Peripheral-side USB support for NetBSD

HIROYUKI BESSHO

Genetec corp.
bsh@NetBSD.org

Abstract

Some hardware platforms that run NetBSD have type-B
receptacles and USB client controllers, allowing them to
act as USB devices.

Currently, the NetBSD kernel doesn’t have generic
support for the peripheral side of USB. This paper de-
scribes a new framework for NetBSD to help implement
functionality as a USB device on those platforms.

1 Introduction

NetBSD has supported USB for many years, but it has
been limited to host-side functionality. Many hardware
platforms that can run NetBSD have some hardware
components to act as USB devices, including:

e USB type-B receptacle. (or, micro-AB receptacle)
e USB client controller, and related external circuits.

These are often found on embedded platforms. The
client controller is also named as ‘USB device controller’
or ‘USB peripheral controller’. They are often found as
sub-components in SoCs, and there are also specialized
LSIs that can be connected to a CPU’s local bus.

In order to utilize those hardware components and be-
come a USB device, some software needs to be written.
This includes:

e adriver to control USB client controller

e code to handle the USB protocol, for enumeration
and configuration

o the implementation of the actual functionality as a
USB device

OpenBSD introduced a framework to help implement
those software components in 2007 called ‘usbf’. Linux
also has such a framework called ‘Gadgets’.

I have implemented a framework for NetBSD to sup-
port the peripheral side of USB, partly derived from
OpenBSD'’s.

2 Terms

The following terms are defined by the USB specification
and are included here to help facilitate this discussion:

USB function A USB function transmits or receives
data or control information over the bus. Typically,
a function is implemented as a separate peripheral
device, but a physical package may implement mul-
tiple USB functions and an embedded hub with sin-
gle USB port.

From the viewpoint of system software, a USB
function is same as a USB device.

USB interface A USB interface is a related set of end-
points that present a single feature of the USB func-
tion to the host.

A USB function can have multiple USB interfaces
as shown in Figure 2. All USB interfaces in a USB
function share single USB address.

Device endpoint An endpoint is a uniquely identifiable
portion of a USB device that is the terminus of a
communication flow between the host and device.

Compound device A USB device that has multiple
USB functions in it. (Figure 1)

Composite device A USB device that has multiple USB
interfaces that are controlled independently of each
other.

3 Components in the framework

The framework has the following components:

USB (physical) device

USB device

‘Hub‘

USB Function

USB Function USB Function

Non-compound USB device
(Device = Function)

Compound USB device

Figure 1: Compound device

Host side Peripheral side

USB device

USB device driver
Endpoint

Interface

Endpoint

Interface

Interface

USB System Software
(USB driver)

Figure 2: USB Interfaces and endpoints

USBP Driver for the peripheral side of the USB proto-
col. It handles the USB protocol on the control pipe.
This includes, for example, enumeration and con-
figuration.

USB interface drivers Drivers for the peripheral side
of USB interfaces. These drivers implement the
functionality of USB devices, such as USB serial
adapters, communication-class devices, mass stor-
age devices, human interface devices, audio, video,
etc.

Client controller drivers Drivers for client controllers.
These drivers send USB packets to and receive USB
packets from the USB host through the USB client
controller. There are many kind of USB client con-
trollers on the market, and they vary in design.

To send/receive USB packets to/from the host, the USBP
and USB interface drivers access the controller through a
common interface so that they can be independent of the
type of controllers.

In the kernel configuration file shown in Figure 3, a
usbp device is attached to a client controller device, and
USB interface drivers are attached to the usbp device.

4 USB device and interface

4.1 Choosing the USB device to become

With our framework, the platform can act as any kind of
USB device. The kind of USB device can be chosen by
attaching USB interface drivers to USBP. In Figure 3, the
FTDI emulation interface is attached to USBP. Different
interfaces can be attached to USBP as in Figure 4, and in
that case, the platform provides Ethernet emulation over
USB to the host.

4.2 Composite device

When two or more USB interface drivers are attached
to USBP, it configures the device as a composite device
as defined in the USB specification. The kernel config-
uration in Figure 5 will create a composite device that
consists of USB mass storage and Ethernet emulation.

4.3 Limitation on multiple USB interfaces

Although any number of USB interface drivers can be
attached to USBP, it has some limitations on building a
multi-interface device. There are two classes of limita-
tions:

e Limitations related to endpoints

e Limitations set by non-cooperative USB interfaces

4.3.1 Endpoint limitations

The USB specification defines that USB devices can have
up to 16 endpoints. The USB host connects a pipe to a
device’s endpoint and use it for communication flow be-
tween the host and the device. Among the 16 endpoints,
endpoint #0 is special and used for USB device config-
uration. A pipe to an endpoint #0 is called a control
pipe. Some USB devices use control pipes for normal
data transactions.

As USB pipes cannot be shared among interfaces', the
number of total endpoints used by all interfaces in the
device must be less than 15 excluding the control pipe.
Also note that pipes are unidirectional.

lexcept for control pipes

pxaudcO at obio0
usbpO0 at pxaudcO
upftdi* at usbpO

USB client controller on PXA250
peripheral-side USB support
emulates FTDI USB serial adapter

Figure 3: Example device tree in kernel configuration

cdcef* at usbpO # CDC ECM

Figure 4: Another kernel configuration example

In addition, even if the USB specification allows 16
endpoints per device, USB client controllers may not
have all of them implemented. Some controllers provide
fewer than 16 endpoints.

Some USB client controllers set specific purposes to
each endpoint. For example, PXA250’s? client controller
dedicates endpoints #1, 6, 11 to bulk IN pipes, and #4, 9,
14 to isochronous OUT pipes (see Table 1). So if inter-
face drivers require 4 bulk IN pipes total, they can not be
configured in one device on the platforms with PXA250,
even though the total number of endpoints required by
USB interfaces is below 16.

transfer type | direction | endpoints
control 0

bulk IN 1,6, 11
bulk ouT 2,7,12
isochronous | IN 3,8,13
isochronous | OUT 4,9,14
interrupt IN 5,10, 15

Table 1: Endpoints of PXA250 client controller

4.3.2 Cooperative USB interfaces

‘Cooperative USB interface’ is not a term defined in the
USB specification. It is introduced here for this discus-
sion.

USB interfaces are cooperative when they:

e are identified by class codes in interface descriptors,
and

e don’t require exclusive use of the control pipe (pipe
#0) for them.

Some USB devices, such as USB serial devices use
bulk pipes for data transfer, and a control pipe for chang-
ing their mode. Thus, they are ‘non-cooperative’.

USB devices that have vendor-specific class codes and
are identified by vendor ID and product ID are non-
cooperative. They require a specific host-side driver.

2 ARM based SoC by Marvell, formerly Intel

Also, USB devices identified by class code in their de-
vice descriptors are non-cooperative either.

Any number of cooperative interfaces can form a com-
posite device as long as they satisfy the endpoint limita-
tions.

Two or more non-cooperative interfaces cannot co-
exist in a single USB device, because they insist on act-
ing as an entire USB device rather than as a single inter-
face in a device.

One non-cooperative USB interface and some cooper-
ative USB interfaces may be able to co-exist in one USB
device, but it may require special handling in a host-side
driver.

4.3.3 Attaching many USB interfaces to USBP

Any number of USB interfaces can be attached to USBP.
Because of the limitations discussed above, however,
USBP may not build up a USB device consisting of all
USB interfaces attached to it. USBP selects as many
USB interfaces as possible to construct a USB device,
and ignores the remaining interfaces.

Thus, priorities among attached interfaces need to be
set. In the current implementation, an interface attached
later has higher priority.

5 Transform

The functionality of the USB device implemented using
USBP framework is defined by USB interface drivers at-
tached to USBP. That can be changed by attaching/de-
taching USB interfaces while the peripheral-side plat-
form is running. In other words, that USB device can
transform to a different device without rebooting the ker-
nel with a different configuration.
A USB device can transform by:

e loading/unloading kernel modules for USB inter-
face drivers.

e attaching/detaching USB interface drivers to USBP
via drvctl

usbpO at pxaudc? # peripheral-side USB support

upmass* at usbp0 # mass storage
cdcef* at usbpO # CDC ECM

Figure 5: Composite device

5.1 Example use-case

1. The kernel starts with USBP and DFU (Device
Firmware Upgrade).

e Host sees DFU device.

2. Kernel detaches the USB interface driver.

e As no active USB interface is attached, USBP
turns off the pull-up register on the USB data
line.

e Host notices that the USB device is discon-
nected.

3. Kernel attaches umass interface driver to USBP.

e USBP configures a new USB device, then
turns on the pull-up.

e Host sees an USB device connected, and finds
it is a mass storage device.

In this example, the USB device first appeared as
DFU, and then transforms into mass storage device.

6 USB interfaces in userland

In addition to USB interfaces implemented by in-kernel
device drivers, the framework also supports USB inter-
faces implemented by userland processes.

Userland programs implement the USB interface by
following steps:

1. Open /dev/usbpN

2. Issue ioctls to give necessary information about the
USB interfaces to USBP, and build up descriptors
for the interface.

3. Assign endpoints using ioctl.

4. Open /dev/usbpN.MM for endpoint access, where
MM is an endpoint number.

5. Read/write endpoints to communicate with the host.

When /dev/usbpN is closed by the process, the USB
interfaces built are removed from the USB device.

7 USBP’s interface

drivers

interface for USB

In this section, we list some of API functions provided
by USBP. The API may change as the implementation of
the framework is now under testing and debugging.

7.1 usbp_add_interface

A USB interface driver calls usbp_add_interface
shown in Figure 7 to add its interface to the USB device
with the following parameters:

e information to build a device descriptor (struct
usbp_device_info).

This information may be used when the USB in-
terface is actually configured into the USB device.
For a composite device, which has multiple USB in-
terfaces, the device information from the interface
with the highest priority is used.

e information about the interface.

usbp_interface_spec)

(struct

This is used to build the USB interface descriptor.
Types of endpoints required by the interface are also
included.

o callback functions called by USBP.

7.2 usbp_delete_interface

A USB interface can be removed from the USB device
by calling usbp_delete_interface shown in Figure 6.

USBP re-calculates USB descriptors and notify the
host if needed.

7.3 String descriptor

The USB interface driver passes some strings to be
used as human readable descriptions of the device via
usbp_add_interface.

These strings are presented to the host through USB
string descriptors. USBP manages strings provided by
USB interface drivers, assigns string IDs, and send them
on the host’s request.

Conversion to UTF-16 is also done by USBP.

usbd_status
struct

usbp_delete_interface(struct usbp_device x,
usbp_interface x);

Figure 6: API function usbp_delete_interface

8 Differences from OpenBSD implementa-
tion

I started this project by porting OpenBSD’s usbf(4)
driver, and later modified it significantly. The reasons
for the significant changes were to:

1. support composite devices and add an ability to
transform,

2. handle endpoint limitations imposed by client con-
trollers, and

3. share source code between host-side and peripheral
side of USB.

8.1 Sharing codes with host-side

In OpenBSD’s implementation, usbf(4) device consists
of many objects such as usbf_bus, usbf_endpoint,
usbf_pipe, usbf_xfer, etc., and they are very simi-
lar to objects found in host-side implementation such
as usbd_bus, usbd_endpoint, usbd_pipe, usbd_xfer,
and so on. Figure 8 illustrates the OpenBSD’s implemen-
tation. It is natural for us to want to reuse code for the
host side.

Sharing host-side source code was also necessary in
order to make logical drivers for USB devices run on
both sides of USB. One example of such logical drivers
is ucom(4). The ucom(4) driver provides common func-
tionality for USB serial adapters, and it is designed to
work with usbd_* objects defined in the host-side USB
subsystem. So it was impossible for OpenBSD’s imple-
mentation to let ucom(4) run on peripheral-side of USB.

In our implementation, we add super-class objects for
both side of USB as shown in Figure 10. This made
ucom(4) usable for both of host side and peripheral side.

9 Further development

9.1 Client controllers
Only one client controller is supported so far:
e (lient controller in PXA250

More controllers should be supported, including ones in
ARM based SoCs such as i.MX> and OMAP*.

3 ARM based SoC by Freescale
4Texas Instruments

Host side

ushd_device

Peripheral side

usbf_bus

usbf_interface

cdce(4) ‘ ‘ cdcef(4)

ushd_interface

usbd_endpoint usbf_endpoint

usbd_pipe

usbf_pipe

usb(4) usbf(4)

Figure 8: USB related objects in OpenBSD

9.2 USB Interfacess

Currently, the following USB interfaces have been im-
plemented:

cdcef(4) CDC Ethernet emulation.
upftdi(4) emulates FTDI USB serial.

More USB interfaces should be implemented. The cur-
rent targets are mass storage and DFU.

9.3 USB On-The-Go

USB OTG is a supplemental specification of USB that
allows platforms become both host and device sharing
one USB Micro-AB receptacle.

Many modern platforms have micro-AB receptacles.
When two platforms with those receptacles are con-
nected, they need to decide to take either role—host or
peripheral—according to the OTG specification.

10 On going study

10.1 Comparison to Linux’s Gadget

Linux has a framework for peripheral-side USB named
as ‘Gadget’. I haven’t looked at it closely yet.

Comparison to Gadget will help improve our frame-
work.

Host side Peripheral side
usbhd_bus usbf_bus
ucom for
usbd_device ucom(4) peripheral usbf_device
side -
.
A%
. .
ushd_interface can't u’se usbf_interface
.
.
usbd_endpoint uftdi(4) FTDI emulation usbf_endpoint
in peripheral side
usbd_pipe usbf_pipe
ushd_xfer usb(4) . usbi(4) usbf_xfer

Figure 9: Difficult to use ucom(4) for both side

Host side

shared by both side
usbd_bus X
< device

Peripheral side

usbd_device
interface V\
usbd_interface usbp_interface
usbd_endpoint
ucom(4) usbd_pipe
usbp(4)
uftdi(4) ushd_xfer
usbl®) upftdi(4)

Figure 10: Sharing USB related objects and ucom(4)

11 Conclusion

This paper presented a new framework for NetBSD to
support peripheral-side USB. With this framework, we
can make platforms with NetBSD run as USB devices,
with fairly small amount of new source code. This will
be helpful for developing embedded systems.

Acknowledgment

I started this project by porting OpenBSD’s usbf(4) and
cdcef(4) drivers to NetBSD. They were initially written
by Uwe Stiihler.

I would like to thank Taylor R. Campbell, Greg Oster,
and Masanobu Saitoh for reviewing this paper, suggest-
ing improvements, and fixing many grammatical errors.
If you still find broken English in this paper, those sen-

tences were added by me after their review.

References

[1] USB Implementers Forum, Inc. (2000). Universal
Serial Bus Revision 2.0 Specification

[2] USB Implementers Forum, Inc. (2010). Universal
Serial Bus Class Definitions for Communications
Devices, Revision 1.2 (Errata 1)

[3] USB Implementers Forum, Inc. (2007). Univer-
sal Serial Bus Micro-USB Cables and Connectors
Specification Revision 1.01

0N N AW =

N B B DDA DDA D DWW L WL W W WL WIERDNINDNDDNNNNDNNFE — = = = = =
Nk WL, OOV WNMPBEWN—RL,OOVUTANNHE WD, OOV IANUNMPEWNRERLOWOVIONWN A WND=O\O

/*
x information used to build USB device descriptor.
*/
struct usbp_device_info {
intl6_t class_id;
intl6_t subclass_id;
int protocol;
int vendor_id;
int product_id;
int bcd_device; /* device release number in BCD x/
const char sxmanufacturer_name;
const char xproduct_name;

const char xserial; /* device's serial number x/

I

#define USBP_ID_UNSPECIFIC (-1)

/*

x requirements of an endpoint used by the interface

*/

struct usbp_endpoint_request {
uint8_t direction; /+* UE_DIR_IN or UE_DIR.OUT x/
uint8_t attributes; /+* Transfer type:

UE_ISOCHROMOUS, UE_BULK, UE_INTERRUPT x/

u_int packetsize;
/* need more for isochronous %/

i

/*

x information used to build an interface descriptor

*

/

struct usbp_interface_spec {
uint8_t class_id;
uint8_t subclass_id;
uint8_t protocol;
enum USBP_PIPE0O_USAGE {
USBP_PIPEO_NOTUSED, /x this interface doesn’t use pipe #0 x/
USBP_PIPEO_SHARED, /x pipe#0 is shared among interfaces,
by means of interface number in the packets x/
USBP_PIPEO_.EXCLUSIVE /x this interface requires an
exclusive use of pipe#0 x/
} pipeO_usage;
const char xdescription;
uint8_t num_endpoints; /x the number of endpoints used by
this interface excluding ep0. x/
struct usbp_endpoint_request endpoints[];

1

usbd_status usbp_add_interface(

struct usbp_device x, /x USB device managed by USBP x/
struct usbp_interface x, /% USB interface to add x/
const struct usbp_device_info =, /% information to build a device descriptor x/

const struct usbp_interface_spec x, /x information to build an interface
descriptor and endpoint descriptors x/
const struct usbp_interface_methods x); /« callback functions x/

Figure 7: API function usbp_add_interface

