a long time, vendor support for APM started to disappear.
For ACPI based suspend to RAM the Operating System is responsible for most
of work. The first part of the process is saving all device state and preempting
them. This is part was addressed in section 2.2. The second part is saving the
CPU state and calling the firmware. NetBSD inherited the S3 support for i386
from FreeBSD. The support was working, but lacking in two importants areas.
S3 was not possible on AMD64 and it only worked with a Uniprocessor kernel.
With the advent of Intel’s Core 2 in consumer notebooks both limitations had
to be fixed.

This was addressed in two parts. First, the ACPI wake code was ported
to AMDG64 and later it was extended to handle Application Processors (APs).
The wake code is called by the firmware almost directly after the resume. At
this point, the CPU is still running in Real Mode. For switching to Protected
Mode part of the address space has to be mapped to the same address in virtual
and physical address space. The code inherited from FreeBSD solved this by
adding the address of the wakecode to the kernel map, even though the kernel
map normally doesn’t cover this address range. This was fixed by using a
temporary copy of the Page Directory and a special Page Table, both located
in low memory. The wakecode enables paging using this temporary copy and
switches to the normal version in a second step. For the AMDG64 port this was
crucial as the switch to Long Mode needs the equivalent of the Page Directory
under the 4GB limit. The only major surprise left for the AMD64 port was the
trap when a page has the NX bit set and the feature was not enabled already.



The first attempt at multiprocessor support was to migrate all threads from
the APs and let them just idle. On resume the bootstrap was repeated as it
is done during the normal boot. This worked somewhat as the APs came back
to live, but they hit an assertion in the process scheduler pretty soon. This
assertion didn’t make any sense as it essentially meant that the idle thread was
not scheduled.

The second try utilised the already working wakecode. The wakecode was
changed to use storage in the CPU specific data instead of global variables. On
suspend, the APs follow the same code path as the primary CPU and on resume,
they are recovering exactly the state they were in before. After the first try on
a Intel Core 2 system, the system crashed with the same assertion as during the
first attempt.

Further debugging revealed that both cores disagreed on the state of the idle
thread of the second core. This suggested a cache synchronisation problem and
it turned out that the modifications of the second core where still in the L1 cache
and not written back to main memory, when the suspend occured. The first
core does an explicit invalidation before suspend, but it become obvious that
the L1 cache of the second core was not affected by this. Adding the necessary
flush before halting the second CPU fixed the problem.

At this point, an optimisation for the pmap module was added and the kernel
changed to always use large pages to map the code segment, if the hardware
supports it. This broke the i386 resume again. Just as the use of the NX bit,
large pages had to be enabled earlier.

The wakecode is been improved in non-functional ways. One important
change was to not use double return (like longjmp). The code flow was instead
reorganised so that the suspend is entered from a leaf function. One side effect
of this change is that the amount of state to save and restore has reduced as
only caller-save registered are now volatile.

Further work in this area is to merge the MP bootstrap code with the ACPI
wakecode. The former is almost a subset of the wakecode now. The change
would allow moving the resource allocation and state setup from assembly code
on the APs into the high-level code running on the AP, resulting in more sim-
plifications.

4 Video card handling

Of all hardware in a modern PC, the most problematic part for a successful
resume is the video card. One reason for this is the great variety of incompatible
chips. Another reason is the complete lack of interface descriptions for many
graphic chips.

The first approach to this problem is just calling the Power On Self Test
(POST) code in the VGA BIOS before switching to protected mode. This has
been available for a long time as option and works on a number of systems. The
function depends on the firmware restoring the state of the main PCI bridges
and the VGA device, which doesn’t happen e.g. on Dell machines.

The second approach is a userland program called vbetool. The program
either uses VMS86 or a real mode software emulator to execute the POST code
after the PCI code has restored the generic register set. This fixes the majority
of the remaining systems. The biggest problem is that it doesn’t allow you to



recover the display early enough to see and debug problems in the other drivers.

The third approach is to implement the necessary functions in chipset-
specific drivers. This is actively worked on as part of the DRM code, but it
is unlikely to address older, undocumented chips.

As part of the power management work a variation of the second approach
was added. A size optimised version of x86emu (as used by XFree86 and vbetool)
was added to NetBSD. This code allows doing the POST directly from within
the kernel. Using VM86 mode would be an option for i386, but for AMDG64.
The CPU emulation is complemented by an emulation of the 18254 (the AT
timer) to prevent the BIOS from destroying the kernel configuration.

The in-kernel VGA POST is still work-in-progress, but the goal is to com-
pletely replace vbetool and the early POST call.

5 Conclusion and future work

The jmcneill-pm branch and the related changes post-merge were a great suc-
cess. Most laptops are now able to use ACPI based suspend-to-RAM. The
number of systems that can’t use ACPI for system configuration was greatly
reduced as well. Work continues to fix any regressions left and identify remain-
ing problems with ACPI on older hardware. Extending the ACPI S3 support is
also part of the plan for NetBSD 5 to ship SMP enabled kernels by default.

The fine grained idle control of devices is still under investigation. The
current implementation for audio devices has problems with uaudio(4) due to
the architecture of the USB stack. Further extensions are planned though. The
cardbus network drivers are currently powering down the card if it is not up.
This is desirable for PCI devices as well.

The interface for device power management is focusing on making it easy
to add support to an existing driver. It currently doesn’t allow drive-specific
logic for wake up events or multiple power states. The PCI support is currently
limited to DO and D3hot. Future work will exploit interface to support fast
resume states like D1 and physically removing the power based on bridge logic
(D3cold).

The event interface is used for handling many of the modern special buttons
in the kernel. Future work will extend this to interact with userland components
like Gnome.

The video BIOS access based on x86emu will be used for vesafb as well.
Long term goal is making vesafb work on any platform with PCI devices.

To summarize the changes it is clear that NetBSD has caught up to Linux
in many critical areas. The biggest remaining tasks are converting the various
drivers in the kernel to support suspend/resume and to investigate the available
mechanisms on other hardware architectures like ARM.



