The NetBSD & pkgsrc Guide

(2005/09/29)

The NetBSD Developers

The pkgsrc Developers

The NetBSD & pkgsrc Guide
by The NetBSD Developers, The pkgsrc Developers

Published 2005/09/29 06:54:56

Copyright © 1999, 2000, 2001, 2002 Federico Lupi
Copyright © 2003, 2004, 2005 The NetBSD Foundation

All brand and product names used in this guide are or may be trademarks or registered trademarks of their respective owners.

NetBSD® and pkgsrc® are registered trademarks of The NetBSD Foundation, Inc.

Table of Contents

PUIFPOSE OF ThiS QUITE ...ttt bbb et b et sb ettt e XiX
1. ADOUL NETBSD AN PKISKC ..ottt ettt XX
L WHAL IS NEIBSD? ..ottt bbbkttt 1
1.1 The StOry OF NEIBSDcociiiieieeeinee et e 1

1.2 NEtBSD TRAIUIESc.viveireeirretesest ettt ettt 1

1.3 SUPPOILEd PIALFOIMS ...ttt et 2

1.4 NEtBSD’S TR USEIS.....ieeieetiiterieieiintertese ettt sr et s b e r et r e e e nnenees 2

1.5 Applications fOr NEIBSDcccoiiiiiiiinee et 2

1.6 The philosophy Of NEtBSDcccciriiiiiiriieeireeeee ettt 3

1.7 HOW 10 GEE INEIBSD ...ttt et 3

2 WL IS PROSIC? c. ettt etttk b bt stk R e bt stk n e bt ettt bt 4
2.1 INEFOAUCTION <.ttt ettt sttt se et e e sbesesnebe e 4

2.2 OVEIVIEW ..ttt ettt ekttt b btk bbbkt st ekt bt e bt e stk es e e b et e seebereebebeseebeneas 4

2.3 TEIMINOIOQY ...eveiiieieiete ettt sttt ee ettt se et eebe e arere e 5

2.4 TYPOGIAPRNY ..ottt ettt ettt bttt ettt ettt b ettt e erere e 6

1. System installation and related ISSUES.........c.uviiiiiiieirece s 7
S INSTAHALION ...ttt bbbt 8
3.1 DOCUMENTALION ...ttt ettt ettt eb et et et eb e e e et e enene e 8

3.2 The layout of @ NetBSD inStallationc.coooieiieiiiiiie e s 9

BB INSTAITALION ...t 9

3.3 L KBYDOAIT. ...ttt bbb 9

3.3.2 GROMELIIES ...c.cveetet ettt ettt 10
BLBLBPANLITIONS ... 10

3.3.4 Hard disk Space reqUIrBMENTSc.ourireireierie e 11

33 D RBIIY . bbb et nre s 11

4 EXAMPIE INSTAHATION ...t et et 13
AL INEFOTUCTION ..ttt st eb bbbkt b b en bbb e an b ana 13

4.2 Preparing the inStallation ...t s 13

4.3 Creating the installation FIOPPYooveeeiieric s 13

4.4 LaSt PreParalOry STEPSoouieieiterierieetie sttt et sttt e se e sbe et sb e bt e b sbe st et b e b e bt e e e b ene s 14

4.5 Beginning the iNStallation ... s 15

4.6 PAITITIONS ...ttt bbbt b bbb r et n b r e e ner e 20

A7 DISKIADEL ... bbb bbb b 25

4.8 Creating @ diSKIADELcovciiiiieeee e 27

4.9 The disk Preparation PrOCESSctrireirieririiieeeriete sttt beneseene s 31

4.10 Choosing the installation MEediaccceiriiriiiiirc s 33

4.11 Installing from CD-ROM and DVDccccoviiiiiniiiireieesieie et 35

412 INSEAHIING VIA FTP 1ottt 36

AL EXIFACHING SBLS .veviieitiieteiete ettt sttt bbbt b e et e bt se b e enas 46

4.14 System CONFIGUIATIONcveiiiiiiiiet et 49

B TNE FIFSEDOOL ...t ekt 57
5.1 1f SOMELhiNG WENE WIONGcviviiiiiiiiiiiti ettt e 57

ST o T 11 OSSPV 57

5.3 Changing the Keyboard IayOuL............ccooiiiiiiiiie e 58

5.4 The Man COMMEANTcoiiiiiiieerieiere ettt ettt b e n et srene 58

5.5 Changing the root PASSWOITceiiiiiiieeneieisee et 59

5.6 Changing the Shell ..o 59

5.7 SYSIEM TIMIE ..ottt bbbttt bbb 60

5.8 Basic configuration in ZeEC/rC.CONT.......ccociiiiriiiiieee s 60

5.9 Enabling FFS SOft-AependenCiesocoviieiiiinieeisiee et 61

5.10 Reb0OtiNG the SYSEIM ..ot bbb snere e 61

B THE SECONT DOOL ..ot bbb et et 63
B. L AMIBSU ettt bbb bbb bbb bbb bbbt b 63

6.2 Mounting the CD-ROMcccoiiiiie ettt bbbt snene e 63

6.3 Mounting the fIOPPYc.eiie e 64

6.4 Accessing @ DOS/WINAOWS Partitioncccoveerreririeinneneeeeie s 64

5.5 AQTING USEISecviieieieeeiiieeie ettt sttt sttt sttt sttt sttt 66

6.6 SNAOW PASSWOITS........cveieeiiieie ettt ettt ettt r e 67

6.7 Stopping and rebooting the SYSEIM.........cccoiiiiiireeeee e 67

T TC. SYSEBIM ..ttt et et b ekt b et e e bt bt e e e b e e b s b e Rt et e b e b e et bt b b e bbb 68
7.1 The rc.d ConfIgUIAtioN........cooiiiiieeeee e e 68

T2 THE O SCHIPLS ...ttt ettt b a et b e et b e et ebe e e 69

7.3 The Role of rcorder and rC SCIIPLS ..oveeeirieieieiete e e 70

7.4 Additional REAING.c.eiiiiiiiie e bbb 70

111. System configuration, administration and tUNING...........ccceoeiiiini s 72
B EITING ettt bbb bt bRt R R Rt bbb et R e b et e et e e 73
8. L INIFOUUCIING Vi 1.ttt ettt et b e et b ettt e e 73

8.1.1 THe Vi INTEITACEc.eiviveriieeei et 73

8.1.2 SWitching t0 Edit MOEccueiiiiiiece s 73

8.1.3 Switching Modes & Saving Buffers to Files ..., 74

8.1.4 Yanking and PULLINGcccoiueiririiiieieiie et e 74

8.1.4.1 Oops | Did Not Mean to do that!...........ccococvriininnee e 74

8.1.5 Navigation in the BUTFEr ..o 74

8.1.6 Searching a File, the Alternate Navigational Aidccccocevreienienieiennienne 75

8.1.6.1 Additional Navigation Commands...........ccccouerireirnenneineenee e 75

8.1.7 A SAMPIE SESSIONeviivieiieie ittt ettt bbbt et eb et bere e 75

8.2 CONTIGUIING Vit sttt 76

8.2. 1 EXIENSIONS 10 S EXIC .uviriiiiiieiiieetce ettt sttt s st ebene e 77

8.2.2 DOCUMENTALIONveite ettt ettt ettt 77

8.3 USING tAGS WITN Vi ..eeviiieeiiieiee ettt 78
PSSR 79
O L WRAL TS X? ettt bbb bbb bbb bbb 79

9.2 CONTFIGUIALION. ..ottt bbbttt st 80

0.3 THE IMOUSE ...ttt bbbt bbb b et ettt sbe e 81

9.4 THE KEYDOBIT ...ttt bbbttt et 82

9.5 THE MONITON ...ttt bbbttt 82

9.6 THE VIR0 CAIU ...ttt 82

0.6.1 XFIBE B.Xu ettt e s 82

0.6.2 XFIEBEO 4.X.....cviiiiiiiieiieiiire et 83

9.7 STAPTING Xttt e bbb et b e bbbt bbb e R e b et et e bt b e e ne e 83

9.8 CUSEOMIZING X ..ottt bbbt ettt sttt b b ettt e bbb see e 83

9.9 Other WINAOW MANAGETSc..cueruiieeeieaiestesie et sttt sbesbe e se s sbeseesessesbesbeneesessesbeseeneaneas 84

9.10 Graphical 10gin With XAMccoiiiiiiiii e 85

10 LINUX @MUIBLION ...ttt bbbttt 87
10.1 EMUIALION SELUD ...ttt st 87
10.1.1 Configuring the KErnelccovoeiiieniieee e 87

10.1.2 Installing the LinuX TIDraries ... 87

10.1.3 Installing Acrobat REAdEccoveiiiieeieie e 88

10.2 DITECIONY SLIUCLUIEvtieteeiteecreet ettt ettt sb e 88

10.3 EMUIALING /PIOC ..ttt ettt 89
N o Lo B OO TO PR PUR PRSPPSO 91
11.1 Basic hardware lEMENESccoiiiiiee et 91

11,2 BIOS SEHINGS ...ttt ettt ettt sttt st 91

11.3 Configuring the audio dBVICE..........ccceeiieiireee e 92

11.4 Configuring the Kernel audio deVICESccoi e 92

11.5 AdVANCE COMMEANGS.c.ccviiiiirieieiteiesieie sttt st sttt bbb e 93
1152 QUATOCEI(LY c.neeeeeetieie ettt bbb et 93

1152 MIXEICEHI(L)c ettt st 93

11.5.3 QUATOPIAY(L) +uveveverrerieeee ettt bbb et er s 93

11.5.4 QUATIOTECOTT(L) . veeeeeeeeeeiiiterie ettt sttt et b et en e b ebeens 94

L2 PRINTING .ttt bttt bbbt e h ekt ne et b e eb e bRt b e R e ene b b et s 95
12.1 Enabling the printer dagmON ..o e 95

12.2 Configuring Z€EC/PriNtCap......ccoe ittt e et e 96

12.3 Configuring GROSESCIIPLc.viuiitiiiieeirie sttt bbb e 97

12.4 Printer management COMMANGSoveirerureeierenteneeeeie e se e see e eee e e 99

12.5 REMOLE PIINTING ...eiveiieieetiete et et sttt sb e bbbt sa et nb e s 99

13 USING remMOoVabIe MEAIA.couiieiiiriereeeiete ettt et eb e bbb e 101
13.1 Initializing and using flOpPY diSKS..........coeiiiriiii e 101

13.2 HOW tO USE @ ZIP TiSK......ecvieiiiiiiiciiiciee e 101

13.3 Reading data CDS With NetBSDccccciiiiiiiiiiinieeee e 102

13.4 Reading multi-session CDS With NetBSD..........cccooviniinneinrenee e, 104

13.5 Allowing Normal USErs t0 8CCESS CDScovvueirieieririere ettt 104

13.6 Mounting an I1SO IMAJEoviiieriieiieieee et ettt 105

13.7 Using video CDS With NEtBSDccoiiiiieerieieiee e 105

13.8 Using audio CDS With NEtBSDccoiiiiiieireiree e 106

13.9 Creating an MP3 (MPEG layer 3) file from an audio CDccccovivireeincncrccnes 106
13.10 Using a CD-R writer With data CDS..........ccooeveeriienenieenee et 107
13.11 Using a CD-R writer to create audio CDScovoeereeriieienee e 108
13.12 Creating an audio CD from MP3S......coeeriieerieenireie e 108
13.13 Copying an AUAIO CDc.coviuiiiiieiiieieiteiee et 109
13.14 Copying a data CD With tWO AriVES...........cceririeeriiieree e 109
13.15 USIiNg CD-RW reWTItaDIES......c.coveiiieieiieieee e 109
13.16 DVD SUPPOI. ..ottt ettt st eb et 109
13.17 Creating 1SO images fromM @ CDccociiiiinieeiee e 110
13.18 Getting volume information from CDs and SO iMages........c.cevereereneinere s 110

14 The cryptographic device driver (CGD)oociiiiiieiee et 111
LA L OVEIVIEW ..ottt b ettt 111
14.1.1 Why use disK 8NCIYPLIONT........ccoiiiiiiiiieieese ettt e 111

14.1.2 LOgical DiSK DIIVEIScoeiiiiieeieiietc ettt 111

14.1.3 AVAIIADITILY ..o e 112

14.2 Components of the Crypto-Graphic DisK SYSIEMcccvveirieireiinierceeeereeieae 112

14.2.1 Kernel driver pSEUdO-UEVICEcccvererieerieie e 112
14.2.2 CIPRNEIS ottt ettt ettt 112
14.2.3 Verification MethodS..........coeeiiiiiiiie e 112

14.3 Example: encrypting YOUF iSK..........ccovieiirieniniiieie e 113
14.3.1 Preparing the diskcoieiiiiie e 113
14.3.2 Scrubbing the disK..........coirieiiicee e 114
14.3.3 Creating the ©Ocoeeieiiieecee e 114
14.3.4 Modifying configuration files ..o 115
14.3.5 RESIOMNG TALAcviveveiiieiie ettt 116

14.4 Example: encrypted CDS/DVDS........cooiiiiieienieieiniee ettt 116
1441 INFOAUCTION ...ttt 116
14.4.2 Creating an encrypted CD/DVDcccoceoerienieninieienne et 116
14.4.3 Using an encrypted CD/DVDcccoovienieieneieneie et 119

14.5 Suggestions aNd WAIINGScc.ciireirerierieieiese ettt e esb e 120
14.5.1 Using a random-Key cgd fOr SWaPcccovereireriniiieiererie e 120
L4.5.2 WATINGS ..ttt sttt et se et b e et en et st 121

14.6 FUher REAAINGcoue ittt bbbt 121
BIDHOGIAPNY ...t bbb e 121

15 Concatenated Disk Device (CCD) cONfIQUIAtIoN.........c..cceiiireiienieiee e 123
15.1 Install phySiCal MEAIAceieieieeee e 123
15.2 Configure Kernel SUPPOIT........cc.oii ittt e 124
15.3 Disklabel each volume member of the CCDccccvviiniiinene e 124
15.4 ConfIgUIe the CCDouiieicee e e bbb 126
15.5 Initialize the CCD TEVICEccovieieiieictiee et 126
15.6 Create a 4.2BSD/UFS filesystem on the new CCD devViCecccovernineieieccnenienns 127
15.7 MoUNt the FilESYSIEM ... e 128
16 NEtBSD RAIDITAMEcvciiiiiieiiice ettt ettt 129
16.1 RAIDFrame INtrodUCLIONcoviueriiiiieieiee e 129
16.1.1 ADOUL RAIDFTAME ...oviviiciiieieesee e e 129
16.1.2 A warning about Data Integrity, Backups, and High Availability 129
16.1.3 GEttiNG HEIP . c.vcveeieieiee e 129

16.2 Setup RAIDFIAME SUPPOTLcvviieiiieieiieeieesiee ettt bbb 130
16.2.1 KerNel SUPPOIt.......cviuiiiieeiiieieeie ettt e 130
16.2.2 Power Redundancy and Disk CaChing.........cccceceveerinniinniineinsieseeseeieneas 130

16.3 Example: RAID-1 ROOE DiSKcviieiirieiieieieieiiee e 131
16.3.1 Pseudo-Process OULIINGccoveeiiieiiieiee e 132
16.3.2 HArdwWare REVIEW.........c..oueiriiiiicieiiee et 133
16.3.3 Initial Install on DiSKO/WAOcccooeiiriiiiieieneeee e 134
16.3.4 Preparing DiSKL/WALcccooiiiiiinieieieeee e 136
16.3.5 Initializing the RAID DEVICEcccoeririeeeiieie et 139
16.3.6 Setting Up FIlESYSIEMS ..ot 141
16.3.7 Setting up Kernel dUMPS.ooeiiiiieiieie e e 143
16.3.8 Migrating System t0 RAIDoouiiiiiiiee e e 144
16.3.9 The first OOt With RAIDccoveiiiiiiiieceee e 146
16.3.10 Adding DiskO/Wd0 t0 RAID ...t 147
16.3.11 Testing BOOL BIOCKS.......c.ciuiiiiieiieiiiie ettt 149

16.4 Testing Kernel QUMPS........c..oeiiiiiee et 151

vi

17 Pluggable Authentication Modules (PAM)cuiiiriiiese e 153

L7 1 ADOUL ...ttt 153
L7.2 INEFOAUCTION ..ottt sttt e 153
17.3 Terms and CONVENTIONSc.cviuieirieiiieieeetes ettt bbbt 153
17.3. 1 DEfINILIONS ...ttt 153
17.3.2 USA0E EXAMPIES ..o 155
17.3.2.1 Client and SEIVEF e ONEccoviveirieeerieeeririee et sesre e seere e 155

17.3.2.2 Client and SErver are SEParate.........ccuoveerrirnieeneeresreeseresesiesesens 156

17.3.2.3 SAMPIE POLICY ..veveeiiiiieeeee e 156

17.4 PAM ESSENLIAISvcvieieieieeei e 157
17.4.1 Facilities and PrimitiVEScccveeiireierineieie e 157
1742 MOUUIES. ...ttt 158
17.4.2.1 MOAUIE NaMING....cviriiieiiieieieieiee st 158

17.4.2.2 MOAUIE VEISIONINGcveviieieieieiriee ettt 158

17.4.2.3 MOTUIE PaEN ...t 158

17.4.3 Chains and POLICIESooviiiriiieeiiceic et e 159
17.4.4 TrANSACTIONS ...t 160

17.5 PAM CONFIQUIALTION.eeiiiiitiiie sttt et ettt 160
17.5.1 PAM POICY FIlES ...ttt e 160
17.5.1.1 The Zetc/pam.conTfile ... 160

17.5.1.2 The Zetc/pam-d dir€CLOY........cccceiiieireiienieieie et 161

17.5.1.3 The policy SEArch OFder.........cocciiieiieiiire e 161

17.5.2 Breakdown of a configuration liNe...........ccoceoieiiiiiennine e 161
17.5.3 POLICIES ..ottt 162

17.6 PAM MOUIES ...t 163
17.6.1 CommON MOGUIES..........cooiiiiiiciiicec e 163
17.6.2.1 PAM_AENY(8).c.veeeiietirieiieiiee sttt 163

17.6.1.2 PAM_BCNO(8) .. vevereeeerierieiiee sttt et 163

17.6.1.3 PAM_EXEC(8) .vvereeerireeiiieeieie ettt sttt st enene 163

17.6.1.4 pam_fLPUSEIS(8)....cuerereerieeieiieeieieie sttt 163

17.6.1.5 PaM_grOUP(8) ...vereeverereerireeieierieieeete ettt sttt eaeneas 163

17.6.1.6 PAM_QUESE(8) ...veveiveiiieeiiisieie ettt 163

17.6.1.7 PAM_KID5(8) ...vvireieiiieeiiiieieie ettt 164

17.6.1.8 PAM_KSU(B) ..vevvireriiirieiiiesieie sttt sttt et snene s 164

17.6.1.9 pam_IaStIOg(8)......cvererreriieieirieieiee s 164

17.6.1.10 pam_l0gin_aCCESS(8)ervrurrererreirieierieieirieie ettt 164

17.6.1.11 pam_NOIOGIN(8) ...cvvveririeieieieiirieie et 164

17.6.1.12 pam_pPermit(8)cccuceureeireeirieieiseeie sttt 164

17.6.1.13 Pam_FatiUS(8)....ecverervereeeiererieierieieeseeie sttt 164

17.6.1.24 pam_rhoStS(8)cuerereeiiieieirieieieie ettt 164

17.6.1.15 Pam_FrOOtOK(8) ... ccevrverereeieririeierieie sttt 165

17.6.1.16 pam_SECUIELY(8)veverereeeieieirieie ettt 165

17.6.2.17 PamM_SEIF(8)...ee e e 165

17.6.2.18 PamM_SSN(B) ..o e 165

17.6.2.19 PAM_UNIX(8) 1vuveueererierierieie sttt sttt et 165

17.6.2 FreeBSD-specific PAM MOAUIES...........cocoiiiiiiiiiieiee e 166
17.6.2.1 PAM_OPIE(8) .euvevereeririerieiiee sttt et e 166

17.6.2.2 pam_OPICACCESS(8) .vvevereieririerieririeete sttt s 166

Vil

17.6.2.3 pam_passWAGC(8) ... evererrereerreririeierieiereseeierestee et see et 166

17.6.2.4 pam_tacPlUS(8)cevrveririeieierieiereeie et 166

17.6.3 NetBSD-specific PAM MOUUIEScccceeriineiiiriee e 166
17.6.3.2 PAM_SKEY(8) ...vvireieeiereeieieeieie ettt sttt 166

17.7 PAM Application Programming........ccceeeeneeineieneieneseeses e 166
17.8 PAM Module Programimingcccoceeeireienineineeese sttt s 166
17.9 Sample PAM APPLICALIONcovieiiiiice e 167
17.10 Sample PAM MOTUIEoviieiiiiieee e 170
17.11 Sample PAM Conversation FUNCLIONcccooeieriinnieienee e 172
17.12 FUINEr REAAING «..vveeetieeitceisieis sttt 174
BiIDlIOGIapRYcoeiitice e 174

18 TUNING NEIBSD ..ottt bbbt e b e ettt sb e ebenenes 175
18,1 INEFOAUCTION ...ttt bbbttt 175
18. 1.1 OVEIVIBW ...ttt ettt r e 175
18.1.1.1 What is Performance TUNING?ccccuoueirireneieesie e 175

18.1.1.2 When d0oeS 0N TUNE?........ccoveriririeeriereiereeeee e 175

18.1.1.3 What these Documents Will NOt COVETcccovevereiinieienieieenns 176

18.1.1.4 How Examples are Laid OULcccceoeriiieneieese e 176

18.2 TUNING CONSIABIALIONS ...ttt ettt bbb e e 176
18.2.1 General System Configuration...........coeeereirienenieieie e 176
18.2.1.1 Filesystems and DiSKSccuerereieininie e 176

18.2.1.2 SWap Configurationoocivireiieee e 177

18.2.2 SYSLEM SEIVICES ...c.vneiuieiiitiie ettt sttt ettt sb et b et see e 177
18.2.3 The NEtBSD KEIMELcociiiieiiecieeee e 178
18.2.3.1 Removing Unrequired DIIVELScooeirieinenieiee e 178

18.2.3.2 Configuring OPLIONScc.oreuiriiiieieiee st 178

18.2.3.3 SYSLEM SELLINGSecveeieiiiee ettt e 178

18.3 Visual MoNItoring TOOISc.cooiiuiriiieire et et e 178
18.3.1 The top ProCess MONIONcc.cciiirieerieieirieie e 179
18.3.1.1 Other Neat Things ADOUL TOPcvevveviiiriirieirenieiesieie e 180

18.3.2 The SYSSLAt ULHIILYeeverieeiiicieceee e 180

18.4 MONILOING TOOIS ...ttt 181
L8 L FSEAL .ttt 182
L84, 2 TOSEAL.....ecvietiee ettt 182
L84, 3PS ettt bbb 183
1844 VIMSTAL ...ttt b e 184

18.5 NEIWOTK TOOIS ..ot 185
LB.5.L PING ettt bbb 185
18.5. 2 tFACEIOULE. ..ottt et 186
18.5.3 NBLSTAL ...t e 187
18.5. 4 tCPAUMP. ..ttt se et 189
18.5.4.1 Specific tepdUMP USAGEcovevereireririeierieie et 189

18.6 ACCOUNTING ...ttt ettt sttt e b e b bt et b et e e et eb e b s et et st ne et ebenas 190
18.6.1 ACCOUNTING ...ttt ettt ettt ettt b e bbb 190
18.6.2 Reading Accounting INformation ... 190
18.6.2. 1 1ASICOMIM ...ttt 190

18.8.2.2 S8ttt 191

18.6.3 How to Put ACCOUNTING t0 USE ...c.viviiiiiiiiieeiieie e 192

viii

18.7 Kernel ProOfiliNgc.eiviuiiiiiiseirsesie e 192

18.7.1 Getting STAEUc.eeieeiieeieee e 192

18.7. 1.1 USING KGMON ..ottt s 192

18.7.2 Interpretation of Kgmon OULPULcccoeeriinieie e 193

18.7. 2.1 FIAt PrOfile ...ovviiiiieiiieeieee e 193

18.7.2.2 Call Graph Profile.........ccoeeviiieieeeseeee e 194

18.7.3 PULLING TE 10 USE ..ttt 195
18.7.4 SUMIMAIY ..ottt ettt e en e b n e 196

18.8 SYSIEM TUNING ...cvtveireiteeesteee ettt sttt sttt 196
18.8.1 USING SYSCL ...t 196
18.8.2 MemfS & SOFLAEPSovevieiieee e 197
18.8.2.1 USING MEMTS ..viviiiiiiieciiisieereee et 197

18.8.2.2 USING SOTLHEPS ...c.vevveeetiieieiesee et 197

18.9 KENEI TUNINQG .. cvtieiett ettt sttt 198
18.9.1 Preparing to Recompile @ Kernel ... 198
18.9.2 Configuring the Kernelcooiiiiii i 198
18.9.2.1 Some example Configuration ItemScccooereiennineneincie e 198

18.9.2.2 SOME DIFIVEIS ..ottt 199

18.9.2.3 MUIEE PSSceiviiiiiiiresice e 201

18.9.3 Building the New Kernelccociiiiiiiiie e 201
18.9.4 Shrinking the NetBSD KEINelcccoiiiinieiiiieicee e 201
18.9.4.1 Removing ELF sections and debug information.............ccccoceveneene. 201

18.9.4.2 Compressing the Kernel ... 202

19 NetBSD VEriEXEC SUDSYSIEM......cueiuiiuiitiieiietesie sttt ettt ettt st bbb e 204
L. 1 HOW TEWOTKS ...t 204
19.2 SIGNALUFES Tl ...ttt 204
19.3 Generating fINGEIPIINTS.......ceii i e 204
19,4 SEHCTIBVEIS ..o 206
19.5 Kernel coNfigUIrAtioNcovieiiiiiieiecsese e 206
20 MiISCEIANEOUS OPEIALIONScviviviiieirietcrieiee ettt st 208
20.1 Creating a custom install/boot floppies for i386...........ccccoveiriiinniriieccnes 208
20.2 Synchronizing the system clock With NTP ..o 208
20.3 Installing the DOOt MANAGETcviveiriiiiee e 210
20.4 Deleting the diSKIADELcooiiiiiiei e 210
20.5 SPBAKET ...ttt bbb bbbt 211
20.6 FOrgot rOOt PASSWOIA?eevveierieieriste ettt sttt sttt sttt sb et 211
20.7 Adding @ NEW hard diSKcocoueerrieriiieene e e 212
20.8 PassWOrd file IS DUSY?coiueririeieiie i 214
20.9 How to rebuild the devices iN BVccooeeieiiicieieecee e 214
1V. Networking and related ISSUBS.ceiieiiiee ettt 216
21 Introduction to TCP/IP NEtWOTKING........cccccuiiiriiiiii i s 217
211 AUGIEINCE ...ttt bbb b e 217
21.2 Supported Networking ProtOCOISc.oouiiiiiiiiinie e 217
21.3 SUPPOIEA IMEAIA ...ttt bbbttt et eb e 218
21.3. 1 SEIIAI LN ..c.ecviieeee et 218
2132 ETNEIMEL ...t 218

21.4 TCP/IP AAAress FOIMMALcoviveiiriiieriireinnie sttt 219

21.5 SUBbNetting and ROULINGc..oveieiviieiie et 221

21.6 NAME SEIVICE CONCEPLS....evivireieieririe sttt ettt ettt sttt 223
21.8.1 7EEC/NOSTES ..ottt sttt are e 224
21.6.2 Domain Name Service (DNS)cccoeerieririieneeeree et 224
21.6.3 Network Information Service (NIS/YP) ... 225
2184 OB .ot 225

21.7 Next generation Internet protocol - IPV6............ccooveiieinneineerrc e 226
21.7.1 The Future of the INErNetcooceeeee e 226
21.7.2 What good IS IPVB?......c.cviiiiiiisieec ettt 226

21.7.2.1 Bigger AdAress SPACEceerveeriereirieririeieisieeneeeesee e es 227

21.7. 2.2 MODIITY ..o 227

21.7.2.3 SECUIILY . .c.veveieete ittt ettt et et eb e e 227

21.7.3 ChangeS t0 IPVA ..ottt e 227

21.7.3. L AQArESSING.cvieeeiriieeiiriete ettt 227

21.7.3.2 MUILIPIE AQAIESSES......eveueeierieieeiee sttt s 230

21.7.3.3 MUILICASING. ..ottt et 230

21.7.3.4 Name ResoIVING iN TPV6cccooiiiiniiinieiseeec e 231

22 Setting up TCP/IP 0N NEetBSD 0N PraCiCeccveiveieiiieriiiei ettt 233

22.1 A walk through the kernel configuration..............ccocooieienninineience s 233

22.2 Overview of the network configuration files ... 237

22.3 Connecting to the Internet with @ Mmodem ... 238
22.3.1 Getting the connection iNfOrmMationc.cooeeiine i 238
22.3.2resolv.confand NnSswitch.conT.......cccoooiiiiiiininii e 238
22.3.3 Creating the directories for PPPAcccoe e s 239
22.3.4 Connection script and chat file...........ccoooiiiiiiiii e 239
22.3.5 AULNENTICALION.eviveiieceeste et 240

22.3.5.1 PAP/CHAP authentiCationc.cccovernieninieenneneseesse e 240

22.3.5.2 Login authentiCatioN..........cccooiiereiieire e 241
22.3.6 PPPU OPLIONS ...ttt sttt et 241
22.3.7 Testing the MOUEMcuiiiiirciiese e 241
22.3.8 Activating the TINK..........coooiiiiiii e 242
22.3.9 Using a script for connection and diSCONNECHIONcccvveverveviccncicnieenes 243
22.3.10 Running commands after dialin ..o 243

22.4 Creating a small NOme NEWOTKccooiiiiiiiiieeee e 244

22.5 Setting up an Internet gateway With IPNATcccviiiiiiece s 246
22.5.1 Configuring the gateway/firewallccooeiiiiinninin e 247
22.5.2 Configuring the CHENEScoiciiieireiee e 248
22.5.3 Some useful COMMENGSccoiiiiiiiiee e 248

22.6 A COMMON LAN SBIUD. ..ottt e 249

22.7 Connecting two PCs through a serial line ..o 249
22.7.1 Connecting NetBSD With BSD OF LiNUX.......cccccuiiiiirniineirsiesiecreeceens 249
22.7.2 Connecting NetBSD and WINdOWSs NTccooviiiirirnienensceseesescesens 250
22.7.3 Connecting NetBSD and WINndows 95..........ccccviirienininnine e 251

23 The Internet SUPEr SEIVEE INELHcoiiiiiiiie et e 252

23 1 OVEIVIBW ..ottt bbb bbbt bbb 252

23. 2 WhAE IS TNELA? ...ttt 252

23.3 Configuring inetd - Zetc/inetd.CoNT........cccoiiiiiiiiii e 252

23.4 SEIVICES = ZEEC/SEIVICES ...eiiiiiiiteiieie ettt ettt en 254

VIR S (0] (01ol0] REIVA-Y Wo¥ 4 o] glo ue) oo] =3RS 254

23.6 Remote Procedure Calls (RPC) - ZEEC/TPC ...ooueviriiiiiiiiiniiinenieisee i 254
23.7 Allowing and denying hosts - Zetc/hosts.{allow,deny}cccccoeevevrivvnricnnennn, 255
23.8 AUUING 8 SEIVICE ..ottt ettt 255
23.9 When to USe OF NOt t0 USE INELAc.evviveiiieieiiiieiiee s 256
23.10 OthEI RESOUICES....c.veveiiteieieieriete sttt sttt ettt ettt st ne et enne 257
24 The DOMAaIN NAME SYSLEIMcuiiiiiriiieiirieiiie ettt bbbt 258
24.1 DNS Background and CONCEPLScviveuirieierereeieieieeseeiesesteesie st seseesseseseesenens 258
24. 1.1 NAMING SEIVICES ..ttt ettt sttt sttt st sttt ettt 258
24.1.2 The DNS NAMESPACE......c.eiuerireerireiterereetereetere sttt sbere sttt sbere bt sesbesesreresesreneas 258
24.1.3 RESOUICE RECOIUS.....eiiieiiiiie ittt sttt sttt et st 259

24. 1.4 DEIEGALIONcviiie et 260
24.1.5 Delegation to MUILIPIE SEIVEISccoveviiiieirieie e 261
24.1.6 Secondaries, Caching, and the SOA recordccovevvererniescnneien e 261
24.1.7 NamMe ReSOIULION........c.cueiiiiieiee i 262
24.1.8 ReVErse RESOIULIONcviueiiiiiiiiiieisetee e 262

24.2 THE DINS FIES ...ttt bbbt 263
24.2.1 7etc/namedb/named . CONTcooiiiiiiiieieee e 264
24.2.0.0 OPLIONS ..ottt ettt et a e bbb 266

24.2.1.2 70N “OIVEIGR.0IT" . ee ittt sttt sttt et sbe e ene s 266

24.2.2 7etc/namedb/ 10CalNOSTccci it 267
24.2.3 7etc/namedb/ZoNe - 127 0 - 0...eeeueieeiieeieieiceie e e e 268
24.2.4 7etc/Namedb/AIVEIgE . O Q.. ciiiiiiiieiieiiessieesieestee e ae e s eeseesbe s ee e 268
24.2.5 7etc/namedb/L 168 .192cccciiiiiiiiiniieieie ettt 269
24.2.6 /7etc/namedb/ro0t . CACNEcccviiiiiiiieecee e 269
24.3USING DINS ...ttt bt bbbttt bbb 270
24.4 Setting up a caching ONlY NAME SEIVENccoiiiuiieirerie ettt eeneas 272
24. 4.1 TESHING The SEIVEL ...ttt et et bbb 272

25 MAIT ANA NEWS ...ttt ettt es 274
25.1SENAMAIL.....oveice bbbt 276
25.1.1 Configuration with genericstable ... 277
25.1.2 Testing the CoNfIgUIatioN..........cccoeeiiiireeieee e 279
25.1.3 Using an alternative MTA ..o 281

25.2 TRLCNMAI ..o bbbt 281
25.3 Reading and writing mail With MULt...........ccooiiiiiii e 281
25.4 Strategy fOr reCeIVING MAIT ..o 282
25.5 Strategy for SeNding Mail..........cooiiiiiiiiie e 283
25.6 Advanced Mail tOOIScoiiiirieiie e 283
25.7 NEWS WIEN TN ..ot 285
26 Miscellaneous NEtWOrKING tOPICSciviiirieiieieiee ettt 287
26. 1 BIIAJE ..ttt ettt bt 287
26.1.1 Bridge EXAMPIEoviveiiieeieiisie ettt 287

26.2 Network File SYStEM (NFS) ...ttt 287
26.2.1 NFS SEtUP BXAMPIE ..o e 288

26.3 Setting up NFS automounting for /net with amd(8)cccccooereniiiiniiii s 289
26.3. L INTrOAUCTION ...ttt 289
26.3.2 ACHUAL SBIUP vttt et s 290

26.4 IPv6 Connectivity & Transition Via BLO4...........ccoeriiriiiieine e 290

Xi

26.4.1 Getting 6t04 IPVB UP & FUNNING ...ovviviiiieirieie et 291

26.4.2 Obtaining IPv6 Address Space for 6104............ccuovieiriiiniirncsesccs 291
26.4.3 HOW 10 get CONNEBCLEA.c.eiveiiieeeiicieeetee et 292
26.4.4 Security CONSIAEIALIONSc..oveiieeeriieeieiee ettt 292
26.4.5 Data Needed fOr 6104 SELUD.......cvveeieeeirieie et 293
26.4.6 Kernel Preparationcooceveeieineieesiee st sneneas 293
26.4.7 B0 SEUUDecviieeee ettt et ene s 293
26.4.8 Quickstart using pkgsre/Net/hfBto4 ... 295
26.4.9 KNown 6104 Relay ROULETSc.oiviiieieiriee ettt 297
26.4.10 Tunneling 6to4 through an IPFilter firewall.............ccooviiiiiniii 297
26.4.11 Conclusion & Further REAINGccoovverivieirinenrciee e 298

V. BUIIAING ThE SYSTEM ...ttt et bbb et bbbt 300
27 ODLAINING thE SOUITESe vttt ettt sttt se e bbb ettt e st seesnaneenen 301
27.1 Preparing QirECTOMIES.c.eeiiuieeeiei ettt sttt ettt ettt et b e 301
27.2 TEIMINOIOQY ...eveteieiieietee ettt et sttt b b e ettt eb e b eb et e 301
27.3 DowNnloading tarballS............ooiiiiieiie e 301
27.3.1 Downloading @ NetBSD releasecocooeeiieiiiiieine e s 302
27.3.2 Downloading snapshots from a NetBSD stable branch..............cccccoiieiiinns 302
27.3.3 Downloading the NetBSD-current development branch ..o 303
27.3.4 Downloading a pkgsrc-200xQy stable branch ... 303
27.3.5 Downloading the pkgsrc-current development branch ... 304

274 FetchiNg DY CVS ... e 304
27.4.1 GEHING CVS ..ottt bbbttt 305
27.4.2 Fetching @ NetBSD FEIEASEcoveeiueriiieieiere e 305
27.4.3 Fetching a NetBSD stable Dranch ... 305
27.4.4 Fetching the NetBSD-current development branchccoccoeeiiniicincnns 306
27.4.5 Fetching a pkgsrc-200xQy stable branch...........ccooevviienniecn 306
27.4.6 Fetching the pkgsrc-current development branch ..., 307
27.4.7 Saving SOME CVS(L) OPLIONSovvveieieiiiriee ettt 307

27.5 S0UICES ON CD (ISO) . eiiitiiiieieriete sttt sttt 307
28 Crosscompiling NetBSD With BUT B _Shccooviiiiiiece e 309
28.1 Building the CroSSCOMPIIENcueiiieireiiiieie st 309
28.2 Configuring the Kernel Manually ... 311
28.3 Crosscompiling the kernel manually ... 311
28.4 Crosscompiling the kernel with bui Bd . Sh........cccoiiiiiinii 312
28.5 Crosscompiling the USErIandccooiiiiiiiiii e 313
28.6 Crosscompiling the X WINdOW SYSEEM..........ccoiiiriiiiieereie e 313
28.7 Changing build DENAVIOUFcviiiiiiiiiei e 314
28.7.1 Changing the Destination DIreCLOIYccvivreiriernieineeresieesee s 314
28.7.2 SEAtIC BUIIUS ..o 314
28.7.3 UsSING buli 1d -Sh OPLIONScuiiiiiii et 314
28.7.4 make (1) variables used during BUildcccooeiiiiiiiii 316

29 Compiling the KEINEL..........oui et e e 322
29.1 Requirements and PrOCEAUIEcoeiirieiririe ettt sttt sttt st st s ene 322
29.2 Installing the KErnel SOUICEScoiiiiiiiirie ettt e 322
29.3 Creating the kernel configuration file ... 323
29.4 Building the Kernel ManuUally ... e 324

Xii

29.4.1 Configuring the kernel manually ..., 325

29.4.2 Generating dependencies and recompiling manuallyc.cccooveniiiinnnnn 325

29.5 Building the kernel using buii 1A . Sh ..o 325

29.6 Installing the NEW KEINel..........ooi i 326

29.7 1 SOMELNING WENE WIONQcviiiiiieiieie ittt s bbb 326

30 CONSOIE AFIVEFS.....eeieeeiiieie ettt ettt bbbt 328
0.1 WWSCOMS ..ttt sttt ettt b et b ke et h bbbt R b st h bt et n s 328
30.2.1 Virtual CONSOIES.c.cveviiieeriete ettt 328

30.1.2 50 lines text mode With WSCONSccoeivieiiniiieecee s 329

30.1.3 Keyboard MapPINgScereveireirieeseie st 330

30.1.4 Cut&paste on the console With WSMOUSEdcccecvvieieieeierininieine e 331

30.1.5 Enable scrollback on the ConSole. ... 331

30,2 PCCONS ...ttt bbbk R R bR bR e et n s 331

V1. The PKOSIC USEI™S QUIE ..ottt 333
31 WHEIE 0 gL PKOSIC -ttt ettt bbbt e bt e e bt et et nbe e e nenbeene 334
BLL L AS AN Tl e 334
BL2VIB SUP .t bbb 334
BLBVIBCVS .ttt et bbb bbb 334

32 Using pkgsrc on systems other than NEtBSD ..o 335
32.1 BOOLSLraPPING PKOUSICvveenitietesiei ettt ettt b et b e bbb 335

32.2 Platform-SpecifiCc NOLESceoiieieece e 336
32.2.1 DArwin (MacC OS X))cuieiirieieinenie ettt st st sbe s 336
32.2.21.2USIiNg @ diSK IMAGEcveiveiieieie e s 336

32.2.1.2UsiNg @ UFS PArtition........ccccoeiiriniiireneseceese e 336

B2.2.2 FTEEBSD ...ttt bbb 337

B2. 2.3 INTEIIX ettt 337

32.2.3.1 When installing INteriX/SFU ... 337

32.2.3.2 What to do if Interix/SFU is already installed...........cc.ccccoevvinirnnnn 338

32.2.3.3 Important notes for USING PKOSIC......ovevrrirrieireireeese e 338

Y | = GRS 339

32,25 LINUX ettt ettt sttt enene s 339

32.2.6 OPENBSD ..ottt ettt 340

32.2.7 SONAITS ..ttt ettt r e 340

32.2.7. 1 If YOU @I USING JCC ..vvvvvereeeririeienieeeieieteesiesesee e nes 341

32.2.7.2 If you are using Sun WOrkShopccccoviriiiininieeeceee 341

3B USING PRASIC .ttt bbbt b ettt et 342
33.1 Working with binary PaCKagesccceerieeirriieineee s 342
33.1.1 Where to get Dinary packages........coovveereeineineeeee s 342

33.1.2 HOw t0 USE biNary Packages........cocovirriirieiieisieeeee s 342

33.1.3 A WOrd OF WAIMINGcviiieiiiieiiiee e 343

33.2 Building packages from SOUICEcociriieieieceiesee et e 343
33.2.1 REQUITBMENTS ...ttt sttt sttt ettt sb et sbe e ene s 343

33.2.2 FEtching diStfileSc.veveieiiieieeee e 343

33.2.3 How to build and install ..o 343

33.2.4 Selecting the COMPIIET.........coiiii s 345

34 CONTIGUIING PKOSIC ...ttt ettt ettt sttt e bt e st b se et st ebe e enenbeenen 346
34.1 General CONFIGUIALIONc.ouiiiiiiiee e e 346

xiii

34.2 Variables affecting the build ProCess ... 346

34.3 Developer/advanCed SEIINGScvieiriiieereeese et 347

34.4 Selecting BUild OPLIONS.cociuiiriieiesiee et et 347

35 Creating biNary PACKAGESce ettt et 349
35.1 Building a single binary packagecccoeeriireieinirsse e 349

35.2 Settings for creation of biNary PACKAgESccovveririeiree e 349

35.3 Doing a bulk build of all Packagescccceeiiriiiieeeee e 349
35.3.1 CONFIGUIALION ...ttt e 349

35.3. 1.1 /BtC/MK.CONT...viiiiiic s 349

35.3. 1.2 BUT I CONT oo 350

35.3.1.3 pre-buiild._BoCal......ccccoco i s 350

35.3.2 Other environmental CONSIAErationsccoouerrerreiinnenseesse e 350

35.3.3 OPEIALION. ...ttt ettt en ettt re e 350

35.3. 4 WhL T OBS ..ottt 351

35.3.5 Disk Space reqUIrEMENTSccereirireieieeie ettt 351

35.3.6 Setting up a sandbox for chrooted builds............coooeriiiniinii 352

35.3.7 Building a partial set 0f paCKagesccccorereiiiiiiiene s 353

35.3.8 Uploading results of a bulk BUild...........cccooeoiiiiiiiieee e 353

35.4 Creating a multiple CD-ROM packages colleCtion.............ccooiirinninincineic e 355
35.4.1 EXample of CAPACK......c.cooi i 355

36 Frequently ASKed QUESLIONSccuiiiiieeirieitese ettt s eae e bbb et sbe b neene s 356
36.1 Are there any mailing lists for pkg-related diSCUSSION?cccoovreneiiiniiiiecc s 356

36.2 Where’s the pkgviews doCUMENtatioN?cocoeirireneieiee e 356

36.3 Utilities for package management (PKQLOOIS)........ccoouereiiriiiieniiinie e 356

36.4 HOW t0 USE PKYSIC @S NON-TOOLc.ueviieiiriiriesieieete sttt sbe et see ettt e e ene s 357

36.5 How to resume transfers when fetching distfiles? ... 358

36.6 How can | install/use XFree86 from pKGSIC?ccoiiiirireneneise e 358

36.7 How can | install/use X.org from PKOSIC?cooiieiiiie e 358

36.8 How to fetch files from behind a firewall ..., 358

36.9 How do I tell make fetch to do passive FTP? ... 359
36.10 How to fetch all distfiles at ONCEcovveeieiiice e 359
36.11 What does “Don’t know how to make /usr/share/tmac/tmac.andoc” mean?.............. 360
36.12 What does “Could not find bsd.own.mK” Mean?...........ccceevreiriininninseenecsens 360
36.13 USING SUAO” WIth PKOSIC.....eoviviiiieiiieiteiisieie sttt 360
36.14 How do | change the location of configuration files? ..., 360
36.15 Automated SECUMLY CRECKS........cviuiiiriiiiiieieretes et 361

VII. The pKgsrc developer’s QUILE. ..ot 362
37 Package components - files, directories and CONENEScccvveiriiiiieinsie e 363
0 V= 1= 1 = P 363
o 3 o0 o o P 365

7.3 PALCIESI™ .. bbb et eb e e 365

37.4 Other Mandatory fIllES ... e 366

37.5 0PLIONAI FIHIES ... bbbt 367

7B WOTK™ ettt ettt e b e a e Rt bbbt ne e b b et e bt et e e e 367

ST T FHIES/ ™ ettt 367

38 Programming iN MaKeT i IES.......cociiiiiiiiiiiie ettt bbb s eene s 369
38.1 MaKeFT 1@ VArIADIEScveiiiice e 369

Xiv

38.1.1 NamMING CONVENTIONS.c.veuiiriririetiresteie sttt 370

38.2 COUR SNMIPPELS. ...ttt ettt ettt ettt sttt ettt et s ettt n e e 370
38.2.1 Adding thingS t0 @ lISt.......covoviiiiiriie s 370

38.2.2 Converting an internal list into an external list...........cccooooveiiiinnenicienen, 370

38.2.3 Passing variables to a shell command............ccccooveniiiininneee 371

38.2.4 QUOLING GUIEIINE.......cviiiiieete e 371

38.2.5 Workaround for a bug in BSD MakKecccovirieniniineneeensec e 372

3O PLIST SSUES ..evtuettireeteseeteieetet et es ettt sttt b ettt et et b e et 374
BO.LRCS ID .ottt bbbttt 374

39.2 Semi-automatic PLIST gENEIatiONcvoveeieviiriee ettt see e 374

39.3 Tweaking output of make print-PLIST ..o 374

39.4 Variable substitution iN PLIST ..o 374

39.5 ManN Page COMPIESSIONeviuiriieieriste sttt sttt sttt sttt sttt sb et 375

39.6 Changing PLIST source With PLIST_SRC......cccccceririrnennienesieie et 376

39.7 Platform-specific and differing PLISTS. ..o 376

39.8 Sharing directories between PaCKages.........cooerrierirere e 376

40 BUildlink MEthOAOIOQY ...c.eoveeieiieieeeiie ettt s ene s 378
40.1 Converting packages to use buildlink3 ... 378

40.2 Writing bui BdBTnK3 -mK fIlES ..o 379
40.2.1 Anatomy of a buildlink3.mK file ..o 379

40.2.2 Updating BUILDL INK_DEPENDS .pkg in bui ldlink3_mk files.................... 381

40.3 Writing buil FEIN MK FIlES .o 381
40.3.1 Anatomy of @ bui IEIN - mK fil ..o 382

40.3.2 Global preferences for native or pkgsrc SOFtWAreccoeveivincieiceienenns 383

41 The pKginStall fFrameEWOTIKcco it 384
41.1 Files and directories outside the installation prefix ..., 384
41.1.1 Directory manipulationccccoeeeriieinine e e 384

41.1.2 File ManipUlationccooiiiiiieece e s 385

41.2 Configuration fIlESeeieeieeece et 385
41.2.1 HOW PKG_SYSCONFD IR IS SBL ..vvuveveiirieseeierrsinsieeesesseseeseesessessessesessasseseeseeneens 385

41.2.2 Telling the software where configuration files areccccoceovennecenncncninen, 386

41.2.3 Patching iNStAHAtIONScovoviiiieiiiii s 386

41.2.4 Disabling handling of configuration filesS............cccovviiiiininiee 387

41.3 SYSLEM SLAIUP SCIIPLS ...evevereieteisiee ettt ettt ettt eb e 387
41.3.1 Disabling handling of system Startup SCrptScocoourverreiireienreiee e 388

41.4 SyStem USEIS QNG GIOUPS ..c.cveueereeiriereresteresteteseste st steteseesesesse e seesesesse e seesesessesesaesenesnes 388

415 SYSLEM SNEIIS ...t r e 388
41.5.1 Disabling handling of configuration filesS............cccovvvniiininniee 388

42 OPLIONS NANAIING ...veniviieee bbbt bbbt 390
42.1 Global default OPLIONScooiviiiieree e 390

42.2 Converting packages to USe bsd . OpTaONS -MKccviviininiinensecse e 390

42.3 OPLION NAIMES ..ottt sttt st et s e bt e se et e ebebeseebeneas 392

A3 THE DUITA PIOCESS ...ttt ettt et s b et b e bttt sbe bt et esbenbeneas 393
43.1 Program IOCALIONcocoiiuiiiitee ettt bbb see e ene s 393

43,2 MAIN TAIGETS ...ttt et bbb bbbt et et eb b e e b ene 394

43.3 Other helpful tArgELSc.coiiie et s 396

44 NOteS 0N fiXES FOr PACKAGES......cive ittt ettt e b e et ene s 401
44.1 GENEIal OPEIALION ..ottt ettt sttt b et b b see e ene s 401

XV

44.1.1 How to pull in variables from /etc/mK.conf ... 401

44.1.2 Where to install docUmMEentationccoeerreiineienneeee s 401
44.1.3 RESLICLEU PACKAGES. .. cve vttt 401
44.1.4 Handling dePeNdENCIEScovevviueiirieiiiiieiereet sttt 402
44.1.5 Handling conflicts with other packages ... 404
44.1.6 Packages that cannot or should not be built.............cccovveiiiniienniee 404
44.1.7 Packages which should not be deleted, once installed...........cccccoeevvivrerinnnns 404
44.1.8 Handling packages with security problems ... 405
44.1.9 How to handle compiler BUGScoovviiiiiireieeee s 405
44.1.10 How to handle incrementing versions when fixing an existing package 405
44.1.11 Portability Of PACKAGES.......c.eviueireeiieere s 405
44.1.11.1 ${INSTALL}, ${INSTALL_DATA_DIR}, ... oo 406

44.2 P0sSible dOWNIOAAING ISSUESeveriiiieirieiirectieisiei ettt 406
44.2.1 Packages whose distfiles aren’t available for plain downloading.................... 406
44.2.2 How to handle modified distfiles with the "old” name............ccccoccovviniennnn 406

44.3 Configuration QOICNES........ccoeiuirieiitirie ettt ettt sbe e eene s 406
44.3.1 Shared libraries - lIhtOOL............cooiiiiiiiiiccc s 407
44.3.2 Using libtool on GNU packages that already support libtoolcc.cc....... 408
44.3.3 GNU AULOCONT/AULOMAKE........coiiiieiiiiciee s 408

44.4 BUilding CONSIABIALIONSc.couiiirieiiitieie ettt sttt et e sbe b beneas 409
44,41 CPP AEFINES ...ttt 409

44.5 Package SPECifiC ACHIONScceiuiriiiiiie e e e 410
44.5. 1 USEI INTErACTION......c.cviviiireirier ettt 410
44.5.2 HaNAIING [ICENSES ...ttt et e 410
44.5.3 INStalliNg SCOTE FIlEScvieiiie et e 411
44.5.4 Packages containing Perl SCHPLSccveiiririiire e 411
44.5.5 Packages with hardcoded paths to other interpreters..........ccoooeeiincicinennns 411
44.5.6 Packages installing perl Modules............cooeiiiiininiie e 412
44.5.7 Packages installing info fileS.........ccoiniiie s 412
44.5.8 Packages installing GConf2 data fileS.........ccoooorviniiiiininieee 413
44.5.9 Packages installing scrollkeeper data files..........ccccoviriieinniniienncee 413
44.5.10 Packages installing X11 fONES.......cocveiiririrniiiineicere s 413
44.5.11 Packages installing GTK2 MOCUIESccovirrinniinnene e 414
44.5.12 Packages installing SGML or XML data..........cocvvernnrinnenneneeeeeene 414
44.5.13 Packages installing extensions to the MIME databasec.ccooceovnrennn 414
44.5.14 Packages usSing iNtIOONceiiiiiiiinisc s 415
44.5.15 Packages installing Startup SCrPLScoeverrirnenreiesre e 415

44.6 Feedback t0 the QULNOT.........ccoie e 415
A5 DEDUGGING ..ttt es et es etk s bbbt b ettt en e 416
46 Submitting and COMMITEINGoeriieiriee e 418
46.1 SUDMILLING YOUF PACKAGESvcveeeiieieceeriete e 418
46.2 General notes when adding, updating, or removing Packagesc.ccoeveernerereenene 418
46.3 Committing: Importing a package into CVS........cooo it 418
46.4 Updating a package t0 @ NEWET VEFSIONccciuirerieirierienieiieesiesie et 419
46.5 Moving a Package in PKOSIC......cveeiirieieieicre ettt 419

Xvi

F AN [0 (o] 4T 1 {10] o AT RRTRRPRRPRROE 421

AL Where to get thiS OCUMENT..........ciiiiiiiee et 421

A2 GUIAE NISEOTY ...ttt bbb bbb bbbt 421

B. A simple example package: DISOMN ..o s 422
BLL FIlBS ettt b bbbt bR bbb r et bene s 422

B.LL MEKETIHIE ..ottt bbb 422

B.L2 DESCR....octiiitt ettt ettt bbb e et ettt 422

Bl LB P LIS T ittt bbb et e nr e eb e nas 422

B.1.4 Checking a package With pKGIINT..........cccoiiiiii e 423

B.2 Steps for building, installing, PACKAGINGcccoiviiiririire e 423

(O U110 I (oo OO TSROSO P RSSO 426
C.LBUIHAING FIGIEL.....eeieee e et s b bbb e e 426

C.2 PaCKaGING fIGIBL ...ttt et e e 427

D. Layout of the FTP server’s package arChiVe ... 429
E. Editing guidelines for the PKOSIC QUITE.........ccoii i s 431
O A =T (1= SO U U TR O PP PR ORRUTUPPRRN 431

B2 PTOCEAUIE ...ttt h bbbt r ettt en et en e 431

F. Contributing to the NetBSD QUITE.cccoiiiiieiiiie e et 433
F.1 Translating the QUITEc.oviiiiic e 433

F.1.1 What you need to start a transIationcccoovveiiennenneee e 433

F.1.2 Writing XIML/DOCBOOKc.coviiiiiiiiriciiiieiesiee ettt e 434

F.2 Sending CONIIDULIONS.c.cuviuiiiieirtiie bbb 435

F.3 XML/DOCBOOK tEMPIALE........cveieeiiieeiiniiieiirietisiee s 435

G. Getting started With XML/DOCBOOKcccciiiiiiiiiieeeeee e 437
G.1 What iS XIML/DOCBOOKccuvieviiitiiitieirie et etee et eteseteeste et ssbassressressrtesseessseesbessbesseeressres 437

G.2 Installing the NECESSANY tOO0IScvivriireeieiee ettt reeresreeenens 437

G.3 USING the T00IS.....c.eeeecie ettt e ene e e e e 438

G.4 Language-SPECITIC NOLEScuiiiiiirietir et 439
G.4.1 Enabling hyphenation for the Italian language...........ccccovviriinnniece 439

RN T 01O PSR 439

H. ACKNOWIBAGEMENTS ...ttt et b bbbt b e bbb b et ebe e b b e 441
H.1 Original aCKNOWIEAGEMENTSceiuiieiieieieie sttt et 441

H.2 CUrrent aCKNOWIEAGEMENTSc.eiiiuiitiieieiesie sttt ettt bbb bbb 441

H.3 LICBNSES 1.tttk r et b et e bt b et r ekt b et r et en e 442
H.3.1 Federico Lupi’s original license of this guideccceoiiiiiiininiieceee 442

H.3.2 Networks Associates Technology’s license on the PAM article..........cccccovvvininenne 442

[=T o] [oo] =101) V2RO OSSPSR 444
BIDHOGIAPNY ...ttt bbb bbb bbbt 444

Xvii

List of Tables

17-1. PAM chain execution summary
19-1. Veriexec fingerprints tools........
19-2. Veriexec access type aliases

xviii

Purpose of this guide

This guide actually consists of two seperate guides, the NetBSD Guide and the pkgsrc Guide.

The NetBSD guide describes the installation and the configuration of the NetBSD operating system as
well as setup and administration of some of its subsystems. It addresses mainly people coming from
other operating systems in hope of being useful for the solution of the many small problems found when
one starts using a new tool.

The pkgsrc Guide documents pkgsrc, the NetBSD Packages Collection which can be used to add third
party software after installing the base operating system. The pkgsrc uer’s guide covers the basics of
pkgsrc, setup and installation by compiling from source and from binary packages is supported. The
pkgsrc developer’s guide goes into details that are useful when you want to start creating packages on
your own.

This guide is not a Unix tutorial: a basic knowledge of some concepts and tools is required to understand
it. You should know, for example, what a file and a directory are and how to use an editor. There are
plenty of books explaining these things so, if you don’t know them, I suggest that you buy an
introductory text. | think that it is better to choose a general book and avoid titles like “Learning
Unix-XYZ, version 1.2.3.4 in 10 days”, but this is a matter of personal taste. If you install a BSD system,
sooner or later you will be confronted with the vi editor: without some documentation this could be an
insurmountable obstacle. When you finish installing your system, you will be able to install whatever
editor and programs you like.

Still a lot of work is required to finish this introduction to NetBSD: some chapters are not finished (some
are not even started) and some subjects still need testing (yes, a guide must also be tested). I’ll try to
work on it and improve it in my spare time but if you want to help, you’re welcome: you can write new
chapters (or parts of) or send corrections for existing subjects.

This guide is currently maintained by the NetBSD www team (<www@NetBSD . org>). Corrections and
suggestions should be sent to that address. See also Appendix F.

XiX

|. About NetBSD and pkgsrc

Chapter 1
What is NetBSD?

NetBSD is a free, secure, highly portable Unix-like operating system available for many platforms, from
64bit Opteron servers and desktop systems to handheld and embedded devices. Its clean design and
advanced features make it excellent in both production and research environments and it is
user-supported with complete source. Many applications are easily available through the NetBSD
Packages Collection.

1.1 The story of NetBSD

The first version of NetBSD (0.8) dates back to 1993 and springs from the 4.3BSD Lite operating
system, a version of Unix developed at the University of California, Berkeley (BSD = Berkeley Software
Distribution), and from the 386BSD system, the first BSD port to the Intel 386 CPU. In the following
years, the modifications from the 4.4BSD L.ite release (the last release of the Berkeley group) have been
integrated in the system. The BSD branch of Unix has had a great importance and influence in the history
of this operating system, to which it has contributed many tools, ideas and improvements which are now
standard in all Unix environments: the vi editor, the C shell, job control, the Berkeley fast file system,
reliable signals, support for virtual memory and TCP/IP, just to name a few. This tradition of research and
development survives today in the BSD systems (free and commercial) and, in particular, in NetBSD.

1.2 NetBSD features

NetBSD operates on a vast range of hardware platforms and is very portable, probably the most portable
operating system in the world. The full source to the NetBSD kernel and userland is available for all the
supported platforms; please see the details on the official site of the NetBSD Project
(http://www.NetBSD.org/).

A detailed list of NetBSD features can be found at: http://www.NetBSD.org/Misc/features.html.
The basic features of NetBSD are:

« Portability (more than 50 platforms are supported)
« Security can be taken for granted

« Code quality and correctness

« Adherence to industry standards

+ Research and innovation

These characteristics bring also indirect advantages. For example, if you work on just one platform you
could think that you’re not interested in portability. But portability is tied to code quality; without a well
written and well organized code base it would be impossible to support that many platforms. And code

Chapter 1 What is NetBSD?

quality is the base of any good and solid software systems, though surprisingly few people seem to
understand it. The attention to architectural and quality issues is rewarded with the great potentiality of
NetBSD’s code and the quality of its drivers.

One of the key characteristics of NetBSD is not to be satisfied with partial implementations. Some
systems seem to have the philosophy of “If it works, it’s right”. In that light NetBSD could be described
as “It doesn’t work unless it’s right”. Think about how many overgrown programs are nowadays sadly
collapsing under their own weight and “features” and you’ll understand why NetBSD wants to avoid this
situation at all costs.

1.3 Supported platforms

NetBSD supports over 50 platforms, including the popular PC platform (i386), Opteron system, SPARC
and UltraSPARC, Alpha, Amiga, Atari, m68k and PowerPC based Apple Macintosh platforms.
Technical details for all of them can be found on the NetBSD site (http://www.NetBSD.org/).

1.4 NetBSD'’s target users

The NetBSD site states that: “The NetBSD Project provides a freely available and redistributable system
that professionals, hobbyists, and researchers can use in whatever manner they wish”. | would add that
NetBSD is also an ideal system if you want to learn Unix, mainly because of its adherence to standards
(one of the project goals) and because it works equally well on the latest PC hardware as well as on
hardware which is considered obsolete by most other operating systems; we could say “to learn and use
Unix you don’t need to buy expensive hardware; you can reuse the old PC or Mac that you have in your
attic”, still NetBSD will of course rock even more on modern hardware! Also, if you need a Unix system
which runs consistently on a variety of platforms, NetBSD is probably your best (only) choice.

1.5 Applications for NetBSD

When you install NetBSD you have a rich set of programs and applications that you can install on your
system. Besides having all the standard Unix productivity tools, editors, formatters, C/C++ compilers
and debuggers and so on, there is a huge (and constantly growing, currently over 5,000) number of
packages that can be installed both from source and in pre-compiled form. All the packages that you
expect to find on a well configured system are available for NetBSD for free and there is also a number
of commercial applications. In addition, NetBSD provides binary emulation for various other *nix
operating systems, thusly allowing you to run non-native applications. Linux emulation is probably the
most relevant example, lots of efforts have gone into it and it is used by almost all NetBSD users; you
can run the Linux version of

+ Netscape

+ Acrobat Reader

- Doom, Quake

+ Adobe FrameMaker

« many other programs

Chapter 1 What is NetBSD?

NetBSD is also capable of emulating FreeBSD, BSDI, Solaris and other systems’ binaries.

1.6 The philosophy of NetBSD

Differently from many contemporary operating systems, the NetBSD installation is rich in features, but
not huge in size, because it strives to produce a stable and complete base system without being
redundant. After the installation you get a fully working base system which can be tuned for various
applications then, for example GNOME or KDE and a web browser and other productivity tools for a
desktop machine, Apache for a webserver, PostgreSQL or MySQL for a database server, etc. - you have
the freedom to decide which programs to install on your machine and the installation of new programs is
very easy with the pkgsrc (http://www.pkgsrc.org/) system.

Another advantage of this approach is that the base system will work without these applications; if you
decide to upgrade your version of Perl you needn’t be afraid to break some parts of your system. When
you install NetBSD you don’t find huge pre-packaged collections of applications; you may now see this
as a disadvantage but when you start understanding the philosophy behind this you will find that it gives
you freedom. When you install these software collections (which someone else has decided for you) you
fill your hard disk with tons of programs, most of which will stay unused (and unknown) and only waste
space (and possibly make the system less stable); this is something which the typical BSD user doesn’t
want to do.

Even when you start knowing NetBSD, there is always something that will continue to amaze you, the
extreme consistency and logic of the system and the attention to the details; nothing appears the result of
chance and everything is well thought out. Yes, that’s what quality is about and, in my opinion, this is the
most distinguishing feature of NetBSD.

We could spend days arguing on the relative merits of operating systems (and some people like to do it)
but if you don’t try something seriously you can’t really judge. | am convinced, because | saw it many
times in the mailing lists, that if you try NetBSD you’ll be conquered by the perfect balance between
complexity and effectiveness; all problems have more than one solution; NetBSD is not happy with a
solution but always tries to find the easiest and most elegant one. NetBSD is a tool that enables you to do
your work without getting in your way. In this light it is an optimal tool; it’s like using a pen; you work
hard to learn how to use it but once you’ve learned you can write or draw and completely forget about the
pen.

1.7 How to get NetBSD

NetBSD is an Open Source operating system, and as such it’s freely available for download from
ftp.NetBSD.org (ftp://ftp.NetBSD.org) and its mirrors.

There is no “official” supplier of NetBSD CD-ROMs but there are various resellers. You can find the
most up to date list on the relevant page (http://www.NetBSD.org/Sites/cdroms.html) on the NetBSD
site.

Chapter 2
What is pkgsrc?

2.1 Introduction

There is a lot of software freely available for Unix-based systems, which usually runs on NetBSD and
other Unix-flavoured systems, too, sometimes with some modifications. The NetBSD Packages
Collection (pkgsrc) incorporates any such changes necessary to make that software run, and makes the
installation (and de-installation) of the software package easy by means of a single command.

Once the software has been built, it is manipulated with the pkg_* tools so that installation and
de-installation, printing of an inventory of all installed packages and retrieval of one-line comments or
more verbose descriptions are all simple.

pkgsrc currently contains several thousand packages, including:

« www/apache - The Apache web server

« www/mozilla- The Mozilla web browser

« meta-pkgs/gnome - The GNOME Desktop Environment
« meta-pkgs/kde3 - The K Desktop Environment

...Just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

pkgsrc was derived from FreeBSD’s ports system, and initially developed for NetBSD only. Since then,
pkgsrc has grown a lot, and now supports the following platforms:

« Darwin (http://developer.apple.com/darwin/) (Mac OS X (http://www.apple.com/macosx/))
« DragonFlyBSD (http://www.DragonFlyBSD.org/)

« FreeBSD (http://www.FreeBSD.org/)

« Microsoft Windows, via Interix (http://www.microsoft.com/windows/sfu/)

« IRIX (http://www.sgi.com/software/irix6.5/)

« Linux (http://www.linux.org/)

« NetBSD (http://www.NetBSD.org/) (of course)

« Tru64 (http://h30097.www3.hp.com/) (Digital UNIX, OSF1)

« OpenBSD (http://www.openbsd.org/)

« Solaris (http://www.sun.com/solaris/)

Chapter 2 What is pkgsrc?

2.2 Overview

This document is divided into two parts. The first, The pkgsrc user’s guide, describes how one can use
one of the packages in the Package Collection, either by installing a precompiled binary package, or by
building one’s own copy using the NetBSD package system. The second part,

The pkgsrc developer’s guide, explains how to prepare a package so it can be easily built by other
NetBSD users without knowing about the package’s building details.

This document is available in various formats:

« HTML (index.html)
« PDF (pkgsrc.pdf)

PS (pkgsrc.ps)
« TXT (pkgsrc.txt)

2.3 Terminology

There has been a lot of talk about “ports”,
terminology used within this document.

packages”, etc. so far. Here is a description of all the

Package

A set of files and building instructions that describe what’s necessary to build a certain piece of
software using pkgsrc. Packages are traditionally stored under /usr/pkgsrec.

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSD operating system and can be
bootstrapped to run on non-NetBSD operating systems as well. It handles building (compiling),
installing, and removing of packages.

Distfile

This term describes the file or files that are provided by the author of the piece of software to
distribute his work. All the changes necessary to build on NetBSD are reflected in the
corresponding package. Usually the distfile is in the form of a compressed tar-archive, but other
types are possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.

Port
This is the term used by FreeBSD and OpenBSD people for what we call a package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a distfile and stuffed together in a single - tgz file so it can
be installed on machines of the same machine architecture without the need to recompile. Packages
are usually generated in Zusr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/).

Chapter 2 What is pkgsrc?

Sometimes, this is referred to by the term “package” too, especially in the context of precompiled
packages.
Program

The piece of software to be installed which will be constructed from all the files in the distfile by the
actions defined in the corresponding package.

2.4 Typography

When giving examples for commands, shell prompts are used to show if the command should/can be
issued as root, or if “normal” user privileges are sufficient. We use a # for root’s shell prompt, and a % for
users’ shell prompt, assuming they use the C-shell or tcsh.

Il. System installation and related
Issues

Chapter 3
Installation

3.1 Documentation

The documentation of NetBSD is mostly in the format for manual pages and makes up an excellent
technical reference to the system. | won’t deny that it is unsuited as a tutorial (not to mention the fact that
you can’t read it until you install NetBSD); these are the reasons for the existence of this guide.

Note: As a matter of fact you could read the man pages through the web interface, but | don’t think it
is a practical way to learn the system.

After installation you will find some BSD manuals in the Zusr/share/doc directory. They are divided
in three main sections, psd (UNIX Programmer’s Supplementary Documents), smm (UNIX System
Manager’s Manual) and usd (UNIX User’s Supplementary Documents). You can read the text on the
terminal with, for example:

$ cd /usr/sharel/ doc/ smm 09. sendmai
$ nroff -me 09.sendnumil/intro.me | nore
or you can generate Postscript output using the Makefi les.

It’s undeniable that there is a lack of HOWTOs and for this reason you should make the most of the
existing ones; the NetBSD release contains some documents in text format and on the NetBSD web site
you can find further information and FAQ’s.

Original documentation: The NetBSD site contains several pages with documentation and
HOWTOs both generic and platform specific. This information is well written and usually easy to
understand; for example you can find:

» how to access a DOS/Windows partition from NetBSD

« how to start NetBSD from the Windows NT boot loader

All the versions of NetBSD contain the following files:

INSTALL . txt, INSTALL.ps, INSTALL.html

installation notes. This is the most important document and you should read (and reread it)
carefully; it contains a description of the NetBSD system, a list of the supported hardware and, most
notably, the installation instructions.

Chapter 3 Installation

The release(7) manpage
describes the structure of the NetBSD release you are installing.

On the NetBSD web site you can find, amongst the others, the following documentation:

NetBSD FAQ

general information and pointers to other FAQ.

NetBSD/i386 FAQ
NetBSD/i386 specific FAQ.

Basic NetBSD Networking
Guide to network and PPP configuration.

3.2 The layout of a NetBSD installation

The layout of the files of a NetBSD installation is described in the aforementioned INSTALL .* files. For
example, for the 1386 platform the system binaries are in the i386/binary/sets directory and the
sources are in the source/sets directory. The source/patches directory contains patches to the base
release which usually fix bugs or security related problems discovered after the release.

3.3 Installation

The first thing to do before installing NetBSD is to read the release information and installation notes in
one of the INSTALL . * files: this is the official description of the installation procedure.

Next you should decide the installation media that you will use; you can choose between:

. FTP

« NFS

« CD-ROM/DVD

. floppy disc

« unmounted filesystem

« local directory

3.3.1 Keyboard

The NetBSD install program sysinst will allow you to change the keyboard layout during the installation.
If for some reason this does not work for you, you can use the map in the following table.

us

IT

DE

FR

B

)

/

Chapter 3 Installation

us IT DE FR
= i ’ .
c o M

; 0 0 m

£ § 3
n o A %

* ((8
()) 9

) = = 0

’ a a U

. \ n @

\ u # ‘

If you use a non US keyboard, you will need to change the keyboard layout after installation.

3.3.2 Geometries

The installation program mentions two types of hard disk geometries; you should understand what they
mean:

« real geometry
« BIOS geometry

real geometry is the real geometry of the hard disk, detected by the system. BIOS geometry is the
geometry used by the BIOS and it could be different from the real one (for example, BIOS could remap
the disk using LBA).

The disk used in the installation example is an IDE disk with the following geometries:

real: 6232 cyl, 16 heads, 63 sec
BIOS: 779 cyl, 128 heads, 63 sec (LBA)

As you can see the BIOS remaps the disk using LBA, effectively reducing the number of cylinders and
increasing the number of tracks (but the result is the same: 6232 * 16 = 779 * 128 = 99712). A sector
contains 512 bytes, which means that the disk size is 6232 * 16 * 63 * 512 = 3 GB. NetBSD does not
need to remap the disk geometry (and in fact won’t do it). During the installation it is possible to change
manually the geometry if sysinst got it wrong.

3.3.3 Partitions

The terminology used by NetBSD for partitioning is different from the typical DOS/Windows
terminology; in fact, there are two partitioning schemes. NetBSD installs in one of the four primary
BIOS partitions (the partitions defined in the hard disk partition table).

Within its BIOS partition (also called slice) NetBSD defines the BSD partitions using a disklabel: these
partitions can be seen only by NetBSD and are identified by lowercase letters (starting with “a”). For
example, wdOa refers to the “a” partition of the first IDE disk (wd0) and sdOa refers to the “a” partition

10

Chapter 3 Installation

of the first SCSI disk. In Figure 3-1 there are two primary BIOS partitions, one used by DOS and the
other by NetBSD. NetBSD describes the disk layout through the disklabel.

Figure 3-1. Partitions

BI OS partitions

(MBR) Di skl abel

S

[usr %’
1 - Net BSD @ >
swap g [
©
... S B

0 - DCSs

Note: The meaning of partitions “c” and “d” is typical of the i386 port. Other ports use different
conventions (e.g. “c” represents the whole disk.)

Note: If NetBSD shares the hard disk with another operating system (like in the previous example)
you will probably need to install a boot manager, i.e. a program which enables you to choose the OS
to start at boot time. sysinst can do this for you and install and configure a simple but effective boot
manager.

3.3.4 Hard disk space requirements

The space required by a NetBSD installation depends on the use that you plan to do with it (e.g. server or
workstation). For example, consider a home desktop system with a 420 MB hard disk (rather small by
today’s standards) with X, the kernel sources and some applications (Netscape, ...). The swap partition is
32 MB. df shows the following:

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wdla 31887 16848 13444 56% /
/dev/wdle 363507 173202 172129 50% /usr

As you can see, NetBSD takes about 225 MB altogether and there are 120 MB left on the /Zusr file
system for your and your users’ files.

11

Chapter 3 Installation

3.3.5 Retry

When you install an OS for the first time it is seldom a success and NetBSD is no exception. Even if
everything goes well, as soon as you start using the system you usually realize that (for example) you
could have chosen a better layout for your partitions. It is important not to give up; if you try again you’ll
realize that what was difficult to understand the first time gradually becomes clearer by virtue of the
accumulated experience and numerous rereads of the INSTALL .* document.

During the first installations it is wiser to accept the defaults suggested by sysinst and avoid, for example,
changing the disklabel.

12

Chapter 4
Example Installation

4.1 Introduction

This chapter shows an example installation for a two common cases: installation from CD-ROM, and via
FTP. The concepts are the same for all types of installation; the only difference is in the way the binary
sets are found by sysinst. Please note that some details of the installation differ depending on the
NetBSD release: this example was created with release 2.0.

This set of choices gives the impression that the installation is very complicated and requires a lot of
work: remember that if you accept the defaults everything is much simpler. On the other hand, a tutorial
which explains only the “easy” parts is not very useful (except from the marketing point of view).

4.2 Preparing the installation

Before installing, it is a good idea to make a detailed plan of the steps that you will need to perform.
First, read the INSTALL file (I promise it’s the last time that | say it) reading the description of the
installation and checking the hardware compatibilities. Next, if there is already something on the hard
disk, think how you can free some space for NetBSD; if NetBSD will share the disk with other operating
systems you will probably need to create a new partition (which you will do with sysinst) and, maybe, to
resize an existing one. It is not possible to resize an existing partition with sysinst, but there are some
commercial products (like Partition Magic) and some free tools (FIPS, pfdisk) available for this.

The installation is divided logically in two steps. In the first part you create a partition for NetBSD and
you write the disklabel for that partition. In the second part you decide which binary sets you want to
install and extract the files in the newly created partitions. The first part is independent of the installation
method (CD-ROM, ftp, NFS, ...); at the end of the first part nothing has yet been written to the hard disk
and you are prompted to confirm the installation. If you confirm, the installation goes on, else you are
brought back to the main menu and the hard disk remains unchanged.

4.3 Creating the installation floppy

Note: if you have a bootable NetBSD CD-ROM you don't need to create an installation floppy: enable
the “boot from CD-ROM” in your BIOS settings, insert the CD and reboot the machine. This option is
probably not available on older machines.

Before installing you need to create the installation floppies, i.e. to copy the floppy image from the
CD-ROM to a diskette. To perform this operation in DOS you can use the rawrite program in the

13

Chapter 4 Example Installation

i386/instal lation/misc directory, for Windows there’s a version in rawr32.zip. The image files
are i386/instal lation/floppy/bootl.fsand i386/installation/floppy/boot2.fs for
installation of a “normal” PC, and i386/instal lation/floppy/bootlapl.fsand
i386/installation/floppy/bootlap2.fs for a laptop. A number of other floppies are available
that are described in more detail in the INSTALL .* document.

Note: Before creating the installation disks always check that the floppies are good: this simple step
is often overlooked and can save you a lot of trouble!

The procedure to write floppies is:

1. Format the floppy.
2. Gotothe 1386\ INSTALLATION\FLOPPY directory of the CD-ROM.

3. Runthe..\'M SC\ RAWRI TE program (or extract . .\MISC\RAWR32.ZIP if you’re on a Windows
system, and run the RAWRITE32 program in that file). The “Source file”’s are BOOT1.FS and
BOOT2.FS (etc., see above) and the “Destination drive” is A:

If you create the boot floppy in a Unix environment, you can use the dd command. For example:

cd i386/installation/floppy
dd if=boot.fs of=/dev/fd0a bs=36b

dd copies blocks of 512 bytes: the bs=36b option copies 36 blocks at a time, effectively making the
operation faster.

Note: A 1440K floppy contains 1474560 bytes and is made up of 80 cylinders, 2 tracks, 18 sectors
and 512 bytes per sector, i.e. 80 * 2 * 18 = 2880 blocks. Thus bs=36b copies one cylinder (18 * 2
blocks) at a time and repeats the operation 80 times instead of 2880.

4.4 Last preparatory steps

Everything is now ready for the installation but, before beginning, it is better to gather some information
on the hardware of the PC.

The most important thing to check is the type of hard disk (IDE, SCSI) and its geometry. You can find
this information on the hard disk manual or using a diagnostic program. Some hard disks have a label on
which this data is written. Another option is to connect to the web site of the producer of your disk and
look for the product info.

If you install via ftp or NFS remember to check your network card settings: if the installation kernel
expects your card to be on an IRQ but the card’s settings are different you won’t be able to install. For
example, the install kernel can recognize an NE2000 compatible network card with one of the following
two settings:

ne0 at isa? port 0x280 irq 9 # NE[12]000 ethernet cards
nel at isa? port 0x300 irq 10

14

Chapter 4 Example Installation

If your NE2000 network card has different settings it will not be detected. (After the installation you will
be able to compile a customized kernel with your own settings.)

While you are at it you should check some other hardware details like, for example, the number of serial
and parallel ports, etc.; this is not required for installation but it can turn out useful later. Check your
settings (IRQ, 1/0 ports, ...) against the ones written in the INSTALL file.

Note: you can install even if you don’t know the hard disk geometry as well as any of the other
details. In this case you must trust sysinst, which automatically determines the geometry and

(usually) gets it right.

4.5 Beginning the installation

Insert the newly created installation floppy in drive A: and reboot the computer (or boot from CD-ROM).
The kernel on the floppy is booted and starts displaying a lot of messages on the screen, most of which
say something about hardware not being found or not being configured. This is normal: the kernel on the
floppy tries to detect almost all the hardware supported by NetBSD; you probably (!) don’t have all these
devices in your machine.

Figure 4-1. Selecting the language

instal lation tool, This
Sl to a hard disk. or
G l

Ea: Inatallation MESSagEs iri Englizh

15

Chapter 4 Example Installation

When the boot procedure is over you will find yourself in the NetBSD installation program, sysinst,
shown in Figure 4-1. Don’t be deceived by the spartan look of sysinst: it is a rather powerful and flexible
program. From here on you should follow the instructions displayed on the screen, using the INSTALL . >
document as a reference. The sysinst screens all have more or less the same layout: the upper part of the
screen shows a short description of the current operation or a short help message; the central part of the
screen shows the current settings as detected by NetBSD; the bottom part displays a menu of available
choices. To make a choice, either use the cursor keys, the “Ctrl+N” (next) and “Ctrl+P” (previous) keys,
or press one of the letters displayed left of each choice, and confirm your choice by pressing the Return
key.

You can now go ahead, and select the language you prefer to do the installation in.

Figure 4-2. The main menu of the installation program

come ko j S bem installation tool, This
menu-driven to 1 Yol in letB5D to a hard dizk. or
Upgrade &n 51 : » with & minimum of work,
In the following m : ference letter La, b, o ...l to zelect an
ftem, or '
e enter key,

If you booted from & Floppy. you may now remove the disk,

Thatik you for uzing MetBSDI

NetBSE-2.0 Install System

Ba: Install NetBSD to hard dizk
Upgrade MetBsD ona hard disk
1= o inetall additional =
* Eeboot the computer
Htility mermu
Exit Install Suystem

This will bring you to in the main menu of the installation program, as shown in (Figure 4-2. Choosing
the Install option brings you to the next screen (Figure 4-3), where you can confirm the operation.

16

Chapter 4 Example Installation

Figure 4-3. Confirming you want to install NetBSD

: 1iz will change
« fou should have made a full backup before
= procedure!l Thiz procedures will do the following things:
al Partition you
bl C
C _:l

d} Some initial sustem configurato

(After you enter the partition information but before your disk is changed,
yol will have the opportunity to quit this procedurs,)

Shall we continue?

After choosing to continue with *“Yes”, it is time to select on which hard disk you want to install
NetBSD. If more than one disk is available, sysinst displays a list of disks from which you can pick one.
In the example given in Figure 4-4, there are two disks, and NetBSD will be installed on “wd0”, the first
IDE disk found. If you have SCSI disks, they will be named “sd0”, “sd1” and so on.

Note: The information in this screen will be different depending on the type and number of hard disks
installed on the system.

17

Chapter 4 Example Installation

Figure 4-4. Choosing a hard disk

O which dizk do you want to install MNetBSDY

Available dis

§a: wdl
b3 whdi

Sysinst will then ask whether you want to do a full installation, or a custom installation. NetBSD is
broken into a collection of distributions sets. “Full installation” will install all sets; if you choose
“Custom installation” you can choose which sets you would like to have installed. This step is shown in
Figure 4-5.

18

Chapter 4 Example Installation

Figure 4-5. Full or custom installation

and t
ot needed by all installations, You may choos
them (Full installatioh) or gou select from the optional
distribution sets,

Select your distribution

Ba: Full installation

bi Custom installation

If you chose to do a custom installation, sysinst allows you to choose which distribution sets to install, as
shown in Figure 4-6. You will at least need a kernel, “Base” and “System (/etc)” for a functional
installation.

19

Chapter 4 Example Installation

Figure 4-6. Selecting distribution sets

The following iz the list of distribution sets that will be used,
Distribution set Selected

(GEMERILC)

(GEMERIC ,MP)
(GENERIC_TIMY 0
LBENERTL_ LHPTHFW Mo
’?EHEPII ' M

Instéll gelected setz

4.6 Partitions

The first important step of the installation has come: the partitioning of the hard disk. First you must
specify if NetBSD will use a partition (suggested choice) or the whole disk (“dangerous” choice). In the
former case it is still possible to create a partition that uses the whole hard disk (Figure 4-7) so we
recommend to select this option which keeps the BIOS partition table in a format compatible with other
operating systems.

20

Chapter 4 Example Installation

Figure 4-7. Choosing the partitioning scheme

We are now going to install NetBSD on the disk endl,

5l requires & single partition in the dizk's HERE
11’r +| r’rh_ letB5D disklabel, Met an -:41

‘Uze the entire dizk’
written and & single MER partition
If yor want to inztall more than one operatin
partition table and create a partition for Neth

H FEM huﬂdPEd HH 18 EﬂDugh Fnr a h1 Zm]n_f1ll1T1Hn but you should allow

Which wauld you like ko do?
ga: Edit the MBERE partition table

b: lUze the entire dizk

The next step, depicted in Figure 4-8, is the selection of a unit of measure to be used for hard disk
partitioning: sectors give the most flexibility and precision (note that it is usually better to align partition
on cylinder boundaries for performance reasons, at least on older hard disks.) Megabytes are easier to
use because they don’t require manual calculations and are more “intuitive”.

21

Chapter 4 Example Installation

Figure 4-8. Choosing a unit of measure

58 a Upit to uze;
Eo yoor choice, bob

will allow you o more

On modern ZBR disks, actual cuylinder =size
= o - o o in from inder alig
s that are ex

For most people, “Megabytes” will be the most logical choice, because it is the unit to specify partition
sizes. After making a choice you are taken to the fdisk interface screen.

22

Chapter 4 Example Installation

Figure 4-9. fdisk

MBR partition table iz shoun below;
Active partition, d ect default, 1 = Ihatall here,
arfition you wish to change

Total dizk size 500 FE,

Start{ ME} Sizel WB) Flg Kind Bootmer

Change input units. (
Partition table OK

Figure 4-9 shows the current situation of the hard disk before the installation of NetBSD; there are four
primary partitions, as you can see this disk is currently empty. If you do have other partitions you can
leave them around, and install NetBSD on a partition that is currently unused, or you can wipe out a
partition for NetBSD.

Deleting a partition is simple; after selecting the partition a menu with options for that partition appears
(Figure 4-10), change the partition kind to “Delete partition” to remove the partition. Of course, if you
want to use the partition for NetBSD you can set the partition kind to “NetBSD” right-away.

You can create a partition for NetBSD by selecting the partition you want to install NetBSD to. The
partition names “a” to “d” correspond to the four primary partitions on other operating systems. After
selecting a partition a menu with options for that partition will show up as shown in Figure 4-10.

23

Chapter 4 Example Installation

Figure 4-10. Partition options

o below;
ect default, 1 =F Install here.

Total dizk size 500 FE,

kind: unused
start: 0 MB
=+ (1 MB
end: & MEB
actiwe* ”Il
-411+ Mo
Change inpu 1
Partition t

= I

+
+
+*
-+
+
I+
*
+*
+
*

To create a new partition the following information must be supplied:

« the type (kind) of the new partition
« the first (start) sector of the new partition
« the size of the new partition

Choose the partition type “NetBSD” for the new partition (option “Kind”). The installation program will
automatically try to guess option “Start”, by starting after the end of the preceding partition. Change this
if necessary. The same thing applies to the “Size” option; the installation program will try to fill in the
space that is available till the next partition or the end of the disk (depending on which comes first).
Change this value if it is incorrect, or if you do not want NetBSD to use the suggested space.

After you have set up the partition kind, start and size, it is also a good idea to set the name that should
be used in the boot menu. You can do this by selecting the “bootmenu” option, and filling in how
NetBSD should appear in the bootmenu, e.g. “NetBSD”. It is a good idea to repeat this step for other
bootable partitions so you can boot both NetBSD and Windows using the NetBSD bootselector. If you
are satisfied with the partition options, you can confirm your choice by selecting “Partition OK”. You can
choose the same option in the fdisk interface when you have finished partitioning your disk.

If you have made an error in partitioning (for example you have created overlapping partitions) sysinst
will display a message and suggest to go back to the fdisk menu (you are also allowed to continue). If the
data is correct but the NetBSD partition lies outside the range of sectors which is bootable by the BIOS,

24

Chapter 4 Example Installation

sysinst warns you and asks if you want to proceed anyway. This could lead to problems on older PCs: the
PC used in the example received this warning but boots perfectly. It is not possible to give a general rule
(it is BIOS dependent); if the PC is not very old | suggest to ignore the warning and continue.

Note: This is not a limitation of NetBSD; some old BIOSes cannot boot a partition which lies outside
the first 1024 cylinders. To fully understand the problem you should study the different type of
BIOSes and the many addressing schemes that they use (physical CHS, logical CHS, LBA, ...).
These topics are not described in this guide.

With the most recent BIOS, supporting int13 extensions, it is possible to install NetBSD in partitions
that live outside the first 8 GB of the hard disk, provided that the NetBSD boot selector is installed.

If the data is correct, sysinst will offer to install a boot selector on the hard disk. This screen is shown in
Figure 4-11.

Figure 4-11. Installing the boot selector

Yo confi
oOperating

[t 1= not currently installed, do you want to install it now?

|:| L H]

At this point, the first part of the installation, namely disk partitioning, is over.

The BIOS partitions, also called slices by BSD, have been created. It’s time to define the BSD partitions.

25

Chapter 4 Example Installation

4.7 Disklabel

Some platforms, like PC systems (i386), use (DOS-style) MBR partitions to separate filesystems. The
NetBSD MBR partition you created earlier in the installation process exists to make sure other operating
systems do not overwrite the diskspace that you allocated to NetBSD. NetBSD uses its own partition
scheme, named a disklabel, which is stored at the start of NetBSD’s MBR partition. In the next few steps
you will be able to create a disklabel and set the sizes of NetBSD partitions, or use existing partition
sizes, as shown in Figure 4-12.

Figure 4-12. Choosing if partitions should be edited
MetBSD uses & BSD disklabel to carwe up the NetB5SD portion of the disk into
multiple partiti You must now =et up your BSD disklabel,

You can u simple editor to the =i of the MetBSD partitions, or
Ling partition sizes. and

You will then be given the opportunity to change any of the disklabel fields,

}ﬁﬂluded1

Choose your installation

Far Set zizes of MetBSD partitions

by Uze exizting partition sizes

When choosing to set sizes of NetBSD partitions and before editing the disklabel, you can predefine
what partitions you would like to create. The installation program will generate a disklabel based on
these settings. This installation screen is shown in Figure 4-13.

26

Chapter 4 Example Installation

Figure 4-13. Setting partition sizes

Yo can now change the sizes Fl I
X ace to ﬂu—- o

e |:|1r =rfior

goe will be added to the partition mabked with

: EHllndEﬁz Sectors
166 (371) 160 ZEFERD +
129 SEEl4d =
L}
ps

nput units | =
partition & PR SPa ll H:E' 12 free partitionz,

The default partition scheme of just using a big / (root) file system (plus swap) works fine with NetBSD,
and there is little need to change this. Changing /tmp to reside on a RAM disk (mfs) for extra speed may
be a good idea. Other partition schemes may use separate partitions for /var, /usr and/or /home, but
you may use your own experience to decide if you need this.

4.8 Creating a disklabel

The next step is to create a disklabel, as shown in Figure 4-14. If you predefined the partition sizes in the

previous step, the resulting disklabel will probably fit your wishes. In these case you can complete the
process immediately by selecting “Partition sizes ok”.

27

Chapter 4 Example Installation

Figure 4-14. The disklabel editor

«label partitionsz as:
: to change them,

K]
Show &1l Unused par

As you can see in Figure 4-14 there are two reserved partitions, “c” (representing the NetBSD partition),
and “d” (representing the whole disk). You can edit all other partition by selecting it using the cursor
keys and pressing the return key. You can add a partition by selecting an unused slot, and setting
parameters for that partition. The partition editing screen is shown in Figure 4-15

28

Chapter 4 Example Installation
Figure 4-15. The disklabel editor
=z for partition &' are,
you wizsh to chahges:

cylinders

S

g e B8 5 1

mount eptionsi
mocint pointi
Franges inpuat uni

+*
*
+
+
+
+
+
+
*
+*
*
+
¥
+
+*
+
+
+
*
- F
o

A —

After defining all the data for the new disklabel, the last item is to enter a name for the NetBSD disk as
shown in Figure 4-16. This can be used later to distinguish between disklabels of otherwise identical
disks.

29

Chapter 4 Example Installation

Figure 4-16. Naming the NetBSD disk

Please enter-a rame for your MetBSD disk [wnd]s |

The NetBSD installer now has all the data to prepare the disk for the installation. Nothing has been
written to the disk at this point, and now is the last chance to abort the installation process before actually
writing data to the disk, as shown in Figure 4-17. Choose “no” to abort the installation process and return
to the main menu, or bravely step ahead by selecting “yes”.

30

Chapter 4 Example Installation

Figure 4-17. Last chance before hitting the disk

Ok, we are now ready to : Sl Mothing has
been written yet, This is =t : before
anything g changed.

Shall we continue?

4.9 The disk preparation process

After confirming that sysinst should prepare the disk, it will run disklabel(8) to define NetBSD partition
layout and newfs(8) to create the file systems on the disk, as shown in Figure 4-18.

31

Chapter 4 Example Installation

Figure 4-18. Creating the filesystems

tatis] MVl

Eﬂmﬁand: shindnewfs =0 1 -b 8192 -f 1024 Sdew/rendia

using
backL

B4464 .

After preparing the partitions and filesystems, the next question shown in Figure 4-19 is which bootblock
to install. Usually you will choose the default to use the BIOS console, i.e. show boot messages on your
PCs display.

If you run a farm of machines without monitor, it may be more convenient to opt for a serial console
running on one of the serial ports. The menu also allows changing the serial port’s baud rate from the
default of 9600 baud, 8 data bits, no parity and one stopbit.

32

Chapter 4 Example Installation

Figure 4-19. Selecting a bootblock

Would you like to install the normal zet of bootblocks or zerial bootblocks?

Mormal bo ﬂfhl e Lk i a5 the © : J-uallH the

= the

al port

al potT. Come
tial port comd
1 baud rate

ting boothlocks

LA EE X S & ok S Bt X

o= A

4.10 Choosing the installation media

Halftime - you have finished the first and most difficult part of the installation!

The second half of the installation process consists of populating the filesystems with the NetBSD
operating system’s files by extracting the “sets” that you have selected before (base, etc, comp, etc.). For
unpacking the sets, sysinst asks what information you would like to see during that process, as shown in
(Figure 4-20). You can choose to let sysinst either show a progress bar, be quiet, or show the name of
each extracted file.

33

Chapter 4 Example Installation

Figure 4-20. Choosing the verbosity of the extraction process

et has uritten &
d the hew partitions you

ect set extraction verbosity

Ba: Progress bar (reconmended)|
b Silent

+ = -

ot Verboze File name lizting (zlou)

Now sysinst needs to find the NetBSD sets (the . tgz files) and you must supply this information. The
menu offers several choices as shown in Figure 4-21.

34

Chapter 4 Example Installation

Figure 4-21. Installation media

"hone" 0w “eturned to the main rlu-'rlH+ Hth HHH S | at 3
later-time. '{: R T zglect '"From the main menly to I:I:ITI'IF'].I:‘-tE the
installation,

Select medium

MF5

CD-RE0r /4 DVD
Floppy
Urmourted f=
Local director.
none

The options are explained in detail in the INSTALL . * document.

It is possible to install from an unmounted filesystem (provided that it is of a type recognised by the
install kernel) so for example it is possible to copy all the sets to an existing MS-DQOS partition and
install from there.

4.11 Installing from CD-ROM and DVD

When selecting “CD-ROM / DVD”, sysinst asks the name of the CD-ROM or DVD device and the
directory in which the set files are stored, see Figure 4-22. The device is usually cd0 for the first
CD-ROM or DVD drive, regardless if it is IDE or SCSI.

35

Chapter 4 Example Installation

Figure 4-22. CD-ROM/DVD installation

device:

zet directorys

b Set directaory
3 Continue

Note: if you are using a non US keyboard you'll have to be careful when you type the “/” character.
See Section 3.3.1.

The CD-ROM / DVD device name: if you don’t know the name of the CD-ROM / DVD device, you
can find it in the following way:

1. Press Ctrl-Z to pause sysinst and go to the shell prompt (that’s a nice feature!)
2. Type the command:
cat /kern/ msgbuf

This will show the kernel startup messages, including the name of the CD-ROM device, for
example cdO.

3. If the display scrolls too quickly, you can also use more:
nore /kern/ msgbuf
4. Go back to the installation program with the command:

fg

36

Chapter 4 Example Installation

4.12 Installing via FTP

If you choose to install via FTP, sysinst will configure the system’s network connection, download the
selected set files to a temporary directory and extract them.

NetBSD 2.0 currently supports installation via ethernet, ethernet-over-USB and wireless LAN,
installation via DSL (PPP over Ethernet) is not supported during installation and needs to be setup
manually after installation.

The first step shown in Figure 4-23 consists of selecting which network card to configure. sysinst will
determine a list of network interfaces available in your hardware, present them and ask which one it shall
use.

Note: The exact names of your network interfaces depends on the hardware you use, example
interfaces are “fxp0” for Intel i8255x based ethernet cards, “tIp0” for TULIP-based ethernet cards,
“wi0” for Lucent WaveLAN and “ath0” for Atheros based wireless cards. This list is by no means
complete, and NetBSD supports many more network devices.

To get a list of network interfaces available on your system (or rather, a list of all the network
interfaces which NetBSD detected), interrupt the installation process by pressing “Ctrl+Z”, then enter

ifconfig -a
fxp0: flags=8943<UP, BROADCAST, RUNNI NG, PROM SC, SI MPLEX, MULTI CAST> ntu 1500
addr ess: 00: 06: 0d: c6: 73: d5
medi a: Et hernet autosel ect (10baseT)
status: active
inet 0.0.0.0 netmask Oxffffff0OO broadcast 0.0.0.0
inet6 fe80::206:dff:fec6: 73d5% xp0 prefixlen 64 scopeid Ox1
| 00: fl ags=8009<UP, LOOPBACK, MJLTI CAST> ntu 33196
inet 127.0.0.1 netmask Oxff000000
inet6 ::1 prefixlen 128
inet6 fe80::1% o0 prefixlen 64 scopeid 0x2
ppp0: fl ags=8010<PA NTOPO NT, MULTI CAST> ntu 1500
pppl: flags=8010<PA NTCOPA NT, MULTI CAST> ntu 1500
sl 0: flags=c010<PO NTCOPQO NT, LI NK2, MULTI CAST> ntu 296
sl 1. flags=c010<PO NTOPO NT, LI NK2, MULTI CAST> mtu 296
strip0: flags=0 ntu 1100
stripl: flags=0 nmtu 1100

for a list of all network interfaces (fxp0, 100, ppp0, ...), and their current state (which is probably
mostly unconfigured at this time). To get more information about all the devices found during system
startup, including network devices, type

nore /kern/ msgbuf

To only get information about a single device, for example “fxp0”, run:

grep ~fxp0 /kern/nsgbuf

fxpO at pcil dev 8 function 0: Intel PRO 100 VE (MOB) Network Controller, rev 131
fxpO: interrupting at irq 11

fxp0: Ethernet address 00: 06: 0d: c6: 73: d5

You can return to the NetBSD installation by typing

fg

37

Chapter 4 Example Installation

Figure 4-23. Which network interface to configure

bhich device =shall 1 u [fxpi]e I

Next, here is a chance to configure options for your network medium as shown in Figure 4-24, like
duplex settings for ethernet, and various settings for wireless LAN cards.

Note: It is unlikely that you will need to enter anything other than the default here. If you experience
problems like very slow transfers or timeouts, you may for example force different duplex settings for
ethernet cards here. To get a list of supported media and media options for a given network device
(say: “fxp0”), escape from sysinst by pressing “Ctrl+Z", then enter:

ifconfig -mfxp0
fxp0: flags=8943<UP, BROADCAST, RUNNI NG, PROM SC, SI MPLEX, MULTI CAST> ntu 1500
address: 00:03:0d: c6: 73: d5
nedi a: Ethernet autosel ect (10baseT)
status: active
supported Ethernet nedia:
medi a 10baseT
medi a 10baseT nedi aopt full-dupl ex
nmedi a 100baseTX
medi a 100baseTX nedi aopt ful | -dupl ex
nedi a aut osel ect
inet 0.0.0.0 netmask OxffffffOO broadcast 0.0.0.0
inet6 fe80::206:dff:fec6: 73d5% xp0 prefixlen 64 scopeid Ox1

The various values given after “media” may be of interest here, including keywords like “autoselect”
but also including any “mediaopt” settings.

Return to the installation by typing

38

Chapter 4 Example Installation

fg

Figure 4-24. Choosing network media options

To be able to uze the network: we need anzwers to the following:

Metwork media tupe [autoselect]: ||

The next question will be if you want to perform DHCP autoconfiguration as shown in Figure 4-25.
Answer “Yes” if you have a server for the Dynamic Host Configuration Protocol (DHCP) running
somewhere on your network, and sysinst will fetch a number of defaults from it. Answer “No”, and you
will have to enter all the values manually.

To explain things, we will assume you answered “No” and go into all the questions asked in detail.

39

Chapter 4 Example Installation

Figure 4-25. Using DHCP for network configuration

To be able to uze the network: we need anzwers to the following:

Network media tupe [autoselect]:

Perfaorm DHCP autocont iguration?

b Mo

Figure 4-26 shows the questions asked for the network configuration. The values asked for are:

Your DNS Domain:

This is the name of the domain you’re in WRT the Domain Name System (and which has nothing to
do with any NIS/YP domain you may be in!).

Your host name:

The name by which other machines can usually address your computer. Not really used during
installation.

Your IPv4 number:

Enter your numerical Internet Protocoll address in “dotted quad” notation here.

IPv4 Netmask:

The netmask for your network, either given as a hex value (“Oxffffff00) or also in dotted-quad
notation (“255.255.255.0™).

IPv4 gateway:

Your default router’s IP address. Do not use a hostname here.

40

Chapter 4 Example Installation

IPv4 name server:

Your (first) DNS server’s IP address. Again, don’t use a hostname here to avoid some nasty
problems.

Note: Please note that most of the network configuration parameters are not saved in the system
you install. It can be argued that it should, but NetBSD was designed not to do so. Configuring
network settings has to happen with other configuration works needed for NetBSD after installation,
see Chapter 5, Chapter 6 and basically the whole rest of this guide. Yes, NetBSD allows you a lot of
choices!

Figure 4-26. Entering and configuring network data

To be able to uze the network: we need anzwers to the following:

After answering all questions for network configuration, they will be printed again with a chance to go
back and re-enter them, see Figure 4-27. When selecting “No”. Choose “Yes” if you are satisfied with
your settings to proceed with the installation.

41

Chapter 4 Example Installation

Figure 4-27. Confirming network parameters

e following are the waluss you entered,

v Lomain:
Mane:
ary Interface:
IP:
[

Are they OKT

bt Mo

sysinst will now run a few commands (not displayed in detail here) to configure the network: flushing the
routing table, setting the default route, and testing if the network connection is operational.

The next question asked is about the place where files should be stored during download, see
Figure 4-28. The default directory is usually ok, it is located on the NetBSD file system.

42

Chapter 4 Example Installation

Figure 4-28. Which directory to use for downloading

What directory shall I use for ftp? [Ause/INSTALL]: |

After the installer knows where to download files, what network connection to use for downloading
them, and on which partition and file system to extract them, the last data missing is the place where to
download the install sets from, which is what the next dialogue shown in Figure 4-29 allows to change.
You can adjust the host where the sets are fetched from, the base directory of the NetBSD release you
want to install and the set directory (relative to the base directory), which usually contains the
architecture you want to install. You can also change the FTP user’s login name (“user”) and password
here, if needed. If you want to use a FTP proxy for downloading, enter its URL here as well.

When you’re satisfied with your settings (the defaults work most of the time), choose “Get Distribution”
to continue.

43

Chapter 4 Example Installation

Figure 4-29. Defining the set’s source place

wrd currently
= not nee Hd+

directoruy:

=

Get Diztribution

If you made an error and sysinst cannot fine a file, it will tell you so as shown in Figure 4-30 and you will
have a chance to go back and adjust the place where it will download the sets from.

44

Chapter 4 Example Installation

Figure 4-30. An error happened during download

Ftp could not retrieve a file,

Io you want to try again?

B Mo

If the data given for the download was correct, the set files will be downloaded and stored in the
directory given before, as shown in Figure 4-31.

45

Chapter 4 Example Installation

Figure 4-31. Downloading installation sets

URRing
usrfhlnHFtp -3 Ftp fifEp:

o e

- csp
[azt madiFiEd an MEd Jun 7 ”4iﬂﬂ 2000 — 1616 days ago
Fleaze read the file EERIME, zup
ndified on Thu May 1 10:02:29
=ful,

AL |'|'|r|||||-.|r|l:|
CWD EDmm1nd

L_LAPTOF, £gz

l efn-GENERIC_LAPTOR, tgz’

[P 675 KB 96,54 KB/s 00:13 ETA

4.13 Extracting sets

After all sets are available at this step - either from a CD-ROM/DVD or in a directory where the set files
were downloaded into, they will be extracted into the new NetBSD file system next. Figure 4-32 shows
an example extraction progress with a progress bar, as selected before.

46

Chapter 4 Example Installation

Figure 4-32. Extracting set files

Status; SUEEE
Commatid? - slgele]p=terhng sl o=

After extracting all selected sets, sysinst will create device nodes in the /dev directory and then displays
a message saying that everything went well.

If the set files were downloaded from the net, you can delete them after extraction, or keep them around.
sysinst will ask and do as you please - select “No” to keep the files, and “Yes” to delete them, as shown
in Figure 4-33.

47

Chapter 4 Example Installation

Figure 4-33. Deleting sets after extraction?

im AuErd INSTHRLY (You can keep them
to insztall/uparade a

|:| L H]

Another message (see Figure 4-34) will let you know that the set extraction is now completed, and that
you will have an opportunity to configure some essential things before finishing the NetBSD installation.

48

Chapter 4 Example Installation

Figure 4-34. Set extraction completed

SDNPIEtE‘ ThE

BHit ehter to continue

4.14 System configuration

The first thing you can adjust is the timezone in which the system resides. It is Universal Time
Coordinated (UTC) by default, and you can use the two-level menu of continents/countries and cities
shown in Figure 4-35 to determine your timezone. If you are satisfied with your choice, press the Return
key to update the display of your local time. Press “x” followed by Return to exit timezone selection.

49

Chapter 4 Example Installation

Figure 4-35. Selecting your system’s time zone

gz choose the timezone that Fits you best from the list b Press
select an entry.

followed by RETLRN to quit. the

UTC
EuropesBer
Wed Moy 18

ot math
op :

CHizinau

L% page Wp, *: page down

The next thing that is asked is which algorithm shall be used to encrypt the password file (Figure 4-36).
While DES is the standard algorithm used on most Unix systems, MD5 and Blowfish allow longer
passwords than DES, which only uses the first eight characters of the password that is entered. DES is
still useful for interoperability with other operating systems (e.g. for NIS).

50

Chapter 4 Example Installation

Figure 4-36. Selecting a password encryption scheme

Pleaze chooze the password cipher to use, MNetBSD can be configured to use
glither the DES; MDS ot Blowfish schemes.

ThH traditional DES scheme :umP1T1h1H Hlfh most okbher Unix-like operating
but lan fhh +1 h ANy p3 rd will be recognize
d Blowf 0 dz. and ‘zome would argue
that it's more =ect

If you have & network and intend to uze MI5, please bear in mind the
capabilities of othek machines onh your nutMUrL

[f you are upgr1jiu4 1nd HHHld likE to keep contiguration unchanged. choose
option

a==sord cipher

Ra: DES

ot WIS

c: Blowtish 2°7 round
d: do rot change

After choosing the password cipher you are asked if you want to set the root password, see Figure 4-37.
NetBSD doesn’t start any services when booting up after installation, yet it is still recommended to set a
root password right here for security reasons.

51

Chapter 4 Example Installation

Figure 4-37. Setting the root password now or later?

ol of the mewly in : m has not yet been initialized,
and iz th pty, Do you want to zet a L pi bd For the system now?

|:| L H]

When you agree to set a root password, sysinst will run the passwd(1) utility for you, and you should
enter your new root password (twice). Please note that the password is not echoed, and if you enter a
very simple password, the system will warn you about this, see Figure 4-38. If you insist on entering the
same simple password again, NetBSD will give in and let you have your will, providing you with all the
rope you need to hang yourself (metaphorically speaking, of course).

52

Chapter 4 Example Installation

Figure 4-38. Setting the root password

Statius:
Cemmatid:

Next item to tweak is to choose which command line interpreter - also known as “shell” in Unix - to use
for the root account. As printed in Figure 4-39, the default is the C shell (csh), other choices are Korn
shell (ksh) and the classic Bourne shell (sh). While BSD systems have traditionally shipped with “csh” as
login shell for the system manager, modern systems tend to come with a Bourne shell (or variantes
thereof, like ksh or bash), and it may be useful to chose this if you have experience on such systems.
Else, the default will be fine, and it can always be changed later (see Section 5.6).

53

Chapter 4 Example Installation

Figure 4-39. Choosing a shell for the root account

Yoo can now select which shell to usze: for the root gser. The default is
b, but you may prefer another one,

Foot shell

Bat /binfcsh

-
g f

At this point the installation is finished, see Figure 4-40.

54

Chapter 4 Example Installation

Figure 4-40. Congratulations

z=tem should boot

tiguration u+lpnu
umHnde In-'-'l:llrll-|+ it

ML mLm =hio detodroiconft to match yours needs,
‘detault uun+ far tht default values,

BHit ehter to continue

After passing the dialog that confirms the installation, sysinst will return to the main sysinst menu.
Remove any installation media (floppy, CDROM) from your drives, and choose “Reboot the computer”
to boot your NetBSD installation as shown in Figure 4-41.

55

Chapter 4 Example Installation

Figure 4-41. Reboot the system to finish installation

Wel come to EHEihEt, Ehe NEtESU 2.0 system installation tool, This
merL=dird : 41z I, e to a hard dizk. o

z g
Hi: 1'1"-41'|-' 1'|||-' CLEERRTL '|-'J_l-|'1'1||r| ‘I'I‘Ilrll ‘Hu— 11T 5 |:|I{ 1"-|F'1rl'-| the enter l::_Ee!:{1

If you booted From 2 Floppy. you may now remove the disk,

Thatik you for using MetBSDI

MetBSHE-2,0 Install System
1 '-.:l-'

T afr 1hs f1l] 1dd1flnn1l zets

&: Eehnnt.tha ‘conputer

gt HEility menu
t Exit Install System

56

Chapter 5
The first boot

After installing and rebooting, the computer will boot from the hard disk: if everything went well you’ll
be looking at the login prompt within a few seconds (or minutes, depending on your hardware). The
system is not yet configured but don’t worry: configuration is very easy and the approach offered by
NetBSD gives you a lot of flexibility. You’ll see how to quickly configure everything and, in the
meantime, you’ll learn how the system works; in the future, in case of trouble you’ll know where to look.

5.1 If something went wrong

If the system doesn’t boot it could be that the boot manager was not installed correctly or that there is a
problem with the MBR (Master Boot Record). Reboot the machine from the boot floppy and when you
see the prompt:

booting fdOa:netbsd - starting in ...

press the space bar during the 5 second countdown; the boot stops and a prompt is displayed. You can
have a basic help with the “?” key or with the “help” command.

type "?" or "help"™ for help.

> ?

commands are:

boot [xdNx:][Ffilename] [-adrs]
(ex. "sdOa:netbsd.old -s™)

Is [path]

dev xd[N[x]]:

help]?

quit

> boot wdOa: net bsd

The system should now boot from the hard disk instead of the floppy. If NetBSD boots correctly from the
hard disk, there is probably a Master Boot Record problem: you can install the boot manager or modify
its configuration with the fdisk -B command. See Section 20.3 for a detailed description.

5.2 Login

For the first login you will use the root superuser, which is the only user defined at the end of the
installation. At the password prompt type the password for root that you have defined during the
installation. If you haven’t defined a password, just press Enter.

Net BSD/ i 386 (Ammesi ac) (ttyEO)

I ogi n: root
password

57

Chapter 5 The first boot

We recommend creating a non-root account and using su(l) for root access.
#

5.3 Changing the keyboard layout

The keyboard still has the US layout; if you have a different keyboard it’s better to change its layout now,
before starting to configure the system. For example, to use the italian keyboard, give the following
command:

wsconsctl -k -w encoding=it
encoding -> it

See Section 30.1.3 for a list of keymaps available as well as how to make these settings permanent.

5.4 The man command

If you have never used a Unix(-like) operating system before, your best friend is now the man command,
which displays a manual page: the NetBSD manual pages are amongst the best and most detailed you
can find, although they are very technical.

man nane shows the man page of the “name” command and man -k nane shows a list of man pages
dealing with “name” (you can also use the apropos command).

To learn the basics of the man command, type:
man man

The manual is divided into nine sections, containing not only basic information on commands but also
the descriptions of some NetBSD features and structures. For example, take a look at the hier(7) man
page, which describes in detail the layout of the filesystem used by NetBSD.

man hier

Other similar pages are release(7) and packages(7). Each section of the manual has an intro(8) man page
describing its content. For example, try:

man 8 intro

Manual pages are divided in several sections, depending on what they document:

1. general commands (tools and utilities), see intro(1)
2. system calls and error numbers, see intro(2)

3. C libraries, see intro(3)

4. special files and hardware support, see intro(4)

5. file formats, see intro(5)

6. games, see intro(6)

58

Chapter 5 The first boot

7. miscellaneous information pages, see intro(7)
8. system maintenance and operation commands, see intro(8)
9. kernel internals, see intro(9)

A subject may appear in more than one section of the manual; to view a specific page, supply the section
number as an argument to the man command. For example, time appears in section 1 (the time user
command), in section 3 (the time function of the C library) and in section 9 (the time system variable).
To see the man page for the time C function, write:

man 3 tine

To see all the available pages:

man -w tinme
man -a tinme

5.5 Changing the r oot password

If you haven’t defined a password for root during installation, you should use the passwd command to
do so now.

passwd

Changing local password for root.
New password:

Retype new password:

Passwords are not displayed on the screen while you type. Later we will see how to add other accounts
on the system.

5.6 Changing the shell

The default shell for root can be chosen during system installation time, and it usually is csh; if this
doesn’t mean anything to you, you should begin studying csh with csh(1): it’s a good interactive shell
although it lacks history editing (have a look at tcsh, bash or even the NetBSD /bin/sh for this). If you
want to change your shell, use the chsh(1) command. The shells available on NetBSD after installation
are:

« csh
« sh
- ksh

The new shell will come into effect the next time you login. In the meantime, you can issue the following
command if you use csh:

set filec

59

Chapter 5 The first boot

which enables filename completion on the command line (with the ESC key; use Ctrl+D for a list of
possible completions.)

You can also install other shells on the system, if you want to: tcsh, bash, zsh and other shells are
available in the package collection (which we shall examine later).

If you’re familiar with the shell you chose, this is a good time to create the shell’s initialization files
(-chsrc, -login, ...)

5.7 System time

NetBSD, like all Unix systems, uses a system clock based on Greenwich time (GMT) and this is what
you should set your system clock to. If you want to keep the system clock set to the local time (because,
for example, you have a dual boot system with Windows installed), you must notify NetBSD, modifying
the kern.rtc_offset sysctl-variable:

echo kern.rtc_offset=-60 >>/etc/sysctl.conf
sh /etc/rc.d/sysctl restart

The value supplied (-60) is the number of minutes west of GMT.

To display the current setting of the kern. rtc_offset variable:

sysctl kern.rtc_of fset
kern.rtc_offset = -60

Now the kernel knows how to convert the time of the PC clock in the GMT system time but you must
still configure the system for your local time zone (which you will find in the Zusr/share/zoneinfo
directory). If you have already done this during the installation you can skip this step (although it is
better to check that the setting is correct.) For example, for Italy:

rm-f /etc/localtine
In -s /[usr/share/zonei nf o/ Eur ope/ Ronme /etc/localtinme

Once everything is set up correctly, you can change the time with the following command:

date [[[[[cc]yy]l midd]hh] m

5.8 Basic configuration in /et c/ rc. conf

NetBSD uses the /etc/rc.cont for system configuration at startup: this file determines what will be
executed when the system boots. Understanding this file is very important.

The /etc/defaults/rc.conffile contains the default values for a lot of settings, and to override a
default value, the new value must be put into Zetc/rc.conf: the definitions there override the one in
/etc/defaults/rc.conf (which should stay unchanged).

Understanding the Zetc/rc.conf file is very important. The rc.conf(5) manual page contains a detailed
description of all the options.

man rc. conf

60

Chapter 5 The first boot

The first modifications are:

« Set “rc_configured=yes” (this modification might already have been done by the installation
software.)

« Set “dhclient=yes” to configure your system’s network using DHCP.
« Set “sshd=yes” to start the Secure Shell server daemon upon system start.

« Define a hostname for your machine (use a fully qualified hostname, i.e. one including domain). If you
have a standalone machine you can use any name (for example, woody.toys.net). If your machine is
connected to a network, you should supply the correct network name.

Note: Make sure that the hostname is resolvable, either using DNS or / et ¢/ host s; some
programs do not work with an unresolvable hostname.

5.9 Enabling FFS soft-dependencies

This might be a good point to enable soft-dependencies for FFS filesystems. By default NetBSD writes
FFS meta-data synchronously, which means that meta-data is written to disk immediately.
Soft-dependencies is a mechanism which does not write meta-data immediately, but it is written in an
ordered fashion, which keeps the filesystem consistent. This provides performance comparable to
asynchronous mounts, without the same risks. Soft-dependencies can be enabled by adding softdep to
the filesystem options in Zetc/fstab. Let’s look at an example of /etc/fstab:

/dev/wdOa / ffs rw 1 1

/dev/wdOb none swap sw 0 O
/dev/wdOe /var ffs rw 1 2
/dev/wdOf /tmp ffs rw 1 2
/dev/wdOg /usr ffs rw 1 2

Suppose we want to enable soft-dependencies for all filesystems, except for the / partition. We would
change it to (changes are emphasized):

/dev/wdOa / ffs rw 1 1

/dev/wdOb none swap sw 0 O
/dev/wdOe /var ffs rw, softdep 1 2
/dev/wdOf /tmp ffs rw, softdep 1 2
/dev/wdOg /usr ffs rw, softdep 1 2

These are some references for more information about filesystems and soft-dependencies:

« The wikipedia filesystem page: http://en.wikipedia.org/wiki/File_system
« The Filesystems HOWTO: http://www.tldp.org/HOWTO/Filesystems-HOWTO.html

- Marshall Kirk McKusick’s page about soft-dependencies: http://www.mckusick.com/softdep/

61

Chapter 5 The first boot

5.10 Rebooting the system

In this first session you have:

« Configured the keyboard

« Changed the root password (optional)

« Changed root’s shell (optional)

« Changed the system time and the RTC offset
+ Defined the local time

« Configured Zetc/rc.conf

Now it’s time to reboot the system, with the following command:

reboot

62

Chapter 6
The second boot

During the first boot you have set up a basic system configuration. This chapter describes some common
commands and operations.

6.1 dmesg

At system startup the kernel displays a long sequence of messages on the screen: these messages give
information about the kernel status (for example, available memory) and the peripherals that have been
detected on the system. This information is very important for diagnosing hardware or configuration
problems, and for determining the name of the devices for the peripherals (for example you can check if
your network card has been detected as ne0 or nel). Usually these messages scroll on the screen too fast
to be useful, but you can use the dmesg(8) command to view them again.

dmesg | nore

If something on your system doesn’t appear to work correctly and you ask for help on one of the
NetBSD mailing lists, always remember to include the relevant dmesg output in your post: it will help
other people diagnose your problem. Note that during the boot process NetBSD also writes a copy of the
dmesg output to /var/run/dmesg.out. This feature is useful because the system will scroll “old”
messages out of the dmesg buffer over time.

6.2 Mounting the CD-ROM

New users are often surprised by the fact that although the installation program recognized and mounted
their CD-ROM perfectly, the installed system seems to have “forgotten” how to use the CD-ROM. There
is no special magic for using a CD-ROM: you can mount it as any other file system, all you need to know
is the device name and some options to the mount(8) command. You can find the device name with the
aforementioned dmesg(8) command. For example, if dmesg(8) displays:

dmesg | grep “cd
cd0 at atapibusO drive 1: <ASUS CD-S400/A, , V2_.1H> type 5 cdrom removable

the device name is cd0, and you can mount the CD-ROM with the following commands:

nkdir /cdrom
nount -t cd9660 -0 ro /dev/cdOa /cdrom

To make things easier, you can add a line to the /etc/fstab file:
/dev/cdOa /cdrom cd9660 ro,noauto 0 O

Without the need to reboot, you can now mount the cdrom with:

63

Chapter 6 The second boot
nmount /cdrom

When the cdrom is mounted you can’t eject it manually; you’ll have to unmount it before you can do that:

umount /cdrom

There is also a software command which unmounts the cdrom and ejects it:

ej ect /dev/cdOa

6.3 Mounting the floppy

To mount a floppy you must know the name of the floppy device and the file system type of the floppy.
Read the fdc(4) manpage for more information about device naming, as this will differ depending on the
exact size and kind of your floppy disk. For example, to read and write a floppy in MS-DOS format you
use the following command:

nmount -t nsdos /dev/fdOa /mt

Instead of /mnt, you can use another directory of your choice; you could, for example, create a /floppy
directory like you did for the cdrom. If you do a lot of work with MS-DOS floppies, you will want to
install the mtools package, which enables you to access a MS-DOS floppy (or hard disk partition)
without the need to mount it. It is very handy for quickly copying a file from/to floppy:

ntopy foo bar a
ntopy a:baz.txt baz
nmcopy a:*.jpg .

6.4 Accessing a DOS/Windows partition

If NetBSD shares the hard disk with MS-DOS or Windows, it is possible modify the disklabel and make
the Windows partitions visible from NetBSD. First, you must determine the geometry of the Windows
partition, for example using fdisk(8).

fdisk wd0
NetBSD disklabel disk geometry:
cylinders: 77520, heads: 16, sectors/track: 63 (1008 sectors/cylinder)

Partition table:
0: 0S/2 HPFS or NTFS or QNX2 or Advanced UNIX (sysid 7)

bootmenu: WinXP

start 63, size 20643462 (10080 MB, Cyls 0-1285), Active
1: NetBSD (sysid 169)

start 20643525, size 57496635 (28075 MB, Cyls 1285-4864)

- <UNUSED>
3: <UNUSED>

N

64

Chapter 6 The second boot

Note: This example uses the wd0 hard disk: substitute the device for your hard disk.

The output of the fdisk command shows that the Windows partition uses NTFS (“OS/2 HPFS or NTFS
or QN X2 or Advanced UNIX (sysid 7)”), if the partition was FAT it would have said “Primary ’big’
DOS, 16-bit FAT (>32MB) (sysid 6)”.

The Windows partition is currently only known in the MBR partition table, in order to mount it from
NetBSD it also needs to be in the NetBSD disk’s disklabel. There are two ways to do so, editing the
disklabel manually using disklabel -e, or using the mbrlabel(8) command, which is what we will
describe first.

When running mbrlabel(8), it needs a disk which it will search for partitions that are in the MBR but not
in the disklabel, and will then add them to the disklabel:

di skl abel wd0

d: 78140160 0 unused 0 0 # (Cyl. 0 - 77519)
#
nbrl abel -rw wd0
Found NTFS partition; size 20643462 (10079 MB), offset 63
adding NTFS partition to slot e.
Found 4_.2BSD partition; size 57496572 (28074 MB), offset 20643588
skipping existing unused partition at slot c.

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 57236256 20643588 4 _2BSD 1024 8192 46920 # (Cyl. 20479*- 77261%)
b: 260316 77879844 swap # (Cyl. 77261*- 77519)
c: 57496572 20643588 unused 0 0 # (Cyl. 20479*- 77519)
d: 78140160 0 unused 0 0 # (Cyl. 0 - 77519)
e: 20643462 63 NTFS # (Cyl. 0*- 20479%)
Updating in-core and on-disk disk label.
#
di skl abel wdO

d: 78140160 0 unused 0 0 # (Cyl. 0 - 77519)
e: 20643462 63 NTFS # (Cyl. 0*- 20479%)

If you can’t or don’t want to use mbrlabel(8) for some reason, you will have to edit the disklabel
manually with data from the fdisk-command above. The partition with the NTFS filesystem begins at
sector 63 and has a size of 20643462 sectors. The NetBSD partition begins at sector 20643525
(20643525 = 20643462 + 63). You will use this data to modify the BSD disklabel: all you have to do is
add one line which defines the position and type of the NTFS partition, choosing one of the still unused
partition id letters. Use the disklabel command to modify the disklabel. If you give the -e option to
disklabel it will invoke your favourite editor ($EDITOR) to modify the disklabel. For example:

di skl abel -e wdO

size offset fstype [fsize bsize cpg]

65

Chapter 6 The second boot

d: 78140160 0 unused 0 0 # (Cyl. 0 - 77519)
e: 20643462 63 NTFS

The partitions from “a” to “d” were already used, and the first available id was “e”. The “size” and
“offset” fields have been filled with the previously calculated numbers. Next, the mount point must be
created. For example:

nkdir /c
finally, a line will be added to the Zetc/fstab file.
/dev/wdOe /c ntfs ro,noauto 1 3

If you want to mount a MS-DOS "FAT" partition instead of a NTFS partition, use MSDOS as the
"fstype™ in the disklabel and "msdos" as filesystem type (3rd column) in Zetc/fstab. You can also
mount FAT-filesystems read/write, i.e. you can use "rw" instead of "ro" in /etc/fstab too. For details
about NetBSD support for the MSDOS and NTFS filesystems, see mount_msdos(8) and mount_ntfs(8).

Now the Windows partition can be mounted with a simple command:
mount /c

With this method you can mount NFS, FAT and FAT32 partitions. If you want to mount the partition(s)
automatically at startup, remove the noauto option from /etc/fstab.

/dev/wdOe /c ntfs ro 1 3

6.5 Adding users

It’s time to add new users to the system, since you don’t want to use the root account for your daily work
(yes, we’re serious about that!). NetBSD offers the useradd(8) utility to create user accounts. For
example, to create a new user:

useradd -mjoe

The defaults for the useradd(8) command can be changed; see the useradd(8) man page.

Accounts that can su(1) to root are required to be in the "wheel" group. This can be done when the
account is created by specifying a secondary group:

useradd -m -G wheel joe
As an alternative, the usermod(8) command can be used to add a user to an existing group:

usernod -G wheel joe

Note: You can edit/ et ¢/ gr oup directly to add users to groups, but do not edit / et c/ passwd directly!
All changes made to that file will get lost, see Section 6.6.

66

Chapter 6 The second boot

Note: If the system uses ssh, direct root access via ssh is disabled by default. Check the
sshd_config(5) and / et ¢/ ssh/ sshd_conf i g to change this behaviour.

6.6 Shadow passwords

Shadow passwords are enabled by default on NetBSD: all the passwords in Zetc/passwd contain an
“*” the encrypted passwords are stored in another file, /etc/master . passwd, that can be read only by
root. When you start vipw(8) to edit the password file, the program opens a copy of

/etc/master . passwd; when you exit, vipw(8) checks the validity of the copy, creates a new
/etc/passwd and installs the new Zetc/master . passwd file. Finally, vipw(8) launches
pwd_mkdb(8), which creates the files /etc/pwd.db and /etc/spwd.db, two databases which are
equivalent to /etc/passwd and /etc/master .passwd but faster to process.

As you can see, passwords are handled automatically by NetBSD; if you use vipw(8) to edit the
password file you don’t need any special administration procedure.

It’s very important to always use vipw and the other tools for account administration (chfn(1), chsh(1),
chpass(1), passwd(1)) and to never modify directly Zetc/master.passwd or /etc/passwd.

6.7 Stopping and rebooting the system
Use one of the following two shutdown(8) commands to halt and/or reboot the system:

shutdown -h now
shutdown -r now

Two other commands perform the same tasks are:

halt
reboot

halt(8), reboot(8), and shutdown(8) are not synonyms: the latter is more sophisticated. On a multiuser
system you should really use shutdown(8); this will allow you to schedule a shutdown time, notify users,
and it will also take care to shutdown database processes etc. properly without simply kill(1)ing them.
For a more detailed description, see the shutdown(8), halt(8) and reboot(8) manpages.

67

Chapter 7

rc.d System

As of NetBSD 1.5, the startup of the system changed to using rc-scripts for controlling services, similar

to the init-system System V and Linux use, but without runlevels. This chapter is an overview of the
rc-system and its configuration on NetBSD.

7.1 The rc.d Configuration

The startup files for the system reside under Zetc, they are:

First, a look at controlling and supporting scripts, also documented in rc(8):

Additional scripts outside of the rc.d directory:

« /etc/rc. Ikm loads or unloads Loadable Kernel Modules (LKMs), see modload(8) and
/etc/rc.d/1km[123].

« /etc/rc._local is almost the last script called at boot up. This script can be edited by the
administrator to start local daemons that don’t follow the rc-concept.

/etc/rc
/etc/rc.conf
/etc/rc.d/*
/etc/rc.Ikm
/etc/rc.local
/etc/rc.shutdown
/etc/rc.subr
/etc/defaul ts/*

/etc/rc.conf.d/*

When the kernel has initialized all devices on startup, it usually starts init(8), which in turn runs

/etc/rc

/etc/rc sorts the scripts in Z/etc/rc.d using rcorder(8), and runs them in that order. See the
rcorder(8) manpage for more details on how the order of Zetc/rc.d scripts is determined.

/etc/rc.subr contains common functions used by many Zetc/rc.d/>* scripts.

When shutting down the system with shutdown(8), Zetc/rc.shutdown is run which runs the scripts

in Z/etc/rc.d in reverse order (as defined by rcorder(8)).

68

Chapter 7 rc.d System

For example, packages installed pkgsrc usually add their startup files to /usr/pkg/etc/rc.d, and
it’s left as a decision to the system administrator on enabling them, either by manually copying/linking
them to Zetc/rc.d, or by adding them to Zetc/rc. 1ocal. The following is the example from the
system for an apache web server added to Zetc/rc. local:

if [-f /usr/pkg/etc/rc.d/apache]; then
/usr/pkg/etc/rc.d/apache start
fi

There’s a central config file for bootscripts, rc.conf(5) located in /etc/rc.conf. /etc/rc.conf loads
its defaults from /etc/defaults/rc.conf, the latter of which should not be touched. In order to alter
a default setting, an override may be installed in Zetc/rc.conf.

For example, if you wanted to enable the Secure Shell Daemon:

cd /etc; grep ssh defaults/rc.conf
sshd=NO sshd_flags="""
echo "sshd=YES"' >> rc. conf

Or just edit Zetc/rc.conf with your favorite editor. The same can be done with any default that needs
to be changed. A common sequence often done after installing a fresh NetBSD system is:

cat /etc/defaults/rc.conf >>/etc/rc.conf
vi /etcl/rc.conf

Be careful to use “>>" and not “>” else you will destroy the default contents in Zetc/rc.conf, which
are critical to remain there! After you have copied the defaults that way, modify anything you need to in
/etc/rc.conf. Be sure to consult the rc.conf(5) manpage to explain all the settings in detail.

Last and not least, the /etc/rc.conf.d/ directory can be used for scripts-snippets from third party
software, allowing setting only one or few settings per file.

7.2 The rc.d Scripts

The actual scripts that control services are in Zetc/rc.d. Once a service has been activated or told not
to activate in Zetc/rc.conf it can be also be modified by calling the rc script from the command ling,
for example if an administrator needed to start the secure shell daemon:

letc/rc.d/ sshd start
Starting sshd.

The rc scripts must receive one of the following arguments:

. start
. stop
- restart
< kill

An example might be when a new record has been added to the named database on a named server:

letc/rc.d/ nanmed restart

69

Chapter 7 rc.d System

Stopping named.
Starting named.

A slightly more complex example is when a series of settings have been changed, for instance a firewall’s
ipfilter rules, ipnat configuration, and the secure shell server has switched encryption type:

sh /etc/rc.d/ipfilter restart
sh /etc/rc.d/ipnat restart
sh /etc/rc.d/sshd restart

7.3 The Role of rcorder and rc Scripts

The startup system of every Unix system basically determines the order in which services are started one
way or another. On some Unix systems this is done by numbering the files and/or putting them in
separate run level directories. (Solaris relies on wildcards like Zetc/rc[23] .d/S™* being sorted
numerically when expanded.) Or they simply put all the commands that should be started at system boot
time into a single monolithic script, which can be messy. (This is what ancient BSD and NetBSD did
before the rc-system). On NetBSD this is done by the rc-scripts and their contents. Please note that
NetBSD does not have multiple runlevels as found e.g. in System V systems like Solaris, or Linux.

At the beginning of each of the rc-scripts in Zetc/rc.d/>*, there is a series of comment-lines that have
one of the following items in them:

+ REQUIRE

+ PROVIDE

« BEFORE

+ KEYWORD

These dictate the dependencies of that particular rc script and hence rcorder can easily work either “up”
or “down” as the situation requires. Following is an example of the /etc/rc.d/nfsd script:

PROVIDE: nfsd
REQUIRE: mountd

. /etc/rc.subr

Here we can see that this script provides the “nfsd” service, however, it requires “mountd” to be running
first. The rcorder(8) utility will be used at system startup time to read through all the rc-scripts, and
determine the correct order in which to run the rc-scripts (hence its name).

7.4 Additional Reading

There are other resources available pertaining to the rc.d system:

70

Chapter 7 rc.d System

« One of the principal designers of rc.d, Luke Mewburn, gave a presentation on the system at USENIX
2001. It is available in PDF (http://www.mewburn.net/luke/papers/rc.d.pdf) format.

« Will Andrews wrote a Daemonnews (http://www.daemonnews.org/) article called The NetBSD rc.d
System (http://ezine.daemonnews.org/200108/rcdsystem.html).

71

Ill. System confi guration,
administration and tuning

Chapter 8
Editing

8.1 Introducing vi

It is not like the vi editor needs introducing to seasoned UNIX users. The vi editor, originally developed
by Bill Joy of Sun Microsystems, is an endlessly extensible, easy to use light ASCII editor and the bane
of the newbie existence. This section will introduce the vi editor to the newbie and perhaps toss in a few
ideas for the seasoned user as well.

The first half of this section will overview editing, saving, yanking/putting and navigating a file within a
vi session. The second half will be a step by step sample vi session to help get started.

This is intended as a primer for using the vi editor, it is not by any means a thorough guide. It is meant to
get the first time user up and using vi with enough skills to make changes to and create files.

8.1.1 The vi interface

Using the vi editor really is not much different than any other terminal based software with one
exception, it does not use a tab type (or curses if you will) style interface, although many versions of vi
do use curses it does not give the same look and feel of the typical curses based interface. Instead it
works in two modes, command and edit. While this may seem strange, it is not much different than
windows based editing if you think about it. Take this as an example, if you are using say gedit and you
take the mouse, highlight some text, select cut and then paste, the whole time you are using the mouse
you are not editing (even though you can). In vi, the same action is done by simply deleting the whole
line with dd in command mode, moving to the line you wish to place it below and hitting p in command
mode. One could almost say the analogy is “mouse mode vs. command mode” (although they are not
exactly identical, conceptually the idea is similar).

To start up a vi session, one simply begins the way they might with any terminal based software:
$ vi filenane

One important note to remember here is that when a file is edited, it is loaded into a memory buffer. The
rest of the text will make reference to the buffer and file in their proper context. A file only changes when
the user has committed changes with one of the write commands.

8.1.2 Switching to Edit Mode

The vi editor sports a range of options one can provide at start up, for the time being we will just look at
the default startup. When invoked as shown above, the editors default startup mode is command mode, so
in essence you cannot commence to typing into the buffer. Instead you must switch out out of command
mode to enter text. The following text describes edit start modes:

73

Chapter 8 Editing

a Append after cursor.

A Append to end of line.

C Change the rest of current line.
cw Change the current word.

i Insert before cursor.

I Insert before first non blank line.
0 Open a line below for insert

O Open a line above for insert.

8.1.3 Switching Modes & Saving Buffers to Files

Of course knowing the edit commands does not do much good if you can’t switch back to command
mode and save a file, to switch back simply hit the ESC key. To enter certain commands, the colon must
be used. Write commands are one such set of commands. To do this, simply enter :.

Hitting the colon then will put the user at the colon (or command if you will) prompt at the bottom left
corner of the screen. Now let us look at the save commands:

:w Write the buffer to file.
:‘wq Write the buffer to file and quit.

8.1.4 Yanking and Putting

What good is an editor if you cannot manipulate blocks of text? Of course vi supports this feature as well
and as with most of the vi commands it somewhat intuitive. To yank a line but not delete it, simply enter
yy or Y in command mode and the current line will be copied into a buffer. To put the line somewhere,
navigate to the line above where the line is to be put and hit the p key for the “put” command. To move a
line, simply delete the whole line with the dd command, navigate and put.

8.1.4.1 Oops | Did Not Mean to do that!

Undo is pretty simple, u undoes the last action and U undoes the last line deleted or changes made on the
last line.

8.1.5 Navigation in the Buffer

Most vi primers or tutorials start off with navigation, however, not unlike most editors in order to
navigate a file there must be something to navigate to and from (hence why this column sort of went in
reverse). Depending on your flavor of vi (or if it even is vi and not say elvis, nvi or vim) you can navigate
in both edit and command mode.

For the beginner | feel that switching to command mode and then navigating is a bit safer until one has
practiced for awhile. The navigation keys for terminals that are not recognized or do not support the use
of arrow keys are the following:

74

Chapter 8 Editing

k Moves the cursor up one line.

Jj Moves the cursor down one line.

I Moves the cursor right one character.
h Moves the cursor left one character.

If the terminal is recognized and supports them, the arrow keys can be used to navigate the buffer in
command mode.

In addition to simple “one spot navigation” vi supports jumping to a line by simply typing in the line
number at the colon prompt. For example, if you wanted to jump to line 223 the keystrokes from editor
mode would look like so:

ESC
1223

8.1.6 Searching a File, the Alternate Navigational Aid

The vi editor supports searching using regular expression syntax, however, it is slightly different to
invoke from command mode. One simply hits the / key in command mode and enters what they are
searching for, as an example let us say | am searching for the expression foo:

/foo
That is it, to illustrate a slightly different expression, let us say | am looking for foo bar:

/foo bar

8.1.6.1 Additional Navigation Commands

Searching and scrolling are not the only ways to navigate a vi buffer. Following is a list of succinct
navigation commands available for vi:

Move to beginning of line.
Move to end of line.
Back up one word.
Move forward one word.
Move to the bottom of the buffer.
Move to the top line on the screen.
Move to the last line on the screen.
Move the cursor to the middle of the screen.
Scan for next search match but opposite direction.
Scan for next search match in the same direction.

DZZPIQEUHaO

75

Chapter 8 Editing

8.1.7 A Sample Session

Now that we have covered the basics, let us run a sample session using a couple of the items discussed so
far. First, we open an empty file into the buffer from the command line like so:

vi foo.txt

Next we switch to edit mode and enter two lines separated by an empty line, remember our buffer is
empty so we hit the i key to insert before cursor and enter some text:

This 1s some text

there we skipped a line

Now hit the ESC key to switch back into command mode.

Now that we are in command mode, let us save the file. First, hit the : key, the cursor should be sitting in
the lower left corner right after a prompt. At the : prompt enter w and hit the ENTER or RETURN key.
The file has just been saved. There should have been a message to that effect, some vi editors will also
tell you the name, how many lines and the size of the file as well.

It is time to navigate, the cursor should be sitting wherever it was when the file was saved. Try using the
arrow keys to move around a bit. If they do not work (or you are just plain curious) try out the hjkl keys
to see how they work.

Finally, let us do two more things, first, navigate up to the first line and then to the first character. Try out
some of the other command mode navigation keys on that line, hit the following keys a couple of times:

O & O &

The cursor should hop to the end of line, back to the beginning and then to the end again.

Next, search for an expression by hitting the / key and an expression like so:
/ we

The cursor should jump to the first occurrence of we.

Now save the file and exit using write and quit:

S

76

Chapter 8 Editing

8.2 Configuring vi

The standard editor supplied with NetBSD is, needless to say, vi, the most loved and hated editor in the
world. If you don’t use vi, skip this section, otherwise read it before installing other versions of vi.
NetBSD’s vi (nvi) was written by Keith Bostic of UCB to have a freely redistributable version of this
editor and has many powerful extensions worth learning while being still very compatible with the
original vi. Nvi has become the standard version of vi for BSD.

Amongst the most interesting extensions are:

- Extended regular expressions (egrep style), enabled with option extended.
« Tag stacks.

« Infinite undo (to undo, press u; to continue undoing, press .).

- Incremental search, enabled with the option searchincr.

« Left-right scrolling of lines, enabled with the option 1eftright; the number of columns to scroll is
defined by the sidescrol 1 option.

« Command line history editing, enabled with the option cedit.
« Filename completion, enabled by the fi lec option.
- Backgrounded screens and displays.

« Split screen editing.

8.2.1 Extensions to . exrc

The following example shows a . exrc file with some extended options enabled.

set showmode ruler
set Filec="[
set cedit="[

The first line enables the display of the cursor position (row and column) and of the current mode
(Command, Insert, Append) on the status line. The second line (where /[is the ESC character) enables
filename completion with the ESC character. The third line enables command line history editing (also
with the ESC character.) For example, writing “:” and then pressing ESC opens a window with a list of
the previous commands which can be edited and executed (pressing Enter on a command executes it.)

8.2.2 Documentation

The source tarball (src.tgz) contains a lot of useful documentation on (n)vi and ex, in the
/usr/src/usr._bin/vi/docs directory. For example:

- Edit: A tutorial
« Ex Reference Manual
Vi man page

« An Introduction to Display Editing with Vi by William Joy and Mark Horton

77

Chapter 8 Editing

« Ex/Vi Reference Manual by Keith Bostic
+ Vi Command & Function Reference
« Vi tutorial (beginner and advanced)

If you have never used vi, the “Vi tutorial” is a good starting point. It is meant to be read using vi and it
gradually introduces the reader to all the vi commands, which can be tested while reading. An
Introduction to Display Editing with Vi by William Joy and Mark Horton is also a very good starting
point.

If you want to learn more about vi and the nvi extensions you should read the Ex/Vi Reference Manual by
Keith Bostic which documents all the editor’s commands and options.

8.3 Using tags with vi

This topic is not directly related to NetBSD but it can be useful, for example, for examining the kernel
sources.

When you examine a set of sources in a tree of directories and subdirectories you can simplify your work
using the tag feature of vi. The method is the following:

1. cd to the base directory of the sources.
$ cd /path
2. Write the following commands:

$ find . -name "*.[ch]" > filelist
$ cat filelist | xargs ctags

3. Add the following line to _exrc
set tags=/path/tags

(substitute the correct path instead of pat h.)

78

Chapter 9
X

9.1 What is X?

The X Window System is the graphical subsystem available for NetBSD and many Unix (and non Unix)
systems. In fact it is much more than that: thanks to the usage of the X protocol, the X Window System is
“network transparent” and can run distributed applications (client-server). This means, roughly, that you
can run an application on one host (client) and transparently display the graphical output on another host
(server); transparently means that you don’t have to modify the application to achieve this result. The X
Window System is produced and maintained by the X Consortium and the current release is X11R6. The
flavour of X used by NetBSD is XFree86, a freely redistributable open source implementation of the X
Window System.

Please note that the X Window System is a rather bare bones framework which acts again as a base for
modern desktop environments like GNOME, KDE or XFCE, but they are not part of the X Windows
System, and while NetBSD ships with the X Window System, it does not include these desktop
environments. They can be added easily via the pkgsrc system, though, if needed.

When you start using X you’ll find many new terms which you’ll probably find confusing at first. The
basic elements to use X are:

- Video hardware supported by XFree86, i.e. your video card.

« An X server running on top of the hardware. The X server provides a standard way to open windows,
do graphics (including fonts for text display), and get mouse/keyboard/other input. X is
network-transparent, so that you can run X clients on one machine, and the X server (i.e., the display,
with video hardware) on another machine.

« A window manager running on the X server. The window manager is essentially a special client that is
allowed to control placement of windows. It also “decorates” windows with standard “widgets”
(usually these provide window-maotion, resizing, iconifying, and perhaps a few other actions). A
window manager also may provide backdrops, etc. Window managers can also let you kill
windows/programs by clicking on their windows, and so forth.

A desktop environment (optional.) KDE and GNOME, for example, are desktops: they are suites of
more-or-less integrated software designed to give you a well-defined range of software and a more or
less common interface to each of the programs. These include a help browser of some kind, a
“desktop-metaphor” access to your filesystem, custom terminals to replace xterm, software
development environments, audio, picture/animation viewres, etc.

« Any other applications (3rd party X clients) that you have. These talk to the X server and to the
window manager. Unless the window manager is part of the desktop (if any), the desktop probably
doesn’t get involved in much of anything that these applications do. (However, e.g., GNOME may be
able to detect that you’ve installed the GIMP, for example, and so offer a menu to launch the GIMP.)

79

Chapter 9 X

To summarize: in order to use a graphical environment you need

« the XFree86 system
« awindow manager (XFree86 already comes with a very basic window manager called twm.)

- If you prefer a more sophisticated environment you’ll probably want to install a desktop too, although
this is not necessary. Desktops have some nice features that are helpful to users who come from
environments such as Macintosh or MS-WINDOWS (the KDE desktop, for example, has a very
similar flavour to MS-WINDOWS.)

Note: By now it should be clear that desktops like GNOME and KDE do not provide X servers. They
run on top of an existing X server supplied by XFree86. KDE and GNOME can make use of their own
window manager or of a separately installed window manager.

Normally, you can run at most one window manager at any given time on a given X server. (But you can
run multiple X servers on a single computer.) If you are not running a window manager of your
choosing, and start KDE/GNOME, then that desktop environment will run a window manager for you.

9.2 Configuration

If you haven’t chosen a minimal configuration during installation, X is already installed and ready to run
on your computer. Depending on the exact hardware platform you run NetBSD and X on, you may or
may not need to configure your X server. While most workstation ports (sparc, pmax, ...) will just work
without further configuration if you use the right X-server, which is what Zusr/X11R6/bin/X is usually
linked to.

On PCs (i386, amd64), Shark and some other platforms, you will have to tune the X server first by create
the menacing /etc/X11/XF86Config file. To get an idea of what this file looks like, examine the
/usr/X11R6/1ib/X11/XF86ConTig.eg file. The structure of the configuration file is described
formally in XF86Config(5), which can be examined with the following command:

man XF86Confi g

Before configuring the system it is advisable to carefully read the documentation found in
/usr/X11R6/1ib/X11/doc: there are various README’s for the video cards, for the mouse and even
a NetBSD specific one (README . NetBSD.) | suggest to start by reading QuickStart.doc. You might
have the feeling that other systems let you start more quickly and with less effort, but the time spent
reading this documentation is not wasted: the knowledge of X and of your configuration that you gain
will turn out very useful on many future occasions and you’ll be able to get the most from your hardware
(and software t0o.)

You can create the /etc/X11/XF86ConTig file manually with an editor or you can generate it
automatically with an interactive configuration program. The best known programs are xf86config,
XF86Setup (XFree86 3.x) and xf86¢fg (XFree86 4.x). Both xf86config and xf86cfg are installed by
default with X; XF86Setup is a graphical configuration tool which can be installed from pkgsrc.

You may find that a mixed approach is better: first create the XF86Config with one of the two programs
and then check it and tune it manually with an editor. E.g. for the GUI based xf86c¢fg:

80

Chapter 9 X

xf86¢cfg
configure to your will, and at the end save to /etc/ X111/ XF86Confi g
vi [etc/ X11/ XF86Confi g

or for the screen-oriented, non-graphical xf86config:

xf86config
configure to your will, and at the end save to /etc/X11l/ XF86Confi g
vi [etc/ X11/ XF86Confi g

The interface of the two programs is different but they both require the same set of information:

- the mouse type and the mouse device to be used
« the keyboard type and its layout

- the type of video card

- the type of monitor

Before configuring the system you should collect the required information.

9.3 The mouse

The first thing to check is the type of mouse you are using (for example, serial or PS/2, ...) and the mouse
device (for example, wsmouse requires a different protocol). If you are using a serial mouse, choose the
required protocol and specify the serial port to which it is connected.

For example, PS/2 and USB mice usually are attached to the wsmouse device, and as such you can use:

Section "InputDevice"
Identifier '"MouseO"

Driver "'mouse™

Option "Protocol™ "wsmouse"

Option "Device' ''/dev/wsmouse"
EndSection

If you use a mouse with a scroll wheel, scrolling up and down is handled as mouse buttons 4 and 5 being
pressed (respectively). Many applications like xterm or Firefox handle these button presses. To enable
the scroll wheel, add the following lines to the "Pointer" section:

Section "InputDevice"
Identifier "Mouse0"

Driver ""mouse™

Option "Protocol™ "‘wsmouse"

Option "Device" ''/dev/wsmouse"

Option " ZAxi sMappi ng" "4 5"
EndSection

For a serial mouse on the first serial port, try something like:
Section "InputDevice"

Identifier '"MouseO"
Driver "mouse"

81

Chapter 9 X

Option "Protocol™ "auto"
Option "Device" "/dev/tty00"
EndSection

In this example. /dev/tty00 is the first serial port here, use /dev/tty01 for the second and so on.
Protocol "auto" will try to automatically detect the protocol of your serial mouse. If this doesn’t work, try
values like "Microsoft", "ItelliMouse™ or "Logitech", see /usr/X11R6/1ib/X11/XF86Config.egand
/usr/X11R6/1ib/X11/doc/README . mouse for more information.

9.4 The keyboard

Even if you have already configured your keyboard for wscons, you need to configure it for X too, at
least if you want to get a non US layout.

An easy solution is to use the XKB protocol, specifying the keyboard type and layout.
This is one area in which that configuration programs are weak and you may want to choose the standard
layout and modify the generated configuration file manually:

Section "InputDevice"
ldentifier "Keyboard0O"

Driver "keyboard"

Option "XkbRules" "xfree86"

Option ""XkbModel™ "pcl02"

Option "XkbLayout™ "de"

Option "XkbOptions™ *‘ctrl:nocaps™
EndSection

If you want to use the “Windows” keys on your keyboard, use “pc105” instead of “pc102” for XkbModel.

9.5 The monitor

It is very important to correctly specify the values of the horizontal and vertical frequency of the monitor:
a correct definition shields the monitor from damages deriving from an incompatible setup of the video
card. This information can be found in the monitor’s manual. In the X documentation directory there is a
file containing the settings of many monitors; it can be used as a starting point to customize your own

settings.

9.6 The video card

The video card can be chosen from the database of the configuration programs; the program will take
care of all the needed setups. Video card support is slightly different between XFree86 3.x and 4.x.

XFree86 3.x has multiple servers for different categories of video card chipsets. XFree86 4.x has only
one server. Different video chipsets are supported via platform independent driver modules, which can be
found in Zusr/x11R6/1ib/modules/drivers.

82

Chapter 9 X

9.6.1 XFree 3.x

When you have selected the correct video card you must choose the X server for the card. Usually, the
configuration programs can automatically determine the correct server, but some video cards can be
driven by more than one server (for example, S3 Virge is supported by the SVGA and S3V servers); in
this case, study the documentation of the servers to decide which one you need: different servers usually
have different capabilities and a different degree of support for the video cards.

9.6.2 XFree86 4.x

After selecting the correct video card the configuration program will automatically select the appropriate
driver or suggest it. If you have not selected a card you can configure your video card by selecting the
required module.

9.7 Starting X

When you exit the configuration program, it creates the file /etc/X11/XF86Config, which can be
further examined and modified by hand.

Before starting X you should:

« check that the symbolic link Zusr/X11R6/bin/X points to the correct X server:
I's -1 [usr/X11R6/ bi n/ X

« Verify that the configuration is correct. Launch:
X -probeonly
and examine carefully the output.

Now you can start X with the following command:
startx

If X doesn’t fire up there is probably some error in the configuration file.

If X starts but doesn’t work as expected (for example, you can’t move the mouse pointer) you can exit
quickly with the Ctrl-Alt-Backspace key combination (not available on all ports). If everything worked
correctly you are left in the X environment with the default window manager (twm): although it is a
simple window manager many users feel that it is enough for their needs. If you want a highly
configurable window manager with many bells and whistles, you have many choices in the package
collection, see Section 9.9 below.

To start customizing X, try giving the following command in an xterm to change the background color:

xsetroot -solid DarkSeaG een

83

Chapter 9 X

9.8 Customizing X

The look of the X environment can be customized in several ways. The easiest method is to copy the
default .xinitrc file in your home directory and modify it, or create a simple, new one from scratch.
For example:

$ cp /usr/X11R6/1ib/ X11/xinit/xinitrc $HOMVE/ .xinitrc
$ vi SHOWE .xinitrc

The following example shows how to start the window manager (twm), open an instance of the xclock
program in the lower right part of the screen and two xterm windows. The “Bisque4” color is used for
the background.

The First part of the file is the same

start some nice programs

twm &

xclock -geometry 50x50-1-1 &

xterm -geometry 80x34-1+1 -bg OldLace &

xsetroot -solid Bisque4 &

exec xterm -geometry 80x44+0+0 -bg AntiqueWhite -name login

With this type of setup, to exit X you must close the last xterm (the one with the “login” title - just type
"exit" in it, e.g.).

Even with this simple configuration X has a considerably nicer look. To give an even better look to the
environment you can install some utility program from the package collection. For example:

xcolorsel
displays all the colors defined in rgb . txt. Use it to choose background colors for the root window
or for xterms.

xpmroot

lets you use a pixmap for the background.

Xscreensaver

X screen saver.

xdaemon

no desktop can be complete without this package, which displays a moveable bitmap of the BSD
daemon in two selectable sizes.

9.9 Other window managers

If you don’t like twm, which is a very simple window manager lacking many features and not very
configurable, you can choose another window manager from the package collection. Some of the most
popular are: fvwm2, olwm/olvwm (Open Look Window Manager), WindowMaker, Enlightenment,
AfterStep.

84

Chapter 9 X

In the rest of this section the installation of WindowMaker is described as an example. WindowMaker is
a very nice looking and highly configurable window manager. To add the program the
windowmaker-0.60.tgz precompiled package will be used, which depends on some other packages
which must be installed. As usual, both pkg_add and make install will fetch the needed packages
automatically, so there is no need to go through the dependencies manually.

cd /usr/pkgsrc/x11/w ndowraker
make depends-|i st

xpm-3.4k

Jpeg-6b

pkglibtool-1.2p2

giflib-3.0

libproplist-0.9.1

tiff-3.5.2

Note: You can also see the dependencies with the following command:

pkg_info -f wi ndowmaker-0.61.0.tgz | grep depends

After adding the required packages, WindowMaker and some preconfigured themes can be added:

pkg_add wi ndownaker-0.61.0.tgz wnt henes-0. 6x.tgz

WindowMaker is now installed; to start it you must modify your .xinitrc and/or .xsession file:
substitute the line which calls twm with a line which calls wmaker. For example:

start some nice programs
start WindowMaker

wmaker &

xclock -geometry 50x50-1-1 &
xdaemon2 -geometry +0-70 &

In this example the xdaemon program is also started automatically.

Before starting WindowMaker the configuration program must be run:

$ wmaker . i nst
$ startx

In all the examples above, choosing “Quit” or similar from the window manager’s menu will quit the
window manager, but not log you out as you may expect. To do so, run the window manager last and
with no & in your .xinitrc:

xclock -geometry 50x50-1-1 &
xdaemon2 -geometry +0-70 &
wmaker # no & here!

85

Chapter 9 X

9.10 Graphical login with xdm

If you always use X for your work and the first thing you do after you log in is run startx, you can set up
a graphical login for your workstation which does this automatically. It is very easy:

1. Create the -xsession file in your home directory. This file is similar to ~/_xinitrc and can, in
fact, be a link to the latter.

$ cd $HOME
$In-s .xinitrc .xsession

2. Modify Zetc/rc.conf:

xdm=YES xdm_Fflags=""" # x11 display manager

If you prefer you can add the following line at the end of Zetc/rc. local instead of modifying
rc.conf;

/usr/X11R6/bin/xdm

This method can be used to start, for example, kdm or gdm instead of xdm.

The configuration files for xdm are in the /usr/X11R6/1ib/X11/xdm directory. In the Xservers file
X is started by default on “vt05”, which is the console you reach via “Ctrl+Alt+F5”; if you want to use
another virtual console instead, this is the right place to modify the setting. In order to avoid keyboard
contention between getty and xdm it is advisable to start xdm on a virtual terminal where getty is
disabled. For example if in Xservers you have:

0 local /usr/X11R6/bin/X -0 vt04
in /etc/ttys you should have
ttyE3 "/usr/libexec/getty Pc" vt220 off secure

(Please note that vt04 corresponds to ttyE3 because vt start at 1 and ttyE start at 0).

If you want a nice look for your xdm login screen, you can modify the xdm configuration file. For
example, to change the background color you can add the following line the the Xsetup_0 file:

xsetroot -solid SeaGreen

Instead of setting a color, you can put an image on the background using the xpmroot program: For
example:

Xpmroot /path_t o_xpni net bsd. xpm

If you experiment a little with the configuration file you can achieve many nice looking effects and build
a pleasing login screen. Note that other display managers like gdm and kdm offer different ways of
configuration, usually GUI based.

86

Chapter 10
Linux emulation

The NetBSD port for i386, alpha, mac68k, macppc and many others can execute a great number of
native Linux programs, using the Linux emulation layer. Generally, when you think about emulation you
imagine something slow and inefficient because, often, emulations must reproduce hardware instructions
and even architectures (usually from old machines) in software. In the case of the Linux emulation this is
radically different: it is only a thin software layer, mostly for system calls which are already very similar
between the two systems. The application code itself is processed at the full speed of your CPU, so you
don’t get a degraded performance with the Linux emulation and the feeling is exactly the same as for
native NetBSD applications.

This chapter explains how to configure the Linux emulation with an example: the installation of the well
known Acrobat Reader version 4 program.

10.1 Emulation setup
The installation of the Linux emulation is described in the compat_linux(8) man page; using the package

system only two steps are needed.

1. Configuring the kernel.
2. Installing the Linux libraries.

3. Installing Linux applications like Acrobat Reader

10.1.1 Configuring the kernel

If you use a GENERIC kernel you don’t need to do anything because Linux compatibility is already
enabled.

If you use a customized kernel, check that the following options are enabled:

option COMPAT_LINUX
option EXEC_ELF32

when you have compiled a kernel with the previous options you can start installing the necessary
software.

10.1.2 Installing the Linux libraries

Usually, applications are linked against shared libraries, and for Linux applications, Linux shared
libraries are needed. You can get the shared libraries from any Linux distribution, provided it’s not too

87

Chapter 10 Linux emulation

old, but the suggested method is to use the package system and install the libraries automatically (which
uses SUSE libraries). When you install the libraries, the following happens:

« A secondary root directory is created which will be used for Linux programs. This directory is
/emul/linux/. The Linux programs in emulation mode will use this directory as their root directory
and use files there. If a required file is not found, it will be searched with / as root directory.

For example, if a Linux application opens Zetc/1d.so.conf, it will first be searched in
/emul/linux/etc/1d.so.conT,and if not found there in Zetc/1d.so.conf.

« The shared libraries for Linux are installed. Most applications are linked dynamically and expect to
find the necessary libraries on the system. For example, for Acrobat Reader, if you go to the
/usr/pkgsrc/print/acroread and give the make depends command, you get the following
message:

===> acroread-4.0 requires Linux glibc2 libraries - see compat_linux(8).

Both operations will be handled automatically by the package system, without the need of manual
intervention from the user (I suppose that, by now, you have already begun to love the package
system...). Note that this section describes manual installation of the Linux libraries.

To install the libraries, a program must be installed that handles the RPM format: it is rpm, which will be
used to extract the SuSE libraries. Execute make and make install in the Zusr/pkgsrc/misc/rpm/
directory to build and install rpm.

Next the suse_base package must be installed. The SUSE RPM files can be downloaded by the package
system or, if you have a SUSE CD, you can copy them in the Zusr/pkgsrc/distfiles/suse
directory and then run make and make install after going to the
/usr/pkgsrc/emulators/suse_base directory.

With the same method install suse_compat and suse_x11. The final configuration is:

pkg_info -a | grep suse

suse_base-7.3nb5 Linux compatibility package
suse_x11-7.3nb2 Linux compatibility package for X11 binaries
suse_compat-7.3 Linux compatibility package with old shared libraries

10.1.3 Installing Acrobat Reader

Now everything is ready for the installation of the Acrobat Reader program (or other Linux programs).
Change to /usr/pkgsrc/print/acroread and give the usual commands.

make

make install

Note: To download and install Acrobat Reader you need to add the line
“ACCEPTABLE_LICENSES+=adobe-acrobat-license”to / et ¢/ mk. conf to accept the Acrobat
Reader license, simply follow the instructions given after make.

88

Chapter 10 Linux emulation

10.2 Directory structure

If we examine the outcome of the installation of the Linux libraries and programs we find that
/emul/linux is a symbolic link pointing to Zusr/pkg/emul/Iinux, where the following directories
have been created:

bin/
boot/
cdrom/
dev/
etc/
floppy/
home/
lib/
mnt/
opt/
proc/
root/
shin/
usr/

Note: Please always referto / enul /1 i nux and not to / usr/ pkg/ emul / 1 i nux. The latter is an
implementation detail and may change in the future.

How much space is required for the Linux emulation software? On my system | get the following figure:

cd /usr/pkg/ emu
du -k linux

214049 linux/

Acrobat Reader, the program, has been installed in the usual directory for package binaries:
/usr/pkg/bin. It can be run just as any other program:

$ acroread netbsd. pdf

10.3 Emulating /proc

Some Linux programs rely on a Linux-like Zproc filesystem. The NetBSD procfs filesystem can
emulate a /proc filesystem that contains Linux-specific pseudo-files. To accomplish this you can mount
the procfs with the “linux”-option:

mount _procfs -o linux procfs /emul/Ilinux/proc

In this example a Linux-like proc filesystem will be mounted to the Zemul/1inux/proc directory. You
can also let NetBSD mount it automatically during the booting process of NetBSD, by adding the
following line to Zetc/fstab:

89

Chapter 10 Linux emulation

procfs /emul/linux/proc procfs ro, linux

90

Chapter 11
Audio

This chapter is a short introduction to the usage of audio devices on NetBSD (who wants a dumb
computer, anyway?)

11.1 Basic hardware elements

In order to make audio work on your system you must know what audio card is installed. Sadly it is often
not enough to know the brand and model of the card, because many cards use chipsets manufactured
from third parties. Therefore knowing the chipset installed on the audio card can sometimes be useful.
The NetBSD kernel can recognize many chipsets and a quick look at dmesg is enough most of the time.

Therefore, type the following command:
dmesg | nore

and look for the audio card and chipset. If you’re lucky you won’t need to do anything because NetBSD
automatically detects and configures many audio cards.

Sometimes audio doesn’t work because the card is not supported or because you need to do some work
in order for the card to be detected by NetBSD. Many audio cards are nowadays very cheap, and it is
worth considering buying a different card, but before doing this you can try some simple steps to make
the card work with NetBSD.

11.2 BIOS settings

This section is useful only to the owners of i386 PCs; on other architectures (e.g. Amiga) there are no
such features. The most important thing to determine in order to use the audio card with NetBSD is the
type of bus supported by the card.

The most common interfaces are ISA and PCI.

ISA Plug and Play cards are usually more tricky to configure mostly because of the interaction with the
BIOS of the computer.

On the newer machines (those produced after 1997) there is a BIOS option which causes many
headaches for the configuration of ISA Plug and Play audio cards (but not only audio cards): this option
is usually named “PNP OS Installed” and is commonly found in the “PNP/PCI Configuration” (the
names can be different in your BIOS.) As a general rule it is usually better to disable (i.e. set it to “NO”)
this option for NetBSD.

Note: On many systems everything works fine even if this option is enabled. This is highly system
dependent.

91

Chapter 11 Audio

11.3 Configuring the audio device

During the installation of NetBSD the devices are created in the /dev directory. We are primarily
interested in:

/dev/audio
/dev/sound
/dev/mixer

If they are not present they can be created like this:

cd /dev
./ MAKEDEV al |

This command creates all the devices, including the audio devices.
The audio card is now probably ready to be used without further work.

You can make a quick test and send an audio file to the device (audio files usually have the .au
extension), but if you don’t have an audio file you can just send a text or binary file (of course you won’t
hear anything useful...). Use /dev/audio or /dev/sound:

cat filenanme > /dev/audio
or
cat filenane > /dev/sound

If you hear something it means that the card is supported by NetBSD and was recognized and configured
by the kernel at boot; otherwise you must configure the kernel settings for the audio device installed on
the system (assuming the card/chipset is supported.)

11.4 Configuring the kernel audio devices

NetBSD supports a wide range of audio cards and the GENERIC kernel already enables and configures
most of them. Sometimes it is necessary to manually set up the IRQ and DMA for non-PnP ISA cards.

Note: When you create a custom kernel it is better to work on a copy of the GENERIC file, as
described in Chapter 29.

If you still have problems you can try enabling all the devices, because some audio cards can be made to
work only by emulating another card.

Many chipset make use of the SoundBlaster and OPL compatibility, but a great number of them work
with the WSS emulation.

92

Chapter 11 Audio

OPL is a MIDI synthesizer produced by Yamaha; there are many OPL variants (e.g. OPL2, OPL3SA,
OPL3SA2, etc.). Many audio cards rely on this component or on a compatible one. For example, the
chips produced by Crystal (and amongst them the very common CS423x) all have this chipset, and that’s
why they work with NetBSD.

WSS is not a microchip; it is the acronym of Windows Sound System. WSS is the name of the NetBSD
kernel driver which supports the audio system of Microsoft Windows. Many audio cards work with
Windows because they adhere to this standard (WSS) and the same holds for NetBSD.

Of the many audio cards that | tested with NetBSD, a good number work only if opl* and wss™> are
enabled in the kernel.

You should have no problem to get the Creative SoundBlaster cards to work with NetBSD: almost all of
them are supported, including the Sound Blaster Live 1024!

When everything works you can disable in the kernel configuration file the devices that you don’t need.

11.5 Advanced commands

NetBSD comes with a number of commands that deal with audio devices. They are:

- audioctl(1)
« mixerctl(1)
- audioplay(1)

« audiorecord(l)

11.5.1 audioctl(1)

audioctl(1) made its appearance in NetBSD 1.3 and is used to manually set some variables regarding
audio /0, like the frequencies for playing and recording. The available parameters can be displayed with
the following command:

audioctl -a | nore
For example, to listen to CD quality music you can use the following command.
audi octl -w play=44100, 2, 16,slinear_le

This command sets the frequency to 44100Hz, 2 audio channels, 16 bit, slinear_le encoding.

You can see the supported encodings with:
audi octl encodi ngs

This command displays the list of all the encodings supported by the audio card on your system.

11.5.2 mixerctl(1)

This command is used to configure the audio mixing and has an interface similar to that of audioctl(1).

93

Chapter 11 Audio

11.5.3 audioplay(1)

With this command you can play audio files in simple formats like ULAW and WAV. For more
sophisticated needs you might want to install one of the many programs available in the package system
which let you play audio files in different formats (e.g. MP3, etc.)

11.5.4 audiorecord(1)

Not unsurprisingly this command is used to record audio files.

94

Chapter 12
Printing

This chapter describes a simple configuration for printing, using an HP Deskjet 690C connected to the
first parallel port as and the Ipd printing system that comes with NetBSD an example. First, the system
will be configured to print text documents, and next the configuration will be extended to print PostScript
documents using the Ghostscript program. Please note that there are other, alternative printing systems
available in the packages collection, like Iprng and the Common Unix Printing System (CUPS), which
are not covered here.

12.1 Enabling the printer daemon

After installation it is not yet possible to print, because the Ipd printer spooler daemon is not enabled. To
enable Ipd, one line in the /etc/rc.conf file must be changed from:

Ipd=NO

to

Ipd=YES

The change will come into effect at the next boot, but the daemon can be started manually now:

sh /etc/rc.d/Ipd start

To check if Ipd is active, type the following command:

ps ax | grep |Ipd
179 ?? Is 0:00.01 Ipd
If you don’t see an entry for Ipd in the output of the previous command, the daemon is not active.

The Ipd system is configured via Zetc/printcap. Before configuring /etc/printcap itis a good
idea to make a printer test, to check if the physical connection between your computer and the printer is
working. The test sends out some data directly to the printer device. Assuming you use a printer
connected to the parallel port, this is /dev/1ptO; if you use an USB printer try /dev/ulptO. Please
check the manpages of these devices (Ipt(4), ulpt(4)) for more information!

In our example we have a printer attached to the parallel port, so we run this:

Iptest 70 5 > /dev/IptO

To see what the output should look like, try the same command without redirecting the output to the
printer:

|Iptest 70 5
1"#3%&” (O *+,-./0123456789: ; <=>?@ABCDEFGH 1 JKLMNOPQRSTUVWXYZ[\]"_“abcdef

95

Chapter 12 Printing

THENE” ()*+, - . /0123456789 ; <=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]*_“abcdefy
#$U&” O*+, - . /0123456789 ;<=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]~_“abcdefgh
$%&” () *+,-./0123456789: ;<=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]*_“abcdefghi
%&” O)*+,-./0123456789: ;<=>?@ABCDEFGH I JKLMNOPQRSTUVWXYZ[\]~_“abcdefghi j

A frequent problem is that the output on the printer is not correctly aligned in columns but has a
“staircase” configuration. This usually means that the printer is configured to begin a new line at the left
margin after receiving both a <CR> (carriage return, ASCII 13) character and a <LF> (line feed, ASCII
10) character. NetBSD only sends a <LF> character. You can fix this problem in two ways:

« by changing the configuration of the printer

« by using a simple printer filter (described later)

Note: In the previous example the Ipd spooler is not involved because the program output is sent
directly to the printer device (/ dev/ | pt 0) and is not spooled.

12.2 Configuring / et c/ pri nt cap

This section explains how to configure the example printer to print text documents.

The printer must have an entry in the Zetc/printcap file; the entry contains the printer id (the name of
the printer) and the printer description. The Ip id is the default used by many programs. Here is an
example entry:

Example 12-1./ et ¢/ pri nt cap

Ip]local printer|HP DeskJet 690C:\
:1p=/dev/Ipa0:sd=/var/spool/lIpd/lp:1f=/var/log/lIpd-errs:\
:sh:pl#66:pw#80: if=/usr/local/libexec/Ipfilter:

The file format and options are described in detail in the printcap(5) manpage. Please note that an input
filter has been specified (with the if option) which will take care of eliminating the staircase problem:

if=/usr/local/libexec/Ipfilter

Printer driver and HP printers: Example 12-1 uses the Ipa0 device (polled driver) for the printer,
instead of the IpdO (interrupt driven driver). Using interrupts there is a communication problem with
some printers, and the HP Deskjet 690C is one of them: printing is very slow and one PostScript
page can take hours. The problem is solved using the Ipa driver. It is also possible to compile a
custom kernel where Ipt is polled.

The printcap entry for the printer also specifies a spool directory, which must be created; this directory
will be used by the Ipd daemon to accumulate the data to be printed:

cd /var/spool /| pd
nkdir Ip

96

Chapter 12 Printing

chown daenon: daenon | p
chrmod 770 I p

The only missing part is the 1pFfi Iter input filter, which must be written. The only task performed by
this filter is to configure the printer for the elimination of the staircase problem before sending the text to
be printed. The printer used in this example requires the following initialization string: “<ESC>&k2G".

Example 12-2./ usr /1 ocal /| i bexec/ | pfilter

#1/bin/sh

Treat LF as CR+LF

printf '\033&k2G" && cat && exit O
exit 2

After saving this script into the name you used in Zetc/printcap, you need to make sure it’s
executable:

chrmod 755 /usr/local /libexec/|pfilter*

Note: There is another filter that can be used:

if=/usr/libexec/lpr/lpf:

This filter is much more complex than the one presented before. It is written to process the output of
nroff and handles underline and overprinting, expands tab characters and converts LF to CR + LF.
The source to this filter program can be found in / usr/src/usr.sbin/lpr/filters/Ipf.c.

After everything is in place now, the Iptest command can be run again now, this time using the Ipr
command, which will first send the data to the Ipd spooler, then runs the filter and sends the data off to
the printer:

Iptest 70 5] Ipr -h

The Ipr program prints text using the spooler to send data to the printer; the -h option turns off the
printing of a banner page (not really necessary, because of the sh option in Zetc/printcap). Users
more familiar with the System V printing system can also use the Ip(1) command that comes as an
alternative to Ipr(1).

12.3 Configuring Ghostscript

Now that basic printing works, the functionality for printing PostScript files can be added. The simple
printer used in this example does not support native printing of PostScript files; a program must be used
which is capable of converting a PostScript document in a sequence of commands that the printer
understands. The Ghostscript program, which can be found in packages collection, can be used to this
purpose (see Part VI in The NetBSD & pkgsrc Guide). This section explains how to configure Ipd to use
Ghostscript to print PostScript files on the HP Deskjet 690C.

A second id for the printer will be created in Zetc/printcap: this new id will use a different input
filter, which will call Ghostscript to perform the actual print of the PostScript document. Therefore, text

97

Chapter 12 Printing

documents will be printed on the Ip printer and PostScript documents on the ps printer: both entries use
the same physical printer but have different printing filters.

The same result can be achieved using different configurations. For example, a single entry with only one
filter could be used. For this, the filter should be able to automatically determine the format of the
document being printed, and use the appropriate printing program. This approach is simpler but leads to
a more complex filter; if you like it you should consider installing the magicfilter program from the
packages collection: it does this and many other things automatically.

For our approach, the new /etc/printcap file looks like this:

Example 12-3./ et ¢/ pri nt cap

Ip]local printer|HP DeskJet 690C:\
:1p=/dev/Ipa0:sd=/var/spool/lIpd/lp:1f=/var/log/lIpd-errs:\
:sh:pl#66:pw#80: if=/usr/local/libexec/Ipfilter:

ps|Ghostscript driver:\
:1p=/dev/Ipa0:sd=/var/spool/lpd/ps:1f=/var/log/lIpd-errs:\
:mx#0:sh:if=/usr/local/libexec/Ipfilter-ps:

Option mx#0 is very important for printing PostScript files because it eliminates size restrictions on the
input file; PostScript documents tend to be very big. The i option points to the new filter. There is also a
new spool directory.

The next steps are the creation of the new spool directory and of the filter program. The procedure for the
spool directory is the same as above:

cd /var/spool /| pd
nkdir ps

chown daenon: daenon ps
chnod 770 ps

H OH H H®

The filter program for PostScript output is more complex than the text base one: the file to be printed is
fed to the interpreter which converts it into a sequence of commands in the printer’s control language,
and then sends that off to the printer. We have achieved to transform a cheap color printer in a device
suitable for PostScript output, by virtue of the NetBSD operating system and some powerful freeware
packages. The options used to configure Ghostscript are described in the Ghostscript documentation:
cdj550 is the device used to drive the HP printer.

Example 12-4./ usr /| ocal / | i bexec/ | pfilter-ps

#1/bin/sh

Treat LF as CR+LF

printf '\033&k2G" || exit 2

Print the postscript file

/usr/pkg/bin/gs -dSAFER -dBATCH -dQUIET -dNOPAUSE -q -sDEVICE=cdj550 \
-sOutputFile=- -sPAPERSIZE=a4 - && exit O

exit 2

To summarize: two different printer names have been created on the system, which point to the same
physical printer but use different options, different filters and different spool directories. Text files and

98

Chapter 12 Printing

PostScript files can be printed. To print PostScript files the Ghostscript package must be installed on the
system.

12.4 Printer management commands

This section lists some useful BSD commands for printer and print jobs administration. Besides the
already mentioned Ipr and Ipd commands, we have:

Ipq
examine the printer job queue.

Iprm

delete jobs from the printer’s queue.

Ipc

check the printing system, enable/disable printers and printer features.

12.5 Remote printing

It is possible to configure the printing system in order to print on a printer connected to a remote host.
Let’s say that, for example, you work on the wotan host and you want to print on the printer connected to
the loge host. The Zetc/printcap file of loge is the one of Example 12-3. From wotan it will be
possible to print Postscript files using Ghostscript on loge.

The first step is to accept the print jobs submitted from the wotan host to the loge host. To accomplish
this, a line with the wotan host name must be added to the /etc/hosts. Ipd file on loge:

host name

loge

cat /etc/hosts.|pd
wotan

The format of this file is very simple: each line contains the name of a host which is permitted to print on
the local system. By default the Ipd daemon only listens on UNIX domain sockets for local connections,
it won’t accept any network connects. To ensure the daemon also accepts incoming network traffic, the
following will need to be added to /etc/rc.conf:

Ipd_flags=""

Next, the Zetc/printcap file on wotan must be configured in order to send print jobs to loge. For
example:

Ip]line printer on loge:\
:Ip=:sd=/var/spool/l1pd/Ip:1f=/var/log/lIp-errs:\

:rm=loge:rp=Ip

ps|Ghostscript driver on loge:\
:Ip=:sd=/var/spool/l1pd/ps:1f=/var/log/lp-errs:\

99

Chapter 12 Printing

mx#0:\
:rm=loge:rp=ps

There are four main differences between this configuration and the one of Example 12-3.

1. The definition of “Ip” is empty.

2. The “rm” (remote machine) entry defines the name of the host to which the printer is connected.
3. The “rp” (remote printer) entry defines the name of the printer connected to the remote host.

4. It is not necessary to specify input filters because the definitions on the loge host will be used.

5. The spool directories must still be created locally on wotan:

cd /var/spool /| pd
nkdir Ip

chown daenon: daenon | p
chmod 770 Ip

nkdir ps

chown daenon: daenon ps
chnmod 770 ps

HoH oW O R H

Now the print jobs for the “Ip” and “ps” queues on wotan will be sent automatically to the printer
connected to loge.

100

Chapter 13
Using removable media

13.1 Initializing and using floppy disks

PC-style floppy disks work mostly like other disk devices like hard disks, except that you need to
low-level format them first. To use an common 1440 KB floppy in the first floppy drive, first (as root)
format it:

fdformat -f /dev/rfdOa

Then create a single partition on the disk using disklabel(8):

disklabel -rw /dev/rfdOa floppy3

Creating a small filesystem optimized for space:

newfs -m O -o space -i 16384 -c 80 /dev/rfdOa

Now the floppy disk can be mounted like any other disk. Or if you already have a floppy disk with an
MS-DOS filesystem on it that you just want to access from NetBSD, you can just do something like this:

mount -t msdos /dev/fdOa /mnt

However, rather than using floppies like normal (bigger) disks, it is often more convenient to bypass the
filesystem altogether and just splat an archive of files directly to the raw device. E.g.:

tar cvfz /dev/rfdOa filel file2 ...

A variation of this can also be done with MS-DOS floppies using the sysuti ls/mtools package which
has the benefit of not going through the kernel buffer cache and thus not being exposed to the danger of
the floppy being removed while a filesystem is mounted on it.

13.2 How to use a ZIP disk

1. See if your system has a ZIP drive:

dmesg | grep -i zip
sd0 at atapibusO drive 1: <IOMEGA ZIP 100 ATAPI, , 14_A> type O direct removab

Seems it has one, and it’s recognized as sdO, just like any SCSI disk. The fact that the ZIP here is an
ATAPI one doesn’t matter - a SCSI ZIP will show up here, too. The ZIP is marked as "removable",
which means you can eject it with:

101

Chapter 13 Using removable media

eject sdO
2. Insert ZIP disk

3. Check out what partitions are on the ZIP:

di skl abel sdO
/dev/rsd0Od:
type: ATAPI

8 partitions:

size offset fstype [fsize bsize cpal
d: 196608 0 unused 0 0 # (Cyl. 0 - 95)
h: 196576 32 MSDOS # (Cyl. 0*- 95)

disklabel: boot block size O
disklabel: super block size 0

Partition d

is the whole disk, as usual on i386.

Partition h
is what you want, and you can see it’s a msdos filesystem even.
Hence, use /dev/sdOh to access the zip’s partition.
4. Mount it:
nmount -t nsdos /dev/sdOh /mt
5. Access your files:

1s -la /mt
total 40809

drwxr-xr-x 1 root wheel 16384 Dec 31 1979 .

drwxr-xr-x 28 root wheel 1024 Aug 2 22:06 ..

—-rwxXr-xXr-x 1 root wheel 1474560 Feb 23 1999 bootl.fs

—-rwxr-xr-x 1 root wheel 1474560 Feb 23 1999 boot2.fs

—-rwxXr-xXr-x 1 root wheel 548864 Feb 23 1999 boot3.fs

-rwxr-xr-x 1 root wheel 38271173 Feb 23 1999 netbsd19990223.tar.gz

6. Unmount the ZIP:

unmount /mt
#

7. Eject the ZIP:

eject sdO
#

13.3 Reading data CDs with NetBSD

Data CDs can contain anything from programs, sound files (mp3, wav), movies (mp3, quicktime) to
source code, text files, etc. Before accessing these files, a CD must be mounted on a directory, much like
hard disks are. Just as hard disks can use different filesystems (ffs, Ifs, ext2fs, ...), CDs have their own

102

Chapter 13 Using removable media

filesystem, "cd9660". The NetBSD cd9660 filesystem can handle filesystems without and with
Rockridge and Joliet extensions.

CD devices are named /dev/cd0a for both SCSI and IDE (ATAPI).

With this information, we can start:

1. See if your system has some CD drive:

dmesg | grep “cd
cd0 at atapibusO drive 0: <CD-R/RW RW8040A, , 1.12> type 5 cdrom removable
cd0: 32-bit data port
cdO: drive supports PIO mode 4, DMA mode O
cdO(pciide0:1:0): using PIO mode O, DMA mode O (using DMA data transfers)

We have one drive here, "cd0". It is an IDE/ATAPI drive, as it is found on atapibus0. Of course the
drive (rather, its medium) is removable, i.e., you can eject it. See below.

2. Inserta CD
3. Mount the CD manually:

nount -t cd9660 /dev/cdOa /mt
#

This command shouldn’t print anything. It instructs the system to mount the CD found on /dev/cd0a
on /mnt, using the "cd9660" filesystem. The mountpoint "/mnt" must be an existing directory.

4, Check the contents of the CD:

1s /mt

INSTALL .html INSTALL.ps TRANS . TBL boot.catalog
INSTALL .more INSTALL.txt binary installation
#

Everything looks fine! This is a NetBSD CD, of course. :)
5. Unmount the CD:

unount /mt
#

If the CD is still accessed (e.g. some other shell’s still "cd™’d into it), this will not work. If you shut
down the system, the CD will be unmounted automatically for you, there’s nothing to worry about
there.

6. Making an entry in /etc/fstab:

If you don’t want to type the full "mount” command each time, you can put most of the values into a
line in /etc/fstab:

Device mountpoint filesystem mount options
/dev/cdOa /cdrom cd9660 ro,noauto

Make sure that the moutpoint, /cdrom in our example, exists:

nkdir /cdrom
#

Now you can mount the cd with the following command:

nmount /cdrom

103

Chapter 13 Using removable media

#
Access and unmount as before.

The CD is not mounted at boot time due to the "noauto™ mount option - this is useful as you’ll
probably not have a CD in the drive all the time. See mount(8) and mount_cd9660(8) for some other
useful options.

7. Eject the CD:

eject cdO
#

If the CD is still mounted, it will be unmounted if possible, before being ejected.

13.4 Reading multi-session CDs with NetBSD

Use mscdlabel(8) to add all sessions to the CDs disklabel, and then use the appropriate device node to
mount the session you want. You might have to create the corresponding device nodes in /dev manually.
For example:

mscdl abel cdl
track (ctl=4) at sector 142312
adding as ’a’
track (ctl=4) at sector O
adding as b~
|Is -1 /dev/cdlb
Is: /dev/cdlb: No such file or directory

cd /dev

1s -1 cdl*

brw-r-—---- 1 root operator 6, 8 Mar 18 21:55 cdla
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cdld

nmknod cdlb b 6 9
to create /dev/cd1b. Make sure you fix the permissions of any new device nodes you create:

ls -1 cdl*

brw-r----- 1 root operator 6, 8 Mar 18 21:55 cdla
brw-r--r-- 1 root wheel 6, 9 Mar 18 22:23 cdlb
brw-r----—- 1 root operator 6, 11 Mar 18 21:55 cdid

chgrp operator cdlb

chrnod 640 cdlb

1s -1 cdl*

brw-r----- 1 root operator 6, 8 Mar 18 21:55 cdla
brw-r-—--—- 1 root operator , 9 Mar 18 22:24 cdilb
brw-r----- 1 root operator 6, 11 Mar 18 21:55 cdld

()]

Now you should be able to mount it.

nount /dev/cdlb /mt

104

Chapter 13 Using removable media

13.5 Allowing normal users to access CDs

By default, NetBSD only allows "root" to mount a filesystem. If you want any user to be able to do this,
perform the following steps:

« Give groups and other the access rights to the device.

chmod go+rw /dev/cdOa
« Ask NetBSD to let users mounting filesystems.

sysctl -w vfs._generic.usermount=1

Note that this works for any filesystem and device, not only for CDs with a 1SO 9660 filesystem.
To perform the mount operation after these commands, the user must own the mount point. So, for
example:

$ cd $HOME
$ mkdir cdrom
$ mount -t cd9660 /dev/cdOa “pwd“/cdrom

Please also see mount(8) and as an alternative amd(8), for which example config files can be found in
/usr/share/examples/amd.

13.6 Mounting an ISO image

Sometimes, it is interesting to mount an 1SO9660 image file before you burn the CD; this way, you can
examine its contents or even copy files to the outside. If you are a Linux user, you should know that this
is done with the special loop filesystem. NetBSD does it another way, using the vnode pseudo-disk.

We will illustrate how to do this with an example. Suppose you have an 1SO image in your home
directory, called "mycd.iso":

1. Start by setting up a new vnode, "pointing" to the ISO file:

vnconfig -c vnd0 ~/nycd.iso
2. Now, mount the vnode:
nmount -t cd9660 /dev/vndOa / mt
3. Yeah, image contents appear under /mnt! Go to that directory and explore the image.
4. When you are happy, you have to umount the image:
unount / mt
5. And at last, deconfigure the vnode:
vnconfig -u vndO
Note that these steps can also be used for any kind of file that contains a filesystem, not just 1SO images.

See the vnd(4) and vnconfig(8) man pages for more information.

105

Chapter 13 Using removable media

13.7 Using video CDs with NetBSD

To play MPEG Video streams as many DVD players can play them under NetBSD, mount the CD as you
would do with any normal (data) CD (see Section 13.3), then use the graphics/mtv,
multimedia/xine-ui, multimedia/mplayer or multimedia/gmplayer package to play the
mpeg files stored on the CD.

13.8 Using audio CDs with NetBSD

There are two ways to handle audio CDs:

1. Tell the CD drive to play to the headphone or to a soundcard, to which CDROMs are usually
connected internally. Use programs like cdplay(1), audio/xmcd, "kscd" from the
audio/kdemultimedia package, mixer programs like mixerctl(1), audio/xmix, audio/xmmix,
the Curses based audio/cam, or kmix, which is part of audio/kdemultimedia.

This usually works well on both SCSI and IDE (ATAPI) CDROMs, CDRW and DVD drives.

2. Toread ("rip") audio tracks in binary form without going through digital->analog conversion and
back. There are several programs available to do this:

For most ATAPI, SCSI and several proprietary CDROM drives, the audio/cdparanoia package
can be used. With cdparanoia the data can be saved to a file or directed to standard output in WAV,
AIFF, AIFF-C or raw format. Currently the -g option is required by the NetBSD version of
cdparanoia. A hypothetical example of how to save track 2 as a WAV file is as follows:

$ cdparanoia -g /dev/rcd0d 2 track-02.wav
If you want to grab all files from a CD, cdparanoia’s batch mode is useful:
$ cdparanocia -g /dev/rcd0d -B

For ATAPI or SCSI CD-ROMs the audio/cdd package can be used. To extract track 2 with cdd,
type:

cdd -t 2 ‘pwd’

This will put a file called track-02. cda in the current directory.

For SCSI CD-ROMS the audio/tosha package can be used. To extract track 2 with tosha, you
should be able to type:

tosha -d CD-ROMdevice -t 2 -0 track-02.cda

The data can then be post-processed e.g. by encoding it into MP3 streams (see Section 13.9) or by
writing them to CD-Rs (see Section 13.11).

13.9 Creating an MP3 (MPEG layer 3) file from an audio CD

The basic steps in creating an MPEG layer 3 (MP3) file from an audio CD (using software from the
NetBSD packages collection (http://www.NetBSD.org/Documentation/pkgsrc/)) are:

1. Extract (rip) the audio data of the CD as shown in Section 13.8.

106

Chapter 13 Using removable media

2. Convert the CD audio format file to WAV format. You only need to perform this job if your ripping
program (e.g. tosha, cdd) didn’t already do the job for you!

-« Using the audio/sox package, type:
$ SOX -S -W -C 2 -r 44100 -t cdr track-02.cda track-02.wav

This will convert track-02.cda in raw CD format to track-02.wav in WAV format, using
signed 16-bit words with 2 channels at a sampling rate of 44100kHz.

3. Encode the WAV file into MP3 format.
« Using the audio/bladeenc package, type:
$ bladeenc -128 -QUIT track-02.wav

This will encode track-02._wav into track-02.mp3 in MP3 format, using a bit rate if
128kBit/sec. The documentation for bladeenc describes bit-rates in more detail.

« Using the audio/1ame package, type:
$ lame -p -0 -v -V 5 -h track-02.wav track-02.mp3

You may wish to use a lower quality, depending on your taste and hardware.

The resultant MP3 file can be played with any of the audio/ggmpeg, audio/maplay, audio/mpg123
or audio/splay packages.

13.10 Using a CD-R writer with data CDs

The process of writing a CD consists of two steps: First, a "image" of the data must be generated, which
can then be written to CD-R in a second step.

1. Reading an pre-existing 1SO image

dd if=/dev/rcdOa of=filenane.iso bs=2k
#

Alternatively, you can create a new 1SO image yourself:
2. Generating the ISO image

Put all the data you want to put on CD into one directory. Next you need to generate a disk-like ISO
image of your data. The image stores the data in the same form as they’re later put on CD, using the
ISO 9660 format. The basic 1ISO9660 format only understands 8+3 filenames (max. eight letters for
filename, plus three more for an extension). As this is not practical for Unix filenames, a so-called
"Rockridge Extension" needs to be employed to get longer filenames. (A different set of such
extension exists in the Microsoft world, to get their long filenames right; that’s what’s known as
Joliet filesystem).

The 1SO image is created using the mkisofs command, which is part of the sysutils/cdrecord
package.

Example: if you have your data in /usr/tmp/data, you can generate a ISO image file in
Jusr/tmp/data.iso with the following command:

107

Chapter 13 Using removable media

$ cd /usr/tnp
$ nkisofs -0 data.iso -r data
Using NETBS000.GZ;1 for data/binary/kernel/netbsd.INSTALL.gz (netbsd.INSTALL_TINY.gz
Using NETBS001.GZ;1 for datas/binary/kernel/netbsd.GENERIC.gz (netbsd.GENERIC_TINY.gz
5.92% done, estimate finish Wed Sep 13 21:28:11 2000
11.83% done, estimate finish Wed Sep 13 21:28:03 2000
17.74% done, estimate finish Wed Sep 13 21:28:00 2000
23.64% done, estimate finish Wed Sep 13 21:28:03 2000

88.64% done, estimate finish Wed Sep 13 21:27:55 2000
94 _.53% done, estimate finish Wed Sep 13 21:27:55 2000

Total translation table size: 0

Total rockridge attributes bytes: 5395

Total directory bytes: 16384

Path table size(bytes): 110

Max brk space used 153c4

84625 extents written (165 Mb)

$

Please see the mkisofs(8) man page for other options like noting publisher and preparer. The
Bootable CD ROM How-To (../bootcd.html) explains how to generate a bootable CD.

3. Writing the 1SO image to CD-R

When you have the ISO image file, you just need to write it on a CD. This is done with the
"cdrecord" command from the sysuti ls/cdrecord package. Insert a blank CD-R, and off we go:

cdrecord -v dev=/dev/rcd0d data.iso

#

After starting the command, *cdrecord’ shows you a lot of information about your drive, the disk
and the image you’re about to write. It then does a 10 seconds countdown, which is your last chance
to stop things - type ~C if you want to abort. If you don’t abort, the process will write the whole
image to the CD and return with a shell prompt.

Note that cdrecord(8) works on both SCSI and IDE (ATAPI) drives.
4. Test

Mount the just-written CD and test it as you would do with any "normal” CD, see Section 13.3.

13.11 Using a CD-R writer to create audio CDs

If you want to make a backup copy of one of your audio CDs, you can do so by extracting (“ripping") the
audio tracks from the CD, and then writing them back to a blank CD. Of course this also works fine if
you only extract single tracks from various CDs, creating your very own mix CD!

The steps involved are:

1. Extract ("rip") the audio tracks as described as in Section 13.8 to get a couple of .wav files.

2. Write the .wav files using sysutils/cdrecord:

cdrecord -v dev=/dev/rcd0d -audio -pad *.wav

108

Chapter 13 Using removable media

13.12 Creating an audio CD from mp3s

If you have converted all your audio CDs to mp3 and now want to make a mixed CD for your (e.g.) your
car, you can do so by first converting the .mp3 files back to .wav format, then write them as a normal

audio CD.

The steps involved here are:

1. Create .wav files from your .mp3 files:
$ nmpgl23 -w foo.wav foo.np3

Do this for all of the mp3 files that you want to have on your audio CD. The .wav filenames you use
don’t matter.

2. Write the .wav files to CD as described under Section 13.11.

13.13 Copying an audio CD

To copy an audio CD while not introducing any pauses as mandated by the CDDA standard, you can use
cdrdao for that:

cdrdao read-cd --device /dev/rcdOd data.toc
cdrdao wite --device /dev/rcdld data.toc

13.14 Copying a data CD with two drives

If you have both a CD-R and a CD-ROM drive in your machine, you can copy a data CD with the
following command:

cdrecord dev=/dev/rcdld /dev/rcd0d

Here the CD-ROM (cd0) contains the CD you want to copy, and the CD-R (cd1) contains the blank disk.
Note that this only works with computer disks that contain some sort of data, it does not work with audio
CDs! In practice you’ll also want to add something like "speed=8" to make things a bit faster.

13.15 Using CD-RW rewritables

You can treat a CD-RW drive like a CD-R drive (see Section 13.10) in NetBSD, creating images with
mkisofs(8) and writing them on a CD-RW medium with cdrecord(8).

If you want to blank a CD-RW, you can do this with cdrecord’s "blank" option:
cdrecord dev=/dev/rcd0d bl ank=fast

There are several other ways to blank the CD-RW, call cdrecord(8) with "bl ank=hel p" for a list. See
the cdrecord(8) man page for more information.

109

Chapter 13 Using removable media

13.16 DVD support

Currently, NetBSD supports DVD media through the 1ISO 9660 also used for CD-ROMSs. The new UDF
filesystem also present on DVDs is not supported, but almost all DVDs contain 1ISO 9660 filesystems as
well. DVDs, DivX and many avi files be played with multimediaZogle or multimedia/gmplayer.

For some hints on creating DVDs, see this postings about growisofs
(http://mail-index.NetBSD.org/current-users/2004/01/06/0021.html) and this article about recording CDs
and DVDs with NetBSD (http://www.mreriksson.net/blog/archive/15/).

13.17 Creating ISO images from a CD

To create an 1SO image and save the checksum do this:

readcd dev=/dev/cd0d f=/tnp/cd.iso

Here is an alternative using dd(1):

dd if=/dev/cd0d of=/tnp/cd.iso bs=2048

If the CD has errors you can recover the rest with this:

dd if=/dev/cd0d of =/tnp/cd.iso bs=2048 conv=noerror

To create an 1SO image from a mounted data CD first, mount the CD disk by:
nmount -t ¢d9660 -r /dev/cd0d /mt/cdrom

Second, get the image:

nkhybrid -v -1 -J -R -0 /tnp/ny_cd.iso /mt/cdron

13.18 Getting volume information from CDs and ISO images

You can read the volume data from an unmounted CD with this command:
file -s /dev/cdOd

You can read the volume data from an I1SO image with this command:

isoinfo -d -i /tnmp/ny_cd.iso

You can get the unique disk number from an unmounted CD with this:

cd-discid /dev/cd0od

You can read the table of contents of an unmounted CD with this command:

cdrecord -v dev=/dev/cd0d -toc

110

Chapter 14
The cryptographic device driver
(CGD)

The cgd driver provides functionality which allows you to use disks or partitions for encrypted storage.
After providing the appropriate key, the encrypted partition is accessible using cgd pseudo-devices.

14.1 Overview

People often store sensitive information on their hard disks and are concerned about this information
falling into the wrong hands. This is particularly relevant to users of laptops and other portable devices,
or portable media, which might be stolen or accidentally misplaced.

14.1.1 Why use disk encryption?

File-oriented encryption tools like GnuPG are great for encrypting individual files, which can then be
sent across untrusted networks as well as stored encrypted on disk. But sometimes they can be
inconvenient, because the file must be decrypted each time it is to be used; this is especially cumbersome
when you have a large collection of files to protect. Any time a security tool is cumbersome to use,
there’s a chance you’ll forget to use it properly, leaving the files unprotected for the sake of convenience.

Worse, readable copies of the encrypted contents might still exist on the hard disk. Even if you overwrite
these files (using rm -P) before unlinking them, your application software might make temporary copies
you don’t know about, or have been paged to swapspace - and even your hard disk might have silently
remapped failing sectors with data still in them.

The solution is to simply never write the information unencrypted to the hard disk. Rather than taking a
file-oriented approach to encryption, consider a block-oriented approach - a virtual hard disk, that looks
just like a normal hard disk with normal filesystems, but which encrypts and decrypts each block on the
way to and from the real disk.

14.1.2 Logical Disk Drivers

The cgd device looks and behaves to the rest of the operating system like any other disk driver. Rather
than driving real hardware directly, it provides a logical function layered on top of another block device.
It has a special configuration program, cgdconfig, to create and configure a cgd device and point it at the
underlying disk device that will hold the encrypted data.

NetBSD includes several other similar logical block devices, each of which provides some other function
where cgd provides encryption. You can stack several of these logical block devices together: you can
make an encrypted raid to protect your encrypted data against hard disk failure as well.

111

Chapter 14 The cryptographic device driver (CGD)

Once you have created a cgd disk, you can use disklabel to divide it up into partitions, swapctl to enable
swapping to those partitions or newfs to make filesystems, then mount and use those filesystems, just
like any other new disk.

14.1.3 Availability

The cgd driver was written by Roland C. Dowdeswell, and introduced in NetBSD-current between the
1.6 and 2.0 release branches. As a result, it is not in the 1.6 release series; it is in the 2.0 release.

14.2 Components of the Crypto-Graphic Disk system

A number of components and tools work together to make the cgd system effective.

14.2.1 Kernel driver pseudo-device

To use cgd you need a kernel with support for the cgd pseudo-device. Make sure the following line is in
the kernel configuration file:

pseudo-device cgd 4 # cryptographic disk driver

The number specifies how many cgd devices may be configured at the same time. After configuring the
cgd pseudo-device you can recompile the kernel and boot it to enable cgd support.

14.2.2 Ciphers

The cgd driver provides the following encryption algorithms:

Encryption Methods

aes-chc

AES (Rijndael). AES uses a 128 bit blocksize and accepts 128, 192 or 256 bit keys.

blowfish-cbc

Blowfish uses a 64 bit blocksize and accepts 128 bit keys

3des-cbc

Triple DES uses a 64 bit blocksize and accepts 192 bit keys (only 168 bits are actually used for
encryption)

All three ciphers are used in CBC mode. This means each block is XORed with the previous encrypted
block before encryption. This reduces the risk that a pattern can be found, which can be used to break the
encryption.

112

Chapter 14 The cryptographic device driver (CGD)

14.2.3 Verifi cation Methods

Another aspect of cgd that needs some attention are the verification methods cgdconfig provides. These
verification methods are used to verify the passphrase is correct. The following verification methods are
available:

Verifi cation Methods

none

no verification is performed. This can be dangerous, because the key is not verified at all. When a
wrong key is entered cgdconfig configures the cgd device as normal, but data which was available
on the volume will be destroyed (decrypting blocks with a wrong key will result in random data,
which will result in a regeneration of the disklabel with the current key).

disklabel
cgdconfig scans for a valid disklabel. If a valid disklabel is found with the key that is provided
authentication will succeed.

ffs

cgdconfig scans for a valid FFS file system. If a valid FFS file system is found with the key that is
provided authentication will succeed.

14.3 Example: encrypting your disk

This section works through a step-by-step example of converting an existing system to use cgd,
performing the following actions:

1. Preparing the disk and partitions

2. Scrub off all data

3. Create the cgd

4. Adjust config-files

5. Restoring your backed-up files to the encrypted disk

14.3.1 Preparing the disk

First, decide which filesystems you want to move to an encrypted device. You’re going to need to leave at
least the small root (/) filesystem unencrypted, in order to load the kernel and run init, cgdconfig and the
rc.d scripts that configure your cgd. In this example, we’ll encrypt everything except the root (/)
filesystem.

We are going to delete and re-make partitions and filesystems, and will require a backup to restore the
data. So make sure you have a current, reliable backup stored on a different disk or machine. Do your
backup in single-user mode, with the filesystems unmounted, to ensure you get a clean dump. Make sure
you back up the disklabel of your hard disk as well, so you have a record of the partition layout before
you started.

113

Chapter 14 The cryptographic device driver (CGD)
With the system at single user, / mounted read-write and everything else unmounted, use disklabel to
delete all the data partitions you want to move into cgd.

Then make a single new partition in all the space you just freed up, say, wdOe. Set the partition type for
this partition to ccd (there’s no code specifically for cgd, but ccd is very similar. Though it doesn’t
really matter what it is, it will help remind you that it’s not a normal filesystem later). When finished,
label the disk to save the new partition table.

14.3.2 Scrubbing the disk

We have removed the partition table information, but the existing filesystems and data are still on disk.
Even after we make a cgd device, create filesystems, and restore our data, some of these disk blocks
might not yet be overwritten and still contain our data in plaintext. This is especially likely if the
filesystems are mostly empty. We want to scrub the disk before we go further.

We could use dd to copy /dev/zero over the new wdOe partition, but this will leave our disk full of
zeros, except where we’ve written encrypted data later. We might not want to give an attacker any clues
about which blocks contain real data, and which are free space, so we want to write "noise" into all the
disk blocks. So we’ll create a temporary cgd, configured with a random, unknown key.

First, we configure a cgd to use a random key:

cgdconfig -s cgdO /dev/wdOe aes-cbc 128 < /dev/urandom

Now we can write zeros into the raw partition of our cgd (/dev/rcgd0d on NetBSD/i386,
/dev/rcgdOc on most other platforms):

dd if=/dev/zero of =/dev/rcgd0d bs=32k

The encrypted zeros will look like random data on disk. This might take a while if you have a large disk.
Once finished, unconfigure the random-key cgd:

cgdconfig -u cgdO

14.3.3 Creating the cgd

The cgdconfig program, which manipulates cgd devices, uses parameters files to store such information
as the encryption type, key length, and a random password salt for each cgd. These files are very
important, and need to be kept safe - without them, you will not be able to decrypt the data!

We’ll generate a parameters file and write it into the default location (make sure the directory /etc/cgd
exists and is mode 700):

cgdconfig -g -V disklabel -o /etc/cgd/ wdOe aes-cbc 256

This creates a parameters file /etc/cgd/wdOe describing a cgd using the aes-cbc cipher method, a
key verification method of disklabel, and a key length of 256 bits. It will look something like this:

algorithm aes-chc;

iv-method encblkno;
keylength 256;

114

Chapter 14 The cryptographic device driver (CGD)

verify_method disklabel;
keygen pkcs5_pbkdf2/shal {
iterations 6275;
salt AAAAgHTQ/JKCd2ZJi0SGrgnadGw=;

}:

Note: Remember, you'll want to save this file somewhere safe later.

Tip: When creating the parameters file, cgdconfi g reads from/ dev/ r andomto create the password
salt. This read may block if there is not enough collected entropy in the random pool. This is unlikely,
especially if you just finished overwriting the disk as in the previous step, but if it happens you can
press keys on the console and/or move your mouse until the r nd device gathers enough entropy.

Now it’s time to create our cgd, for which we’ll need a passphrase. This passphrase needs to be entered
every time the cgd is opened, which is usually at each reboot. The encryption key is derived from this
passphrase and the salt. Make sure you choose something you won’t forget, and others won’t guess.

The first time we configure the cgd, there is no valid disklabel on the logical device, so the validation
mechanism we want to use later won’t work. We override it this one time:

cgdconfig -V re-enter cgdO /dev/wdOe

This will prompt twice for a matching passphrase, just in case you make a typo, which would otherwise
leave you with a cgd encrypted with a passphrase that’s different to what you expected.

Now that we have a new cgd, we need to partition it and create filesystems. Recreate your previous
partitions with all the same sizes, with the same letter names.

Tip: Remember to use the disklabel -I argument, because you're creating an initial label for a new
disk.

Note: Although you want the sizes of your new partitions to be the same as the old, unencrypted
ones, the offsets will be different because they're starting at the beginning of this virtual disk.

Then, use newfs to create filesystems on all the relevant partitions. This time your partitions will reflect
the cgd disk names, for example:

newfs /dev/rcgdOh

14.3.4 Modifying confi guration files

We’ve moved several filesystems to another (logical) disk, and we need to update /etc/fstab
accordingly. Each partition will have the same letter (in this example), but will be on cgd0 rather than
wdO. So you’ll have Zetc/fstab entries something like this:

115

Chapter 14 The cryptographic device driver (CGD)

/dev/wdOa 7/ ffs rw,softdep 11
/dev/cgdOb none swap sw 00
/dev/cgdOb /tmp mfs rw,-s=132m 00
/dev/cgdOe /var ffs rw,softdep 12
/dev/cgdOf /usr ffs rw,softdep 12
/dev/cgdOh /home ffs rw,softdep 12

Note: / t np should be a separate filesystem, either nf s or f f s, inside the cgd, so that your temporary
files are not stored in plain text in the / filesystem.

Each time you reboot, you’re going to need your cgd configured early, before fsck runs and filesystems
are mounted.

Put the following line in Zetc/cgd/cgd.conf:
cgdo /dev/wdOe

This will use Z7etc/cgd/wdOe as config file for cgdo.

To finally enable cgd on each boot, put the following line into Zetc/rc.conf:
cgd=YES

You should now be prompted for /dev/cgd0’s passphrase whenever /etc/rc starts.

14.3.5 Restoring data

Next, mount your new filesystems, and restore your data into them. It often helps to have /tmp mounted
properly first, as restore can use a fair amount of temporary space when extracting a large dumpfile.

To test your changes to the boot configuration, umount the filesystems and unconfigure the cgd, so
when you exit the single-user shell, rc will run like on a clean boot, prompting you for the passphrase
and mounting your filesystems correctly. Now you can bring the system up to multi-user, and make sure
everything works as before.

14.4 Example: encrypted CDs/DVDs

14.4.1 Introduction

This section explains how to create and use encrypted CDs/DVDs with NetBSD (all | say about "CDs"
here does also apply to "DVDs"). | assume that you have basic knowledge of cgd(4), so | will not explain
what cgd is or what’s inside it in detail. The same applies to vnd(4). One can make use of encrypted CDs
after reading this howto, but for more detailed information about different cgd configuration options,
please read Chapter 14 or the manpages.

116

Chapter 14 The cryptographic device driver (CGD)

14.4.2 Creating an encrypted CD/DVD

cgd(4) provides highly secure encryption of whole partitions or disks. Unfortunately, creating "normal”
CDs is not disklabling something and running newfs on it. Neither can you just put a CDR into the drive,
configure cgd and assume it to write encrypted data when syncing. Standard CDs contain at least an
I1SO-9660 filesystem created with mkisofs(8) from the sysuti ls/cdrecord package. ISO images may
not contain disklabels or cgd partitions.

But of course CD reader/writer hardware doesn’t care about filesystems at all. You can write raw data to
the CD if you like - or an encrypted FFS filesystem, which is what we’ll do here. But be warned, there is
NO way to read this CD with any OS except NetBSD - not even other BSDs due to the lack of cgd.

The basic steps when creating an encrypted CD are:

« Create an (empty) imagefile

« Register it as a virtual disk using vnd(4)
« Configure cgd inside the vnd disk

« Copy content to the cgd

« Unconfigure all (flush!)

« Write the image ona CD

The first step when creating an encrypted CD is to create a single image file with dd. The image may not
grow, so make it large enough to allow all CD content to fit into. Note that the whole image gets written
to the CD later, so creating a 700 MB image for 100 MB content will still require a 700 MB write
operation to the CD. Some info on DVDs here: DVDs are only 4.7 GB in marketing language. 4.7GB =
4.7 x 1024 x 1024 x 1024 = 5046586573 bytes. In fact, a DVD can only approximately hold 4.7 x 1000 x
1000 x 1000 = 4700000000 bytes, which is about 4482 MB or about 4.37 GB. Keep this in mind when
creating DVD images. Don’t worry for CDs, they hold "real” 700 MB (734003200 Bytes).

Invoke all following commands as root!

For a CD:

dd if=/dev/zero of =image.ing bs=1m count =700
or, fora DVD:

dd if=/dev/zero of =i mage.i ny bs=1m count =4482
Now configure a vnd(4)-pseudo disk with the image:

vnconfig vndO i mage.ing

In order to use cgd, a so-called parameter file, describing encryption parameters and a containing
"password salt" must be generated. We’ll call it /etc/cgd/image here. You can use one parameter file
for several encrypted partitions (I use one different file for each host and a shared file image for all
removable media, but that’s up to you).

I’ll use AES-CBC with a keylength of 256 bits. Refer to cgd(4) and cgdconfig(8) for details and
alternatives.

117

Chapter 14 The cryptographic device driver (CGD)

The following command will create the parameter file as /etc/cgd/image. YOU DO NOT WANT TO
INVOKE THE FOLLOWING COMMAND AGAIN after you burnt any CD, since a recreated parameter
file is a lost parameter file and you’ll never access your encrypted CD again (the "salt" this file contains
will differ among each call). Consider this file being HOLY, BACKUP IT and BACKUP IT AGAIN! Use
switch -V to specify verfication method "disklabel" for the CD (cgd cannot detect wheter you entered a
valid password for the CD later when mounting it otherwise).

cgdconfig -g -V disklabel aes-cbc 256 > /etc/cgd/imge

Now it’s time to configure a cgd for our vnd drive. (Replace slice "d" with "c" for all platforms that use
"c" as the whole disk (where "sysctl kern.rawpartition" prints "2", not "3"); if you’re on i386 or amd64,
"d" is OK for you):

cgdconfig -V re-enter cgdl /dev/vndOd /etc/cgd/imge

The "-V re-enter" option is neccessary as long as the cgd doesn’t have a disklabel yet so we can
access and configure it. This switch asks for a password twice and uses it for encryption.

Now it’s time to create a disklabel inside the cgd. The defaults of the label are ok, so invoking disklabel
with

disklabel -e -1 cgdl

and leaving vi with ":wq" immediately will do.

Let’s create a filesystem on the cgd, and finally mount it somewhere:

newfs /dev/cgdla
mount /dev/cgdla /mt

The cgd is alive! Now fill /mnt with content. When finished, reverse the configuration process. The steps
are:

1. Unmounting the cgdla:
unount / mt

2. Unconfiguring the cgd:
cgdconfig -u cgdl

3. Unconfiguring the vnd:
vnconfig -u vndO

The following commands are examples to burn the images on CD or DVD. Please adjust the dev= for
cdrecord or the /dev/rcd0d for growisofs. Note the "rcd0d" is necessary with NetBSD. Growisofs is
available in the sysuti Is/dvd+rw-tools package. Again, use "c" instead of "d" if this is the raw
partition on your platform.

Finally, write the image file to a CD:
cdrecord dev=/dev/rcd0d -v inmge.ing
...ortoaDVD:

grow sofs -dvd-conpat -Z /dev/rcdOd=i mage.ing

118

Chapter 14 The cryptographic device driver (CGD)

Congratulations! You’ve just created a really secure CD!

14.4.3 Using an encrypted CD/DVD

After creating an encrypted CD as described above, we’re not done yet - what about mounting it again?
One might guess, configuring the cgd on /dev/cd0d is enough - no, it is not.

NetBSD cannot access FFS file systems on media that is not 512 bytes/sector format. It doesn’t matter
that the cgd on the CD is, since the CD’s disklabel the cgd resides in has 2048 bytes/sector.

But the CD driver cd(4) is smart enough to grant "write" access to the (emulated) disklabel on the CD.
So before configuring the cgd, let’s have a look at the disklabel and modify it a bit:

di skl abel -e cdO

/dev/rcd0d:

type: ATAPI

disk: mydisc

label: fictitious

flags: removable

bytes/sector: 2048 # -- Change to 512 (= orig / 4)
sectors/track: 100 # -- Change to 400 (= orig * 4)
tracks/cylinder: 1

sectors/cylinder: 100 # -- Change to 400 (= orig * 4)
cylinders: 164

total sectors: 16386 # -- Change to value of slice "d" (=65544)
rpm: 300

interleave: 1

trackskew: 0O

cylinderskew: 0O

headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds

drivedata: 0O

4 partitions:

size offset Tfstype [fsize bsize cpg/sgs]
a: 65544 0 4.2BSD O 0 0 # (Cyl. 0 - 655+)
d: 65544 0 1509660 0 0 # (Cyl. 0 - 655+)

If you don’t want to do these changes every time by hand, you can use Florian Stoehr’s tool neb-cd512
which is (at time of writing this) in pkgsrc-wip and will move to sysuti ls/neb-cd512 soon. You can
also download the neb-cd512 source from http://sourceforge.net/projects/neb-stoehr/
(http://sourceforge.net/projects/neb-stoehr/) (be sure to use neb-cd512, not neb-wipe!).

It is invoked with the disk name as parameter, by root:
neb-cd512 cdO
Now as the disklabel is in 512 b/s format, accessing the CD is as easy as:

cgdconfig cgdl /dev/cd0Od /etc/cgd/inmage
mount -o ro /dev/cgdla /mt

119

Chapter 14 The cryptographic device driver (CGD)

Note that the cgd MUST be mounted read-only or you’ll get illegal command errors from the cd(4) driver
which can in some cases make even mounting a CD-based cgd impossible!

Now we’re done! Enjoy your secure CD!

1ls /mt

Remember you have to reverse all steps to remove the CD:

urmount /mmt
cgdconfig -u cgdl
eject cdO

14.5 Suggestions and Warnings

You now have your filesystems encrypted within a cgd. When your machine is shut down, the data is
protected, and can’t be decrypted without the passphrase. However, there are still some dangers you
should be aware of, and more you can do with cgd. This section documents several further suggestions
and warnings that will help you use cgd effectively.

« Use multiple cgd’s for different kinds of data, one mounted all the time and others mounted only
when needed.

« Use a cgd configured on top of a vnd made from a file on a remote network fileserver (NFS, SMBFS,
CODA, etc) to safely store private data on a shared system. This is similar to the procedure for using
encrypted CDs and DVDs described in Section 14.4.

14.5.1 Using a random-key cgd for swap

You may want to use a dedicated random-key cgd for swap space, regenerating the key each reboot. The
advantage of this is that once your machine is rebooted, any sensitive program memory contents that may
have been paged out are permanently unrecoverable, because the decryption key is never known to you.

We created a temporary cgd with a random key when scrubbing the disk in the example above, using a
shorthand cgdconfig -s invocation to avoid creating a parameters file.

The cgdconfig params file includes a “randomkey” keygen method. This is more appropriate for
"permanent" random-key configurations, and facilitates the easy automatic configuration of these
volumes at boot time.

For example, if you wanted to convert your existing /dev/wdOb partition to a dedicated random-key
cgdl, use the following command to generate /etc/cgd/wdOb:

cgdconfig -g -o /etc/cgd/ wdOb -V none -k randonkey bl owfish-chc

When using the randomkey keygen method, only verification method "none™ can be used, because the
contents of the new cgd are effectively random each time (the previous data decrypted with a random
key). Likewise, the new disk will not have a valid label or partitions, and swapctl will complain about
configuring swap devices not marked as such in a disklabel.

120

Chapter 14 The cryptographic device driver (CGD)

In order to automate the process of labeling the disk, prepare an appropriate disklabel and save it to a file,
for example Z7etc/cgd/wd0Ob.disklabel. Please refer to disklabel(8) for information about how to
use disklabel to set up a swap partition.

On each reboot, to restore this saved label to the new cgd, create the Zetc/rc.conf.d/cgd file as
below:

swap_device=""cgd0"
swap_disklabel="/etc/cgd/wdOb.disklabel""
start_postcmd="cgd_swap"

cgd_swap(Q)
{
if [-f $swap_disklabel]; then
disklabel -R -r $swap_device $swap_disklabel
fi
}

The same technique could be extended to encompass using newfs to re-create an ffs filesystem for
/tmp if you didn’t want to use mfs.

14.5.2 Warnings

Prevent cryptographic disasters by making sure you can always recover your passphrase and parameters
file. Protect the parameters file from disclosure, perhaps by storing it on removable media as above,
because the salt it contains helps protect against dictionary attacks on the passphrase.

Keeping the data encrypted on your disk is all very well, but what about other copies? You already have

at least one other such copy (the backup we used during this setup), and it’s not encrypted. Piping dump
through file-based encryption tools like gpg can be one way of addressing this issue, but make sure you

have all the keys and tools you need to decrypt it to restore after a disaster.

Like any form of software encryption, the cgd key stays in kernel memory while the device is
configured, and may be accessible to privileged programs and users, such as /dev/kmem grovellers.
Taking other system security steps, such as running with elevated securelevel, is highly recommended.

Once the cgd volumes are mounted as normal filesystems, their contents are accessible like any other
file. Take care of file permissions and ensure your runnning system is protected against application and
network security attack.

Avoid using suspend/resume, especially for laptops with a BIOS suspend-to-disk function. If an attacker
can resume your laptop with the key still in memory, or read it from the suspend-to-disk memory image
on the hard disk later, the whole point of using cgd is lost.

14.6 Further Reading

The following ressources contain more information on CGD:

121

Chapter 14 The cryptographic device driver (CGD)
Bibliography
NetBSD CGD Setup (http://www.s-mackie.com/notes/NetBSD-CGD-Setup.html), Stuart Mackie.

I want my cgd (http://www.nycbug.org/uploads/_netbsdcgd.html) aka: | want an encrypted
psuedo-device on my laptop.

The original paper on The CryptoGraphic Disk Driver (http://www.imrryr.org/~elric/cgd/cgd.pdf),
Roland Dowdeswell and John loannidis.

122

Chapter 15
Concatenated Disk Device (CCD)

configuration

The CCD driver allows the user to “concatenate” several physical disks into one pseudo volume. While
RAIDframe (see Chapter 16) also allows doing this to create RAID level O sets, it does not allow you to
do striping across disks of different geometry, which is where CCD comes in handy. CCD also allows for
an “interleave” to improve disk performance with a gained space loss. This example will not cover that
feature.

The steps required to setup a CCD are as follows:

Install physical media

Configure kernel support

Disklabel each volume member of the CCD
Configure the CCD conf file

Initialize the CCD device

Create a filesystem on the new CCD device

N o g &~ w bR

Mount the CCD filesystem

This example features a CCD setup on NetBSD/sparc 1.5. The CCD will reside on 4 SCSI disks in a
generic external Sun disk pack chassis connected to the external 50 pin SCSI port.

15.1 Install physical media

This step is at your own discretion, depending on your platform and the hardware at your disposal.

From my DMESG:

Disk #1:
probe(esp0:0:0): max sync rate 10.00MB/s
sd0 at scsibusO target O lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI12 0/direct fixed
sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #2
probe(esp0:1:0): max sync rate 10.00MB/s
sdl at scsibusO target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI12 0/direct fixed
sdl: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #3
probe(esp0:2:0): max sync rate 10.00MB/s

123

Chapter 15 Concatenated Disk Device (CCD) configuration

sd2 at scsibusO target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9500> SCS12 0/direct fixed
sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

Disk #4
probe(esp0:3:0): max sync rate 10.00MB/s
sd3 at scsibusO target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8808 > SCSI2 O
sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

15.2 Configure Kernel Support

The following kernel configuration directive is needed to provide CCD device support. It is enabled in
the GENERIC kernel:

pseudo-device ccd 4 # concatenated disk devices

In my kernel config, | also hard code SCSI ID associations to /dev device entries to prevent bad things
from happening:

sdo at scsibusO target 0 lun ?
SCSI disk drives
sdl at scsibusO target 1 lun ?
SCSI1 disk drives
sd2 at scsibusO target 2 lun ?
SCSI1 disk drives
sd3 at scsibusO target 3 lun ?
SCSI1 disk drives
sd4 at scsibusO target 4 lun ?
SCSI1 disk drives
sd5 at scsibusO target 5 lun ?
SCSI disk drives
sd6 at scsibusO target 6 lun ?
SCSI disk drives

15.3 Disklabel each volume member of the CCD

Each member disk of the CCD will need a special file system established. In this example, I will need to
disklabel:

/dev/rsdOc
/dev/rsdlc
/dev/rsd2c
/dev/rsd3c

Note: Always remember to disklabel the character device, not the block device, in / dev/ r { s, w} d*

Note: On all platforms, the ¢ slice is symbolic of the entire NetBSD partition and is reserved.

124

Chapter 15 Concatenated Disk Device (CCD) configuration

You will probably want to remove any pre-existing disklabels on the disks in the CCD. This can be
accomplished in one of two ways with the dd(1) command:

dd if=/dev/zero of =/dev/rsdOc bs=8k count=1
dd if=/dev/zero of =/dev/rsdlc bs=8k count=1
dd if=/dev/zero of =/dev/rsd2c bs=8k count=1
dd if=/dev/zero of =/dev/rsd3c bs=8k count=1

If your port uses a MBR (Master Boot Record) to partition the disks so that the NetBSD partitions are
only part of the overall disk, and other OSs like Windows or Linux use other parts, you can void the
MBR and all partitions on disk by using the command:

dd if=/dev/zero of =/dev/rsd0d bs=8k count=1
dd if=/dev/zero of =/dev/rsdld bs=8k count=1
dd if=/dev/zero of =/dev/rsd2d bs=8k count=1
dd if=/dev/zero of =/dev/rsd3d bs=8k count=1

This will make all data on the entire disk inaccessible. Note that the entire disk is slice d on i386 (and
some other ports), and c elsewhere (e.g. on sparc). See the “kern.rawpartition” sysctl - "3" means "d",
"2" means "c".

The default disklabel for the disk will look similar to this:

di skl abel -r sdO
[---snip...]
bytes/sector: 512
sectors/track: 116
tracks/cylinder: 9
sectors/cylinder: 1044
cylinders: 3992

total sectors: 4197405

L--snip...]
3 partitions:
size offset fstype [fsize bsize cpal
c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020%)

You will need to create one “slice” on the NetBSD partition of the disk that consumes the entire partition.
The slice must begin at least one cylinder offset from the beginning of the disk/partition to provide space
for the special CCD disklabel. The offset should be 1x sectors/cylinder (see following note). Therefore,
the “size” value should be “total sectors” minus 1x “sectors/cylinder”. Edit your disklabel accordingly:

di skl abel -e sdO

Note: The offset of a slice of type “ccd” must be a multiple of the “sectors/cylinder” value.

Note: Be sure to export EDITOR=[path to your favorite editor] before editing the disklabels.

125

Chapter 15 Concatenated Disk Device (CCD) configuration

Note: The slice must be fstype ccd.

Because there will only be one slice on this partition, you can recycle the c slice (normally reserved for
symbolic uses). Change your disklabel to the following:

3 partitions:
size offset fstype [fsize bsize cpal

c: 4196361 1044 ccd # (Cyl. 1 - 4020%)
Optionally you can setup a slice other than c to use, simply adjust accordingly below:

3 partitions:

size offset fstype [fsize bsize cpal
a: 4196361 1044 ccd # (Cyl. 1 - 4020%)
c: 4197405 0] unused 1024 8192 # (Cyl. 0 - 4020%)

Be sure to write the label when you have completed. Disklabel will object to your disklabel and prompt
you to re-edit if it does not pass its sanity checks.

15.4 Configure the CCD

Once all disks are properly labeled, you will need to generate a configuration file, Zetc/ccd.conf. The
file does not exist by default, and you will need to create a new one. The format is:

#ccd ileave flags component devices

Note: For the “ileave”, if a value of zero is used then the disks are concatenated, but if you use a
value equal to the “sectors/track” number the disks are interleaved.

Example in this case:

nore /etc/ccd. conf
ccd0 O none /dev/sdOc /dev/sdlc /dev/sd2c /dev/sd3c

Note: The CCD configuration file references the device file for the newly created CCD filesystems.
Be sure not to reference the block device at this point; instead use the character device.

15.5 Initialize the CCD device

Once you are confident that your CCD configuration is sane, you can initialize the device using the
ccdconfig(8) command: Configure:

ccdconfig -c -f /etc/ccd. conf

126

Chapter 15 Concatenated Disk Device (CCD) configuration
Unconfigure:
ccdconfig -u -f /etc/ccd. conf
Initializing the CCD device will activate /dev entries: /dev/{, r}ccd#:

#1s -la /dev/{,r}ccd0*

brw-r----- 1 root operator 9, 0 Apr 28 21:35 /dev/ccdOa
brw-r----- 1 root operator 9, 1 Apr 28 21:35 /dev/ccdOb
brw-r----- 1 root operator 9, 2 May 12 00:10 /dev/ccdOc
brw-r----—- 1 root operator 9, 3 Apr 28 21:35 /dev/ccdOd
brw-r----- 1 root operator 9, 4 Apr 28 21:35 /dev/ccdOe
brw-r----- 1 root operator 9, 5 Apr 28 21:35 /dev/ccdOFf
brw-r----- 1 root operator 9, 6 Apr 28 21:35 /dev/ccdOg
brw-r----- 1 root operator 9, 7 Apr 28 21:35 /dev/ccdOh
Crw-r—---—-— 1 root operator 23, 0 Jun 12 20:40 /dev/rccdOa
Crw-r—----—-— 1 root operator 23, 1 Apr 28 21:35 /dev/rccdOb
Crw-r—---—-— 1 root operator 23, 2 Jun 12 20:58 /dev/rccdOc
Crw-r—----—-— 1 root operator 23, 3 Apr 28 21:35 /dev/rccdOd
Crw-r—---—- 1 root operator 23, 4 Apr 28 21:35 /dev/rccdOe
Crw-r—---—- 1 root operator 23, 5 Apr 28 21:35 /dev/rccdOf
Crw-r—--—-— 1 root operator 23, 6 Apr 28 21:35 /dev/rccdOg
crw-r—---—- 1 root operator 23, 7 Apr 28 21:35 /dev/rccdOh

15.6 Create a 4.2BSD/UFS filesystem on the new CCD device
You may now disklabel the new virtual disk device associated with your CCD:

di skl abel -e ccdO

Once again, there will be only one slice, so you may either recycle the c slice or create a separate slice
for use.

di skl abel -r ccdO

/dev/rccdOc:

type: ccd

disk: ccd

label: default label

flags:

bytes/sector: 512

sectors/track: 2048

tracks/cylinder: 1

sectors/cylinder: 2048

cylinders: 6107

total sectors: 12508812

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0O

127

Chapter 15 Concatenated Disk Device (CCD) configuration

size offset fstype [fsize bsize cpgl
c: 12508812 0 4.2BSD 1024 8192 16 # (Cyl. 0 - 6107%)

The filesystem will then need to be formatted:

newfs /dev/rccdOc

Warning: 372 sector(s) in last cylinder unallocated

/dev/rccdOc: 12508812 sectors in 6108 cylinders of 1 tracks, 2048 sectors
6107.8MB in 382 cyl groups (16 c/g, 16.00MB/g, 3968 i/9)

super-block backups (for fsck -b #) at:
[---1

15.7 Mount the filesystem

Once you have a created a file system on the CCD device, you can then mount the file system against a
mount point on your system. Be sure to mount the slice labeled type ffs or 4.2BSD:

nount /dev/ccdOc / mt

Then:

export BLOCKSI ZE=1024; df

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/sd6a 376155 320290 37057 89% /
/dev/ccdOc 6058800 1 5755859 0% /mnt

Congratulations, you now have a working CCD. To configure the CCD device at boot time, set ccd=yes
in /etc/rc.conf. You can adjust Z/etc/fstab to get the filesystem mounted at boot:

/dev/ccdOc /home ffs rw,softdep 12

128

Chapter 16
NetBSD RAIDframe

16.1 RAIDframe Introduction

16.1.1 About RAIDframe

NetBSD uses the CMU RAIDframe (http://www.pdl.cmu.edu/RAIDframe/) subsystem. Although

NetBSD is the primary platform for RAIDframe development, RAIDframe can also be found in

OpenBSD and FreeBSD. NetBSD also has other in-kernel RAID systems called Vinum
(http://lwww.vinumvm.org/) and Chapter 15, but they will not be discussed here. You should possess

some basic knowledge (http://www.acnc.com/04_00.html) about RAID concepts and terminology before
continuing. You

should also be at least familiar with the different levels of RAID - Adaptec providesan excellent reference
(http://www.adaptec.com/worldwide/product/markeditorial.ntml?sess=no&prodkey=quick_explanation_of raid),
and the raid(4) manpage contains a short overview too.

16.1.2 A warning about Data Integrity, Backups, and High Availability

Firstly, because RAIDframe is a Software RAID implementation, as opposed to Hardware RAID, which
needs special disk controllers some of which are supported by NetBSD System administrators should
give a great deal of consideration to its implementation in “Mission Critical” applications. For such
projects, you might consider the use of many of the hardware RAID devices supported by NetBSD
(http://www.NetBSD.org/Hardware/). It is truly at your discretion what type of RAID you use, but |
recommend you consider factors such as: manageability, commercial vendor support, load-balancing and
failover, etc.

Secondly, depending on the RAID level used, RAIDframe does provide redundancy in the event of a
hardware failure. However, it is not a replacement for reliable backups! Software and user-error can still
cause data loss. RAIDframe may be used as a mechanism for facilitating backups in systems without
backup hardware. Finally, with regard to "high availability”, RAID is only a very small component to
ensuring data availability.

Once more for good measure: Back up your data!

16.1.3 Getting Help

If you encounter problems using RAIDframe, you have several options for obtaining help.

1. Read the RAIDframe man pages: raid(4) and raidctl(8) thoroughly.

129

Chapter 16 NetBSD RAIDframe

2. Search the mailing list archives. Unfortunately, there is no NetBSD list dedicated to RAIDframe
support. Depending on the nature of the problem, posts tend to end up in a variety of lists. At a very
minimum, search netbsd-help@NetBSD.org (http://mail-index.NetBSD.org/netbsd-help/),
netbsd-users@NetBSD.org (http://mail-index.NetBSD.org/netbsd-users/),
current-users@NetBSD.org (http://mail-index.NetBSD.org/current-users/). Also search the list for
the NetBSD platform on which you are using RAIDframe: port-${ ARCH} @NetBSD.org.

Caution

Because RAIDframe is constantly undergoing development, some
information in mailing list archives has the potential of being dated and
inaccurate.

3. Search the Problem Report database (http://www.NetBSD.org/Misc/send-pr.html).

4. If your problem persists: Post to the mailing list most appropriate (judgment call). Collect as much
verbosely detailed information as possible before posting: Include your dmesg(8) output from
/var/run/dmesg -boot, your kernel config(8) , your Zetc/raid[0-9] - conf, any relevant
errors on /dev/console, /var/log/messages, or to stdout/stderr of raidctl(8) . Also
include details on the troubleshooting steps you’ve taken thus far, exactly when the problem started,
and any notes on recent changes that may have prompted the problem to develop. Remember to be
patient when waiting for a response.

16.2 Setup RAIDframe Support

The use of RAID will require software and hardware configuration changes.

16.2.1 Kernel Support

Next we need to make sure we have RAID support in the kernel, which is the case for the GENERIC
kernel. If you have already built a custom kernel for your environment, the kernel configuration must
have the following options:

pseudo-device raid 8 # RAIDframe disk driver
options RAID_AUTOCONFIG # auto-configuration of RAID components

The RAID support must be detected by the NetBSD kernel, which can be checked by looking at the
output of the dmesg(8) command.

dnesg|grep -i raid
Kernelized RAIDframe activated

Historically, the kernel must also contain static mappings between bus addresses and device nodes in
/dev. This used to ensure consistency of devices within RAID sets in the event of a device failure after
reboot. Since NetBSD 1.6, however, using the auto-configuration features of RAIDframe has been
recommended over statically mapping devices. The auto-configuration features allow drives to move
around on the system, and RAIDframe will automatically determine which components belong to which
RAID sets.

130

Chapter 16 NetBSD RAIDframe

16.2.2 Power Redundancy and Disk Caching

If your system has an Uninterruptible Power Supply (UPS), and/or if your system has redundant power
supplies, you should consider enabling the read and write caches on your drives. On systems with
redundant power, this will improve drive performance. On systems without redundant power, the write
cache could endanger the integrity of RAID data in the event of a power loss.

For drives on the SCSI bus, you can use scsictl(8) utility:

scsictl /dev/rsdo{c,d} getcache
/dev/rsd0d: no caches enabled

/dev/rsd0d: caching parameters are savable
scsictl /dev/rsdo{c,d} setcache rw save

scsictl /dev/rsdo{c,d} getcache
/dev/rsd0d: read cache enabled

/dev/rsd0d: write-back cache enabled
/dev/rsd0d: caching parameters are savable

For drives on non-SCSI buses (EIDE, SATA, USB, IEEE1394), atactl(8) may be available or a virtual
SCSI bus may be attached which should allow for access.

16.3 Example: RAID-1 Root Disk

This example explains how to setup RAID-1 root disk. With RAID-1 components are mirrored and
therefore the server can be fully functional in the event of a single component failure. The goal is to
provide a level of redundancy that will allow the system to encounter a component failure on either
component disk in the RAID and:

« Continue normal operations until a maintenance window can be scheduled.

« Or, in the unlikely event that the component failure causes a system reboot, be able to quickly
reconfigure the system to boot from the remaining component (platform dependant).

Figure 16-1. RAID-1 Disk Logical Layout

RAID-1 Pseudo Volume
/dev/{,r}raid[0-9]{c,d}

MIRROR

Because RAID-1 provides both redundancy and performance improvements, its most practical
application is on critical "system" partitions such as /, Zusr, /var, swap, etc., where read operations are
more frequent than write operations. For other file systems, such as /home or /var/{ appl i cati on},
other RAID levels might be considered (see the references above). If one were simply creating a generic
RAID-1 volume for a non-root file system, the cookie-cutter examples from the man page could be

131

Chapter 16 NetBSD RAIDframe

followed, but because the root volume must be bootable, certain special steps must be taken during initial
setup.

Note: This example will outline a process that differs only slightly between the i386 and sparc64
platforms. In an attempt to reduce excessive duplication of content, where differences do exist and
are cosmetic in nature, they will be pointed out using a section such as this. If the process is
drastically different, the process will branch into separate, platform dependant steps.

A bug in NetBSD 1.6.2 renders RAID-1 booting on sparc64 unusable, see this message
(http://mail-index.NetBSD.org/port-sparc64/2004/06/22/0001.html). To use RAID-1 with full
functionality on sparc64, please use NetBSD 2.0.

16.3.1 Pseudo-Process Outline

Although a much more refined process could be developed using a custom copy of NetBSD installed on
custom-developed removable media, presently the NetBSD install media lacks RAIDframe tools and
support, so the following pseudo process has become the de facto standard for setting up RAID-1 Root.

1. Install a stock NetBSD onto Disk0 of your system.

Figure 16-2. Perform generic install onto Disk0/wd0

Step 1
Boot Disk = CD-ROM [controller Controller
0 1

Channel 0 Channel 0

Disk0 Diskl

2. Use the installed system on Disk0/wd0 to setup a RAID Set composed of Disk1/wd1 only.

Figure 16-3. Setup RAID Set

Step 2
Boot Disk = Disk 0

Channel 0

3. Reboot the system off the Disk1/wd1 with the newly created RAID volume.

132

Chapter 16 NetBSD RAIDframe

Figure 16-4. Reboot using Disk1/wd1 of RAID

Step 3
Boot Disk = Disk 1 system

Channel 0 Channel 0
|
us

R " Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

4. Add/ re-sync Disk0/wd0 back into the RAID set.

Figure 16-5. Mirror Disk1/wd1 back to Disk0/wd0

Step 4
Boot Disk = Disk 0 or Disk 1

system
Controller ~ Controlles
o 1

Channel 0 Channel 0
—p |—

RAD-L

[[
v v
| 3

wdo / wdl/
Disk 0 Disk 1

Component 0| Component L

Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

16.3.2 Hardware Review

At present, the 1386 and sparc64 NetBSD platforms support booting from RAID-1. Booting is not
supported from any other RAID level. Booting from a RAID set is accomplished by teaching the 1st
stage boot loader to understand both 4.2BSD/FFS and RAID partitions. The 1st boot block code only
needs to know enough about the disk partitions and file systems to be able to read the 2nd stage boot
blocks. Therefore, at any time, the system’s BIOS / firmware must be able to read a drive with 1st stage
boot blocks installed. On the i386 platform, configuring this is entirely dependant on the vendor of the
controller card / host bus adapter to which your disks are connected. On sparc64 this is controlled by the
IEEE 1275 Sun OpenBoot Firmware.

This article assumes two identical IDE disks (/dev/wd{0, 1}) which we are going to mirror (RAID-1).
These disks are identified as:

grep “wd /var/run/dnesg. boot

wdO at atabusO drive 0: <WDC WD100BB-75CLBO>

wdO: drive supports 16-sector PIO transfers, LBA addressing

wdO: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 19541088 sectors

wdO: drive supports P10 mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)
wdO(piixide0:0:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data transfel

wdl at atabusl drive 0: <WDC WD100BB-75CLBO>

133

Chapter 16 NetBSD RAIDframe

wdl: drive supports 16-sector PIO transfers, LBA addressing

wdl: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 19541088 sectors

wdl: drive supports P10 mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)
wd1l(piixide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data transfe

Note: If you are using SCSI, replace / dev/ {, r}wd{ 0, 1} with /dev/{, r}sd{0, 1}

In this example, both disks are jumpered as Master on separate channels on the same controller. You
would never want to have both disks on the same bus on the same controller; this creates a single point of
failure. Ideally you would have the disks on separate channels on separate controllers. Some SCSI
controllers have multiple channels on the same controller, however, a SCSI bus reset on one channel
could adversely affect the other channel if the ASIC/IC becomes overloaded. The trade-off with two
controllers is that twice the bandwidth is used on the system bus. For purposes of simplification, this
example shows two disks on different channels on the same controller.

Note: RAIDframe requires that all components be of the same size. Actually, it will use the lowest
common denominator among components of dissimilar sizes. For purposes of illustration, the
example uses two disks of identical geometries. Also, consider the availability of replacement disks if
a component suffers a critical hardware failure.

Tip: Two disks of identical vendor model numbers could have different geometries if the drive
possesses "grown defects”. Use a low-level program to examine the grown defects table of the disk.
These disks are obviously suboptimal candidates for use in RAID and should be avoided.

16.3.3 Initial Install on DiskO/wdO

Perform a very generic installation onto your Disk0/wd0. Follow the INSTALL instructions for your
platform. Install all the sets but do not bother customizing anything other than the kernel as it will be
overwritten.

Tip: On i386, during the sysinst install, when prompted if you want to "use the entire disk for
NetBSD", answer "yes".

« Chapter 3

« NetBSD/i386 Install Directions
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-2.0/i386/INSTALL.html)

- NetBSD/sparc64 Install Directions
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-2.0/sparc64/INSTALL.html)

134

Chapter 16 NetBSD RAIDframe

Once the installation is complete, you should examine the disklabel(8) and fdisk(8) / sunlabel(8) outputs
on the system:

df

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wdOa 9343708 191717 8684806 2% /

On i386:

di skl abel -r wdO

type: unknown

disk: Disk00

label:

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 16

sectors/cylinder: 1008

cylinders: 19386

total sectors: 19541088

rpm: 3600

interleave: 1

trackskew: 0O

cylinderskew: 0

headswitch: 0O # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0O

16 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 19276992 63 4.2BSD 1024 8192 46568 # (Cyl. 0* - 19124%)
b: 264033 19277055 swap # (Cyl. 19124* - 19385)
c: 19541025 63 unused 0 0] # (Cyl. 0* - 19385)
d: 19541088 0 unused 0 0] # (Cyl. 0 - 19385)

fdisk /dev/rwd0d

Disk: /dev/rwdOd

NetBSD disklabel disk geometry:

cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Partition table:
0: NetBSD (sysid 169)
start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.

135

Chapter 16 NetBSD RAIDframe

On Sparc64 the command / output differs slightly:

di skl abel -r wdO
type: unknown

disk: DiskO

[---snip...]

8 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19278000 0 4.2BSD 1024 8192 46568 # (Cyl. 0 - 19124)
b: 263088 19278000 swap # (Cyl. 19125 - 19385)
c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

sunl abel /dev/rwdOc
sunlabel> P
a: start cyl
b: start cyl
c: start cyl

0, size = 19278000 (19125/0/0 - 9413.09Mb)
19125, size 263088 (261/0/0 - 128.461Mb)
0, size = 19541088 (19386/0/0 - 9541 ._55Mb)

16.3.4 Preparing Disk1l/wd1

Once you have a stock install of NetBSD on Disk0/wd0, you are ready to begin. Disk1/wd1 will be
visible and unused by the system. To setup Disk1/wd1, you will use disklabel(8) to allocate the entire
second disk to the RAID-1 set.

Tip: The best way to ensure that Disk1/wd1 is completely empty is to 'zero’ out the first few sectors
of the disk with dd(1) . This will erase the MBR (i386) or Sun disk label (sparc64), as well as the
NetBSD disk label. If you make a mistake at any point during the RAID setup process, you can
always refer to this process to restore the disk to an empty state.

Note: On sparc64, use / dev/ rwdlc instead of / dev/ r wd1d!

dd if=/dev/zero of =/dev/rwdld bs=8k count=1

1+0 records in

1+0 records out

8192 bytes transferred in 0.003 secs (2730666 bytes/sec)

Once this is complete, on 386, verify that both the MBR and NetBSD disk labels are gone. On sparc64,
verify that the Sun Disk label is gone as well.

On i386:

fdisk /dev/rwdld

fdisk: primary partition table invalid, no magic in sector O

Disk: /dev/rwdld

NetBSD disklabel disk geometry:

cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

136

Chapter 16 NetBSD RAIDframe

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Partition table:

0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

Bootselector disabled.

di skl abel -r wdl

[---snip...]

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

c: 19541025 63 unused 0 0] # (Cyl. 0* - 19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)
On sparc64:

sunl abel /dev/rwdilc
sunlabel: bogus label on “/dev/wdlc” (bad magic number)

di skl abel -r wdl

[---snip...]

3 partitions:

size offset fstype [fsize bsize cpg/sgs]

c: 19541088 0] unused 0 0] # (Cyl. 0 - 19385)

disklabel: boot block size 0
disklabel: super block size 0O

Now that you are certain the second disk is empty, on i386 you must establish the MBR on the second
disk using the values obtained from DiskO/wdO above. We must remember to mark the NetBSD partition
active or the system will not boot. You must also create a NetBSD disklabel on Disk1/wd1 that will
enable a RAID volume to exist upon it. On sparc64, you will need to simply disklabel(8) the second disk
which will write the proper Sun Disk Label.

Tip: disklabel(8) will use your shell’ s environment variable $EDI TOR variable to edit the disklabel.
The default is vi(1)

On i386:

fdisk -Oua /dev/rwdld

fdisk: primary partition table invalid, no magic in sector 0O

Disk: /dev/rwdld

NetBSD disklabel disk geometry:

cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)

137

Chapter 16 NetBSD RAIDframe
total sectors: 19541088

BI0OS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Do you want to change our idea of what BIOS thinks? [n]

Partition O:

<UNUSED>

The data for partition O is:

<UNUSED>

sysid: [0..255 default: 169]

start: [0..1216c¢cyl default: 63, Ocyl, OMB]

size: [0..1216¢cyl default: 19541025, 1216c¢cyl, 9542MB]
bootmenu: []

Do you want to change the active partition? [n] y
Choosing 4 will make no partition active.

active partition: [0..4 default: 0] O

Are you happy with this choice? [n] y

We haven’t written the MBR back to disk yet. This is your last chance.
Partition table:
0: NetBSD (sysid 169)
start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
Should we write new partition table? [n] vy

di skl abel -r -e -1 wdl
type: unknown

disk: Diskl

label:

flags:

bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386

total sectors: 19541088

[---snip...]

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19541025 63 RAID # (Cyl. 0*-19385)
c: 19541025 63 unused 0 0 # (Cyl. 0*-19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 -19385)
On sparc64:

di skl abel -r -e -1 wdl
type: unknown

138

Chapter 16 NetBSD RAIDframe

disk: Diskl

label:

flags:

bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386

total sectors: 19541088

L---snip...]

3 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19541088 0 RAID # (Cyl. 0 - 19385)
c: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)

sunl abel /dev/rwdlc

sunlabel> P

a: start cyl = 0, size 19541088 (19386/0/0 - 9541 .55Mb)
c: start cyl = 0, size 19541088 (19386/0/0 - 9541 _55Mb)

Note: On 386, the c: and d: slices are reserved. c: represents the NetBSD portion of the disk. d:
represents the entire disk. Because we want to allocate the entire NetBSD MBR partition to RAID,
and because a: resides within the bounds of c:, the a: and c: slices have same size and offset
values and sizes. The offset must start at a track boundary (an increment of sectors matching the
sectors/track value in the disk label). On sparc64 however, c: represents the entire NetBSD partition
in the Sun disk label and d: is not reserved. Also note that sparc64’s c: and a: require no offset from
the beginning of the disk, however if they should need to be, the offset must start at a cylinder
boundary (an increment of sectors matching the sectors/cylinder value).

16.3.5 Initializing the RAID Device

Next we create the configuration file for the RAID set / volume. Traditionally, RAIDframe configuration
files belong in /etc and would be read and initialized at boot time, however, because we are creating a
bootable RAID volume, the configuration data will actually be written into the RAID volume using the
"auto-configure" feature. Therefore, files are needed only during the initial setup and should not reside in
/etc.

vi [var/tnp/raido0. conf
START array

120

START disks

/dev/wd9a
/dev/wdla

START layout
128 111

START queue

139

Chapter 16 NetBSD RAIDframe
fifo 100

Note that wd9 is a non-existing disk. This will allow us to establish the RAID volume with a bogus
component that we will substitute for DiskO/wdO at a later time. Regardless, a device node in /dev for
wd9 must exist.

cd /dev
sh MAKEDEV wd9
cd -

Tip: On systems running NetBSD 2.0+, you may substitute a "bogus" component such as
/ dev/ wd9a for a special disk name "absent"

Next we configure the RAID device and initialize the serial number to something unique. In this example
we use a "YYYYMMDDRevi si on" scheme. The format you choose is entirely at your discretion,
however the scheme you choose should ensure that no two RAID sets use the same serial number at the
same time.

After that we initialize the RAID set for the first time, safely ignoring the errors regarding the bogus
component.

raidctl -v -C /var/tnp/raid0.conf raid0

raidlookup on device: /dev/wd9a failed!

raid0: Component /dev/wd9a being configured at col: O
Column: O Num Columns: O
Version: 0 Serial Number: 0 Mod Counter: O
Clean: No Status: O

Number of columns do not match for: /dev/wd9a

/dev/wd9a is not clean!

raidO: Component /dev/wdla being configured at col: 1
Column: O Num Columns: 0O
Version: 0 Serial Number: 0 Mod Counter: O
Clean: No Status: O

Column out of alignment for: /dev/wdla

Number of columns do not match for: /dev/wdla

/dev/wdla is not clean!

raidO: There were fatal errors

raidO: Fatal errors being ignored.

raidO: RAID Level 1

raidO: Components: /dev/wd9a[**FAILED**] /dev/wdla

raidO: Total Sectors: 19540864 (9541 MB)

raidctl -v -1 2004082401 rai do

raidctl -v -i raido
Initiating re-write of parity
tail -1 /var/log/ messages

raidO: Error re-writing parity!
raidctl -v -s raidoO
Components:
/dev/wd9a: failed
/dev/wdla: optimal
No spares.

140

Chapter 16 NetBSD RAIDframe

/dev/wd9a status is: failed. Skipping label.

Component label for /dev/wdla:
Row: O, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 7
Clean: No, Status: O
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: No
Root partition: No
Last configured as: raidO

Parity status: DIRTY

Reconstruction is 100% complete.

Parity Re-write is 100% complete.

Copyback is 100% complete.

16.3.6 Setting up Filesystems

Caution

The root filesystem must begin at sector 0 of the RAID device. Else, the primary
boot loader will be unable to find the secondary boot loader.

The RAID device is now configured and available. The RAID device is a pseudo disk-device. It will be
created with a default disk label. You must now determine the proper sizes for disklabel slices for your
production environment. For purposes of simplification in this example, our system will have 8.5
gigabytes dedicated to / as /dev/raidOa and the rest allocated to swap as /dev/raidOb.

Caution

This is an unrealistic disk layout for a production server; the NetBSD Guide can
expand on proper partitioning technique. See Chapter 3

Note: Note that 1 GB is 2*1024*1024=2097152 blocks (1 block is 512 bytes, or 0.5 kilobytes).
Despite what the underlying hardware composing a RAID set is, the RAID pseudo disk will always
have 512 bytes/sector.

Note: In our example, the space allocated to the underlying a: slice composing the RAID set differed
between i386 and sparc64, therefore the total sectors of the RAID volumes differs:

On i386:
di skl abel -r -e -1 raid0

type: RAID
disk: raid

141

Chapter 16 NetBSD RAIDframe

label:
flags:
bytes/sector: 512

sectors/track: 128

tracks/cylinder: 8

sectors/cylinder: 1024

cylinders: 19082

total sectors: 19540864

rpm: 3600

interleave: 1

trackskew: 0O

cylinderskew: 0

headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0O

fictitious

size offset fstype [fsize bsize cpg/sgs]

a: 19015680 0 4.2BSD 0 0 0 # (Cyl. 0 - 18569)
b: 525184 19015680 swap # (Cyl. 18570 - 19082%)
d: 19540864 0 unused 0 0 # (Cyl. 0 - 19082%*)
On sparc64:

di skl abel -r -e -1 raidO

[---snip...]

total sectors: 19539968

L---snip...]

3 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19251200 0 4.2BSD 0 0 0 # (Cyl. 0 - 18799)
b: 288768 19251200 swap # (Cyl. 18800 - 19081)
c: 19539968 0 unused 0 0 # (Cyl. 0 - 19081)

Next, format the newly created / partition as a 4.2BSD FFSv1 File System:

newfs -O 1 /dev/raidOa

/dev/rraidOa: 9285.0MB (19015680 sectors) block size 16384, fragment size 2048
using 51 cylinder groups of 182.06MB, 11652 blks, 22912 inodes.

super-block backups (for fsck -b #) at:

32, 372896, 745760, 1118624, 1491488, 1864352, 2237216, 2610080,
2982944, 3355808, 3728672, 4101536, 4474400, 4847264, 5220128, 5592992,
5965856, 6338720, 6711584, 7084448, 7457312, 7830176, 8203040, 8575904,
8948768, 9321632, 9694496, 10067360, 10440224, 10813088, 11185952,11558816,

11931680, 12304544, 12677408, 13050272, 13423136, 13796000, 14168864,14541728,
14914592, 15287456, 15660320, 16033184, 16406048, 16778912, 17151776,17524640,
17897504, 18270368, 18643232,

fsck -fy /dev/rraidOa

** /dev/rraidOa

** File system is already clean

** Last Mounted on

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames

142

Chapter 16 NetBSD RAIDframe

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts

** Phase 5 - Check Cyl groups

1 files, 1 used, 4680062 free (14 frags, 585006 blocks, 0.0% fragmentation)

16.3.7 Setting up kernel dumps

The normal swap area in our case is on raidOb but this can not be used for crash dumps as process
scheduling is stopped when dumps happen. Therefore we must use a real disk device. However, nothing
stops us from defining a dump area which overlaps with raidOb. The trick here is to calculate the correct
start offset for our crash dump area. This is dangerous and it is possible to destroy valuable data if we
make a mistake in these calculations! Data corruption will happen when the kernel writes its memory
dump over a normal filesystem. So we must be extra careful here. (The author destroyed his 100+ GB
/home with a kernel crash dump!)

First we need to take a look at the disklabel for swap (raidOb) and the real physical disk (wd1).
On i386:

di skl abel raid0

8 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 19015680 0 4_.2BSD 1024 8192 64
b: 525184 19015680 swap
d: 19540864 0 unused 0 0 0

di skl abel wdl

8 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 19541025 63 RAID
c: 19541025 63 unused 0 0
d: 19541088 0 unused 0 0

Each RAID set has a 64 block reserved area (see RF_PROTECTED_SECTORS in
<dev/raidframe/raidframevar.h>) in the beginning of the set to store the internal RAID structures.

dc

63 # offset of wdla

64 # RF_PROTECTED_SECTORS

+

19015680 # offset of raidOb

Y

19015807 # offset of swap within wdl
q

We know now that real offset of the still-nonexisting wd1b is 19015807 and size is 525184. Next we
need to add wd1b to wd1’s disklabel.

143

Chapter 16 NetBSD RAIDframe

di skl abel wd1l > di skl abel . wd1
vi di skl abel . wdl

8 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 19541025 63 RAID
b: 2097152 19015807 swap
c: 19541025 63 unused 0] 0
d 19541088 0 unused 0] 0

Next we install the new disklabel.

di skl abel -R -r wdl di skl abel . wd1

Why isn’t sizeof(raid0d) == (sizeof(wdla) - RF_PROTECTED_SECTORS)? Size of raid0d is based on
the largest multiple of the stripe size used for a RAID set. As an example, with stripe width of 128, size
of raid0d is:

dc
19541025 # size of wdla
64 # RF_PROTECTED_SECTORS
128 # stripe width
/p
152663 # number of stripes
128 # number of blocks per stripe
*
p

19540864 # size of raidod

16.3.8 Migrating System to RAID

The new RAID filesystems are now ready for use. We mount them under /mnt and copy all files from
the old system. This can be done using dump(8) or pax(1).

nmount /dev/raidOa / mt
df -h /mt

Filesystem Size Used Avail Capacity Mounted on
/dev/raidOa 9.0G 2.0K 8.6G 0% /mnt
#cd/; pax -v -X -rw -pe / /mt

[---snip...1]

The NetBSD install now exists on the RAID filesystem. We need to fix the mount-points in the new copy
of /etc/fstab or the system will not come up correctly. Replace instances of wd0 with raido.

Note that the kernel crash dumps must not be saved on a RAID device but on a real physical disk (wd0b).
This dump area was created in the previous chapter on the second disk (wd1b) but we will make wd0 an
identical copy of wd1 later so wdOb and wd1b will have the same size and offset. If wd0 fails and is
removed from the server wd1 becomes wdO after reboot and crash dumps will still work as we are using
wdOb in Zetc/fstab. The only fault in this configuration is when the original, failed wdo is replaces by

144

Chapter 16 NetBSD RAIDframe

a new drive and we haven’t initialized it yet with fdisk and disklabel. In this short period of time we can
not make crash dumps in case of kernel panic. Note how the dump device has the “dp” keyword on the
4th field.

vi /mt/etc/fstab

/dev/raidoa / ffs rw 1 1
/dev/raidOb none swap sw O O
/dev/wdOb none swap dw O O
kernfs /kern kernfs rw
procfs /proc procfs rw

The swap should be unconfigured upon shutdown to avoid parity errors on the RAID device. This can be
done with a simple, one-line setting in Z/etc/rc.conf.

vi /mt/etc/rc.conf
swapofFf=YES

Next the boot loader must be installed on Disk1/wd1. Failure to install the loader on Disk1/wd1 will
render the system un-bootable if DiskO/wdO fails making the RAID-1 pointless.

Tip: Because the BIOS/CMOS menus in many i386 based systems are misleading with regard to
device boot order. | highly recommend utilizing the "-o timeout=X" option supported by the i386 1st
stage boot loader. Setup unique values for each disk as a point of reference so that you can easily
determine from which disk the system is booting.

Caution

Although it may seem logical to install the 1st stage boot block into

/dev/ rwd1{c, d} (which is historically correct with NetBSD 1.6.x installboot(8) , this
is no longer the case. If you make this mistake, the boot sector will become
irrecoverably damaged and you will need to start the process over again.

On i386, install the boot loader into /dev/rwdla :

lusr/sbin/installboot -0 tinmeout=30 -v /dev/rwdla /usr/ndec/bootxx_ffsvl

File system: /dev/rwdla
File system type: raw (blocksize 8192, needswap 1)
Primary bootstrap: /usr/mdec/bootxx_ffsvl

Preserving 51 (0x33) bytes of the BPB

On sparc64, install the boot loader into /dev/rwdla as well, however the "-0" flag is unsupported (and
un-needed thanks to OpenBoot):

lusr/sbin/installboot -v /dev/rwdla /usr/ndec/boot bl k
File system: /dev/rwdla

File system type: raw (blocksize 8192, needswap 0)
Primary bootstrap: /usr/mdec/bootblk

Bootstrap start sector: 1

Bootstrap byte count: 4915

145

Chapter 16 NetBSD RAIDframe
Writing bootstrap

Finally the RAID set must be made auto-configurable and the system should be rebooted. After the
reboot everything is mounted from the RAID devices.

raidctl -v -Aroot raidoO
raid0: Autoconfigure: Yes
raidO: Root: Yes
tail -2 /var/l og/ messages
raidO0: New autoconfig value is: 1
raidO: New rootpartition value is: 1
raidctl -v -s raidoO
L---snip...]

Autoconfig: Yes

Root partition: Yes

Last configured as: raidO

[---snip...]
shutdown -r now

Warning

Always use shutdown(8) when shutting down. Never simply use reboot(8).
reboot(8) will not properly run shutdown RC scripts and will not safely disable
swap. This will cause dirty parity at every reboot.

16.3.9 The first boot with RAID

At this point, temporarily configure your system to boot Disk1/wd1. See notes in Section 16.3.11 for
details on this process. The system should boot now and all filesystems should be on the RAID devices.
The RAID will be functional with a single component, however the set is not fully functional because the
bogus drive (wd9) has failed.

egrep -i "raid|root" /var/run/dnesg. boot

raidO: RAID Level 1

raidO: Components: componentO[**FAILED**] /dev/wdla
raid0: Total Sectors: 19540864 (9541 MB)

boot device: raid0

root on raidOa dumps on raidOb

root File system type: ffs

df -h

Filesystem Size Used Avail Capacity Mounted on
/dev/raidO0a 8.9G 196M 8.3G 2% /

kernfs 1.0K 1.0K 0B 100% /kern

swapct! -I

Device 1K-blocks Used Avail Capacity Priority
/dev/raidOb 262592 0 262592 0% (0]

raidctl -s raidO

Components:

146

Chapter 16 NetBSD RAIDframe

componentO: failed
/dev/wdla: optimal
No spares.
componentO status is: failed. Skipping label.
Component label for /dev/wdla:
Row: O, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 65
Clean: No, Status: O
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raidO
Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.3.10 Adding DiskO/wdO to RAID

We will now add Disk0/wdO0 as a component of the RAID. This will destroy the original file system
structure. On i386, the MBR disklabel will be unaffected (remember we copied wd0’s label to wdl
anyway) , therefore there is no need to "zero" Disk0/wd0. However, we need to relabel Disk0/wd0 to
have an identical NetBSD disklabel layout as Disk1/wd1. Then we add Disk0/wd0 as "hot-spare" to the
RAID set and initiate the parity reconstruction for all RAID devices, effectively bringing Disk0/wd0 into
the RAID-1 set and "synching up" both disks.

di skl abel -r wdl > /tnp/disklabel.wdl
di skl abel -R -r wdO /tnp/diskl abel . wdl

As a last-minute sanity check, you might want to use diff(1) to ensure that the disklabels of DiskO/wd0
match Disk1/wd1. You should also backup these files for reference in the event of an emergency.

di skl abel -r wd0 > /tnp/diskl abel . wdO

di skl abel -r wdl > /tnp/diskl abel . wdl

di ff /tnp/disklabel.wd0 /tnp/disklabel.wdl
fdisk /dev/rwd0 > /tnp/fdisk.wlO

fdisk /dev/rwdl > /tnp/fdisk. wdl

diff /tnp/fdisk.wdO /tnp/fdisk. wdl

nmkdi r /root/ RFbackup

cp -p /tnp/ {disklabel, fdisk}* /root/RFbackup

HoH OH O H H H W

Once you are certain, add Disk0/wd0 as a spare component, and start reconstruction:

raidctl -v -a /dev/wdOa raidO
/netbsd: Warning: truncating spare disk /dev/wdOa to 241254528 blocks
raidctl -v -s raid0
Components:
componentO: failed
/dev/wdla: optimal

147

Chapter 16 NetBSD RAIDframe

Spares:
/dev/wdOa: spare
[---snip...]
raidctl -F conponentO raidO
RECON: initiating reconstruction on col 0 -> spare at col 2
11% |**** | ETA: 04:26 \

Depending on the speed of your hardware, the reconstruction time will vary. You may wish to watch it on
another terminal:

raidctl -S raidoO
Reconstruction is 0% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.
Reconstruction status:
17% [*****=* | ETA: 03:08 -

After reconstruction, both disks should be “optimal”.

tail -f /var/log/ messages
raid0: Reconstruction of disk at col 0 completed

raidO: Recon time was 1290.625033 seconds, accumulated XOR time was O us (0.000000)
raid0: (start time 1093407069 sec 145393 usec, end time 1093408359 sec 770426 usec)

raidO: Total head-sep stall count was O
raidO: 305318 recon event waits, 1 recon delays
raid0: 1093407069060000 max exec ticks

raidctl -v -s raidO
Components:
componentO: spared
/dev/wdla: optimal

Spares:
/dev/wdOa: used_spare
[---snip...]

When the reconstruction is finished we need to install the boot loader on the DiskO/wd0. On i386, install
the boot loader into /dev/rwdOa:

/usr/sbin/installboot -0 tineout=15 -v /dev/rwdOa /usr/ndec/bootxx _ffsvl

File system: /dev/rwdla
File system type: raw (blocksize 8192, needswap 1)
Primary bootstrap: /usr/mdec/bootxx_ffsvl

Preserving 51 (0x33) bytes of the BPB

On sparc64:

[usr/sbin/install boot -v /dev/rwdOa /usr/ndec/ boot bl k
File system: /dev/rwdOa

File system type: raw (blocksize 8192, needswap 0)

Primary bootstrap: /usr/mdec/bootblk
Bootstrap start sector: 1

Bootstrap byte count: 4915

Writing bootstrap

148

Chapter 16 NetBSD RAIDframe

And finally, reboot the machine one last time before proceeding. This is required to migrate Disk0/wdO
from status "used_spare" as "Component0" to state "optimal”. Refer to notes in the next section
regarding verification of clean parity after each reboot.

shutdown -r now

16.3.11 Testing Boot Blocks

At this point, you need to ensure that your system’s hardware can properly boot using the boot blocks on
either disk. On 386, this is a hardware- dependant process that may be done via your motherboard
CMOS/BIOS menu or your controller card’s configuration menu.

On i386, use the menu system on your machine to set the boot device order / priority to Disk1/wdl
before Disk0/wd0. The examples here depict a generic Award BIOS.

Figure 16-6. Award BIOS i386 Boot Disk1/wd1

ROM PCI/ISA BIOS (ZA6IKD4F)
BIOS FEATURES SETUP
AUARD SOFTUARE, INC.

Uirus Warning : Disabled
CPU L1 Cache : Enabled
CPU L2 Cache : Enabled
CPU L2 Cache ECC Checking : Enabled
Quick Pouer On Self Test : Enabled
Boot Sequence D,A,5CSIfl
Suap Floppy Drive : Disabled
Boot Up Flappy Seek : Disabled
Boot Up NumLock Status

Typenatic Rate Setting

Typenatic Rate (Chars/Sec) : 30
Typenatic Delay (Msec)

Security Option

PCIAUGA Palette Snoop

0S Select For DRAM > 64MB :

HDD S.M.A.R.T. Capability : Enabled

6 i1-Sa
: Load Optinal Settings

Save changes and exit.

>> NetBSD/i386 BIOS Boot, Revision 3.1

>> (seklecki@localhost, Fri Aug 13 08:08:47 EDT 2004)
>> Memory: 640/31744 k

Press return to boot now, any other key for boot menu
booting hdOa:netbsd - starting in 30

You can determine that the BIOS is reading Disk1/wd1 because the timeout of the boot loader is 30
seconds instead of 15. After the reboot, re-enter the BIOS and configure the drive boot order back to the
default:

Figure 16-7. Award BIOS i386 Boot Disk0/wd0

ROM PCI/ISA BIOS (ZA6IKD4F)
BIOS FEATURES SETUP
AUARD SOFTUARE, INC.

Uirus Warning : Disabled
CPU L1 Cache : Enabled
CPU L2 Cache : Enabled
CPU L2 Cache ECC Checking : Enabled
Quick Pouer On Self Test : Enabled
a,c,ScsIfl
: Disabled
Boot Up Flappy Seek : Disabled
Boot Up NumLock Status
Typenatic Rate Setting

Typenatic Rate (Chars/Sec) : 30
Typenatic Delay (Msec) i 2
Security Option

PCIAUGA Palette Snoop

0S Select For DRAM > 64MB :

HDD S.M.A.R.T. Capability : Enabled

149

Chapter 16 NetBSD RAIDframe

Save changes and exit.

>> NetBSD/i1386 BIOS Boot, Revision 3.1

>> (seklecki@localhost, Fri Aug 13 08:08:47 EDT 2004)
>> Memory: 640/31744 k

Press return to boot now, any other key for boot menu
booting hdOa:netbsd - starting in 15

Notice how your custom kernel detects controller/bus/drive assignments independent of what the BIOS
assigns as the boot disk. This is the expected behavior.

On sparc64, use the Sun OpenBoot devalias to confirm that both disks are bootable:

Sun Ultra 5/10 UPA/PCI (UltraSPARC-I11i 400MHz), No Keyboard
OpenBoot 3.15, 128 MB memory installed, Serial #nnnnnnnn.
Ethernet address 8:0:20:a5:d1:3b, Host ID: nnnnnnnn.

ok devali as

[---snip...]

cdrom /pci@1f,0/pci@l,1/ide@3/cdrom@2,0:f
disk /pci@lf,0/pci@l,1/ide@3/disk@0,0
disk3 /pci@lf,0/pci@l,1/ide@3/disk@3,0
disk2 /pci@1f,0/pci@l,1/ide@3/disk@2,0
diskl /pci@l1f,0/pci@l,1/ide@3/disk@l,0
disk0 /pci@1f,0/pci@l,1/ide@3/disk@0,0
[---snip...]

ok boot di skO net bsd
Initializing Memory [-..]
Boot device /pci/pci/ide@3/disk@0,0 File and args: netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.8
>> (lavalamp@j8, Thu Aug 19: 15:45:42 EDT 2004)
loadfile: reading header
el f64_exec: Booting [---]
symbols @ [----]
Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.
[---snip...]

And the second disk:

ok boot disk2 netbsd
Initializing Memory [-..]
Boot device /pci/pci/ide@3/disk@2,0: File and args:netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.8
>> (lavalamp@j8, Thu Aug 19: 15:45:42 EDT 2004)
loadfile: reading header
elf64_exec: Booting [---]
symbols @ [----]
Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001

150

Chapter 16 NetBSD RAIDframe

The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California. All rights reserved.
[---snip...]

At each boot, the following should appear in the NetBSD kernel dmesg(8) :

raidO: RAID Level 1

raidO: Components: /dev/wdOa /dev/wdla
raidO: Total Sectors: 19540864 (9541 MB)
boot device: raidO

root on raidOa dumps on raidOb

root file system type: ffs

Once you are certain that both disks are bootable, verify the RAID parity is clean after each reboot:

raidctl -v -s raido
Components:
/ dev/wdOa: opti nmal
[dev/wdla: optimal
No spares.
[---snip...]
Component label for /dev/wdOa:
Row: O, Column: O, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 67
Clean: No, Status: O
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raidO
Component label for /dev/wdla:
Row: 0O, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 67
Clean: No, Status: O
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raidO
Parity status: clean
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

151

Chapter 16 NetBSD RAIDframe

16.4 Testing kernel dumps

It is also important to test the kernel crash dumps so that they work correctly and do not overwrite any
important filesystems (like the raidOe filesystem).

Press Ctrl+Alt+Esc to test the kernel crash dump. This will invoke the kernel debugger. Type sync or
reboot 0x104 and press Enter. This will save the current kernel memory to the dump area (wd0b) for
further analysis. Most likely the offset and/or size of wdOb is wrong if the system will not come up
correctly after reboot (unable to mount /home, corrupted super-blocks, etc). It is very important to test
this now, not when we have lots of valuable files in Zhome. As an example, the author destroyed his 100+
GB /home partition with a kernel crash dump! No real harm was caused by this because of up-to-date
backups (backup was made just before converting to RAID-1). One more time: take a backup of all your
files before following these instructions!

152

Chapter 17
Pluggable Authentication
Modules (PAM)

17.1 About

This article describes the underlying principles and mechanisms of the Pluggable Authentication
Modules (PAM) library, and explains how to configure PAM, how to integrate PAM into applications,
and how to write PAM modules.

17.2 Introduction

The Pluggable Authentication Modules (PAM) library is a generalized API for authentication-related
services which allows a system administrator to add new authentication methods simply by installing
new PAM modules, and to modify authentication policies by editing configuration files.

PAM was defined and developed in 1995 by Vipin Samar and Charlie Lai of Sun Microsystems, and has
not changed much since. In 1997, the Open Group published the X/Open Single Sign-on (XSSO)
preliminary specification, which standardized the PAM API and added extensions for single (or rather
integrated) sign-on. At the time of this writing, this specification has not yet been adopted as a standard.

Although this article focuses primarily on FreeBSD 5.x and NetBSD 3.x, which both use OpenPAM, it
should be equally applicable to FreeBSD 4.x, which uses Linux-PAM, and other operating systems such
as Linux and Solaris™.

17.3 Terms and conventions

17.3.1 Defi nitions

The terminology surrounding PAM is rather confused. Neither Samar and Lai’s original paper nor the
XSSO0 specification made any attempt at formally defining terms for the various actors and entities
involved in PAM, and the terms that they do use (but do not define) are sometimes misleading and
ambiguous. The first attempt at establishing a consistent and unambiguous terminology was a whitepaper
written by Andrew G. Morgan (author of Linux-PAM) in 1999. While Morgan’s choice of terminology
was a huge leap forward, it is in this author’s opinion by no means perfect. What follows is an attempt,
heavily inspired by Morgan, to define precise and unambiguous terms for all actors and entities involved
in PAM.

153

Chapter 17 Pluggable Authentication Modules (PAM)
account

The set of credentials the applicant is requesting from the arbitrator.

applicant

The user or entity requesting authentication.

arbitrator

The user or entity who has the privileges necessary to verify the applicant’s credentials and the
authority to grant or deny the request.

chain

A sequence of modules that will be invoked in response to a PAM request. The chain includes
information about the order in which to invoke the modules, what arguments to pass to them, and
how to interpret the results.

client

The application responsible for initiating an authentication request on behalf of the applicant and
for obtaining the necessary authentication information from him.

facility

One of the four basic groups of functionality provided by PAM: authentication, account
management, session management and authentication token update.

module

A collection of one or more related functions implementing a particular authentication facility,
gathered into a single (normally dynamically loadable) binary file and identified by a single name.

policy

The complete set of configuration statements describing how to handle PAM requests for a
particular service. A policy normally consists of four chains, one for each facility, though some
services do not use all four facilities.

154

Chapter 17 Pluggable Authentication Modules (PAM)

server

The application acting on behalf of the arbitrator to converse with the client, retrieve authentication
information, verify the applicant’s credentials and grant or deny requests.

service

A class of servers providing similar or related functionality and requiring similar authentication.
PAM policies are defined on a per-service basis, so all servers that claim the same service name will
be subject to the same policy.

session

The context within which service is rendered to the applicant by the server. One of PAM’s four
facilities, session management, is concerned exclusively with setting up and tearing down this
context.

token

A chunk of information associated with the account, such as a password or passphrase, which the
applicant must provide to prove his identity.

transaction

A sequence of requests from the same applicant to the same instance of the same server, beginning
with authentication and session set-up and ending with session tear-down.

17.3.2 Usage examples

This section aims to illustrate the meanings of some of the terms defined above by way of a handful of
simple examples.

17.3.2.1 Client and server are one

This simple example shows alice su(1)’ing to root.

$ whoam

alice

$ Is -1 “which su’

-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
$ su -

Password: xi 3ki une

whoami

155

Chapter 17 Pluggable Authentication Modules (PAM)

root

« The applicantis alice.

« The account is root.

« The su(1) process is both client and server.
« The authentication token is xi3kiune.

« The arbitrator is root, which is why su(1) is setuid root.

17.3.2.2 Client and server are separate
The example below shows eve try to initiate an ssh(1) connection to login.example.com, ask to log
in as bob, and succeed. Bob should have chosen a better password!

$ whoani

eve

$ ssh bob@ ogi n. exanpl e. com

bob@login.example.com”s password: god

Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
NetBSD 3.0 (LOGIN) #1: Thu Mar 10 18:22:36 WET 2005

Welcome to NetBSD!
$

« The applicant is eve.

« The client is Eve’s ssh(1) process.

« The server is the sshd(8) process on login.example.com
« The account is bob.

- The authentication token is god.

« Although this is not shown in this example, the arbitrator is root.

17.3.2.3 Sample policy
The following is FreeBSD’s default policy for sshd:

sshd auth required pam_nologin.so no_warn

sshd auth required pam _unix.so no_warn try_Ffirst_pass
sshd account required pam_login_access.so

sshd account required pam_unix.so

sshd session required pam_lastlog.so no_fail

sshd password required pam_permit.so

« This policy applies to the sshd service (which is not necessarily restricted to the sshd(8) server.)

156

Chapter 17 Pluggable Authentication Modules (PAM)

- auth, account, session and password are facilities.

- pam_nologin.so, pam_unix.so, pam_login_access.so, pam_lastlog.so and
pam_permit.so are modules. It is clear from this example that pam_unix.so provides at least two
facilities (authentication and account management.)

There are some differences between FreeBSD and NetBSD PAM policies:

« By default, every configuration is done under /etc/pam.d.

- If configuration is non-existent, you will not have access to the system, in contrast with FreeBSD that
has a default policy of allowing authentication.

- For authentication, NetBSD forces at least one required, requisite or binding module to be
present.

17.4 PAM Essentials

17.4.1 Facilities and primitives

The PAM API offers six different authentication primitives grouped in four facilities, which are
described below.

auth

Authentication. This facility concerns itself with authenticating the applicant and establishing the
account credentials. It provides two primitives:

- pam_authenticate(3) authenticates the applicant, usually by requesting an authentication token
and comparing it with a value stored in a database or obtained from an authentication server.

- pam_setcred(3) establishes account credentials such as user 1D, group membership and resource
limits.

account

Account management. This facility handles non-authentication-related issues of account availability,
such as access restrictions based on the time of day or the server’s work load. It provides a single
primitive:

« pam_acct_mgmt(3) verifies that the requested account is available.

session

Session management. This facility handles tasks associated with session set-up and tear-down, such
as login accounting. It provides two primitives:

« pam_open_session(3) performs tasks associated with session set-up: add an entry in the utmp and
wtmp databases, start an SSH agent, etc.

157

Chapter 17 Pluggable Authentication Modules (PAM)

« pam_close_session(3) performs tasks associated with session tear-down: add an entry in the utmp
and wtmp databases, stop the SSH agent, etc.

password

Password management. This facility is used to change the authentication token associated with an

account, either because it has expired or because the user wishes to change it. It provides a single

primitive:

« pam_chauthtok(3) changes the authentication token, optionally verifying that it is sufficiently
hard to guess, has not been used previously, etc.

17.4.2 Modules

Modules are a very central concept in PAM; after all, they are the “M” in “PAM”. A PAM module is a
self-contained piece of program code that implements the primitives in one or more facilities for one
particular mechanism; possible mechanisms for the authentication facility, for instance, include the
UNIX® password database, NIS, LDAP and Radius.

17.4.2.1 Module Naming

FreeBSD and NetBSD implement each mechanism in a single module, named pam_nechani sm.so (for
instance, pam_unix.so for the UNIX® mechanism.) Other implementations sometimes have separate
modules for separate facilities, and include the facility name as well as the mechanism name in the
module name. To name one example, Solaris™ has a pam_dial_auth.so.1 module which is
commonly used to authenticate dialup users. Also, almost every module has a man page with the same
name, i.e.: pam_unix(8) explains how the pam_unix.so module works.

17.4.2.2 Module Versioning

FreeBSD’s original PAM implementation, based on Linux-PAM, did not use version numbers for PAM
modules. This would commonly cause problems with legacy applications, which might be linked against
older versions of the system libraries, as there was no way to load a matching version of the required
modules.

OpenPAM, on the other hand, looks for modules that have the same version number as the PAM library
(currently 2 in FreeBSD and 0 in NetBSD), and only falls back to an unversioned module if no versioned
module could be loaded. Thus legacy modules can be provided for legacy applications, while allowing
new (or newly built) applications to take advantage of the most recent modules.

Although Solaris™ PAM modules commonly have a version number, they’re not truly versioned,
because the number is a part of the module name and must be included in the configuration.

17.4.2.3 Module Path

There isn’t a common directory for storing PAM modules. Under FreeBSD, they are located at
/usr/1ib and, under NetBSD, you can find them in Zusr/lib/security.

158

Chapter 17 Pluggable Authentication Modules (PAM)

17.4.3 Chains and policies

When a server initiates a PAM transaction, the PAM library tries to load a policy for the service specified
in the pam_start(3) call. The policy specifies how authentication requests should be processed, and is
defined in a configuration file. This is the other central concept in PAM: the possibility for the admin to
tune the system security policy (in the wider sense of the word) simply by editing a text file.

A policy consists of four chains, one for each of the four PAM facilities. Each chain is a sequence of
configuration statements, each specifying a module to invoke, some (optional) parameters to pass to the
module, and a control flag that describes how to interpret the return code from the module.

Understanding the control flags is essential to understanding PAM configuration files. There are a
number of different control flags:

binding
If the module succeeds and no earlier module in the chain has failed, the chain is immediately

terminated and the request is granted. If the module fails, the rest of the chain is executed, but the
request is ultimately denied.

This control flag was introduced by Sun in Solaris™ 9 (SunOS™ 5.9), and is also supported by
OpenPAM.

required

If the module succeeds, the rest of the chain is executed, and the request is granted unless some
other module fails. If the module fails, the rest of the chain is also executed, but the request is
ultimately denied.

requisite

If the module succeeds, the rest of the chain is executed, and the request is granted unless some
other module fails. If the module fails, the chain is immediately terminated and the request is denied.

sufficient

If the module succeeds and no earlier module in the chain has failed, the chain is immediately
terminated and the request is granted. If the module fails, the module is ignored and the rest of the
chain is executed.

As the semantics of this flag may be somewhat confusing, especially when it is used for the last
module in a chain, it is recommended that the binding control flag be used instead if the
implementation supports it.

optional

The module is executed, but its result is ignored. If all modules in a chain are marked optional, all
requests will always be granted.

When a server invokes one of the six PAM primitives, PAM retrieves the chain for the facility the
primitive belongs to, and invokes each of the modules listed in the chain, in the order they are listed, until
it reaches the end, or determines that no further processing is necessary (either because a binding or
sufficient module succeeded, or because a requiisite module failed.) The request is granted if and
only if at least one module was invoked, and all non-optional modules succeeded.

159

Chapter 17 Pluggable Authentication Modules (PAM)

Note that it is possible, though not very common, to have the same module listed several times in the
same chain. For instance, a module that looks up user names and passwords in a directory server could
be invoked multiple times with different parameters specifying different directory servers to contact.
PAM treat different occurrences of the same module in the same chain as different, unrelated modules.

17.4.4 Transactions

The lifecycle of a typical PAM transaction is described below. Note that if any of these steps fails, the
server should report a suitable error message to the client and abort the transaction.

1. If necessary, the server obtains arbitrator credentials through a mechanism independent of
PAM—maost commonly by virtue of having been started by root, or of being setuid root.

2. The server calls pam_start(3) to initialize the PAM library and specify its service name and the
target account, and register a suitable conversation function.

3. The server obtains various information relating to the transaction (such as the applicant’s user name
and the name of the host the client runs on) and submits it to PAM using pam_set_item(3).

4. The server calls pam_authenticate(3) to authenticate the applicant.

5. The server calls pam_acct_mgmt(3) to verify that the requested account is available and valid. If the
password is correct but has expired, pam_acct_mgmt(3) will return PAM_NEW_AUTHTOK_REQD
instead of PAM_SUCCESS.

6. If the previous step returned PAM_NEW_AUTHTOK_REQD, the server now calls pam_chauthtok(3) to
force the client to change the authentication token for the requested account.

7. Now that the applicant has been properly authenticated, the server calls pam_setcred(3) to establish
the credentials of the requested account. It is able to do this because it acts on behalf of the
arbitrator, and holds the arbitrator’s credentials.

8. Once the correct credentials have been established, the server calls pam_open_session(3) to set up
the session.

9. The server now performs whatever service the client requested—for instance, provide the applicant
with a shell.

10. Once the server is done serving the client, it calls pam_close_session(3) to tear down the session.

11. Finally, the server calls pam_end(3) to notify the PAM library that it is done and that it can release
whatever resources it has allocated in the course of the transaction.

17.5 PAM Configuration

17.5.1 PAM policy files
17.5.1.1 The / et ¢/ pam conf file

The traditional PAM policy file is Zetc/pam.conf. This file contains all the PAM policies for your
system. Each line of the file describes one step in a chain, as shown below:

160

Chapter 17 Pluggable Authentication Modules (PAM)
login auth required pam_nologin.so no_warn

The fields are, in order: service name, facility name, control flag, module name, and module arguments.
Any additional fields are interpreted as additional module arguments.

A separate chain is constructed for each service / facility pair, so while the order in which lines for the
same service and facility appear is significant, the order in which the individual services and facilities are
listed is not. The examples in the original PAM paper grouped configuration lines by facility, and the
Solaris™ stock pam.conf still does that, but FreeBSD’s stock configuration groups configuration lines
by service. Either way is fine; either way makes equal sense.

17.5.1.2 The / et c/ pam d directory

OpenPAM and Linux-PAM support an alternate configuration mechanism, which is the preferred
mechanism in FreeBSD and NetBSD. In this scheme, each policy is contained in a separate file bearing
the name of the service it applies to. These files are stored in /etc/pam.d/.

These per-service policy files have only four fields instead of pam.conf’s five: the service name field is
omitted. Thus, instead of the sample pam.con¥ line from the previous section, one would have the
following line in Zetc/pam.d/login:

auth required pam_nologin.so no_warn

As a consequence of this simplified syntax, it is possible to use the same policy for multiple services by
linking each service name to a same policy file. For instance, to use the same policy for the su and sudo
services, one could do as follows:

cd /etc/pamd
In -s su sudo

This works because the service name is determined from the file name rather than specified in the policy
file, so the same file can be used for multiple differently-named services.

Since each service’s policy is stored in a separate file, the pam.d mechanism also makes it very easy to
install additional policies for third-party software packages.

17.5.1.3 The policy search order

As we have seen above, PAM policies can be found in a number of places. If no configuration file is
found for a particular service, the Zetc/pam.d/other is used instead. If that file does not exist,
/etc/pam.conf is searched for entries matching he specified service or, failing that, the "other" service.

It is essential to understand that PAM’s configuration system is centered on chains.

17.5.2 Breakdown of a configuration line

As explained in the PAM policy files section, each line in /etc/pam.conf consists of four or more
fields: the service name, the facility name, the control flag, the module name, and zero or more module
arguments.

161

Chapter 17 Pluggable Authentication Modules (PAM)

The service name is generally (though not always) the name of the application the statement applies to. If
you are unsure, refer to the individual application’s documentation to determine what service name it
uses.

Note that if you use Zetc/pam.d/ instead of Zetc/pam.conf, the service name is specified by the
name of the policy file, and omitted from the actual configuration lines, which then start with the facility
name.

The facility is one of the four facility keywords described in the Facilities and primitives section.

Likewise, the control flag is one of the four keywords described in the Chains and policies section,
describing how to interpret the return code from the module. Linux-PAM supports an alternate syntax
that lets you specify the action to associate with each possible return code, but this should be avoided as
it is non-standard and closely tied in with the way Linux-PAM dispatches service calls (which differs
greatly from the way Solaris™ and OpenPAM do it.) Unsurprisingly, OpenPAM does not support this
syntax.

17.5.3 Policies
To configure PAM correctly, it is essential to understand how policies are interpreted.

When an application calls pam_start(3), the PAM library loads the policy for the specified service and
constructs four module chains (one for each facility.) If one or more of these chains are empty, the
corresponding chains from the policy for the other service are substituted.

When the application later calls one of the six PAM primitives, the PAM library retrieves the chain for
the corresponding facility and calls the appropriate service function in each module listed in the chain, in
the order in which they were listed in the configuration. After each call to a service function, the module
type and the error code returned by the service function are used to determine what happens next. With a
few exceptions, which we discuss below, the following table applies:

Table 17-1. PAM chain execution summary

PAM SUCCESS PAM | GNORE ot her
binding if (fail) break; - fail = true;
required - - fail = true;
requisite - - fail = true; break;
sufficient if (!fail) break; - -
optional - - -

If fai l is true at the end of a chain, or when a “break” is reached, the dispatcher returns the error code
returned by the first module that failed. Otherwise, it returns PAM_SUCCESS.

The first exception of note is that the error code PAM_NEW_AUTHTOK_REQD is treated like a success,
except that if no module failed, and at least one module returned PAM_NEW_AUTHTOK_REQD, the
dispatcher will return PAM_NEW_AUTHTOK_REQD.

The second exception is that pam_setcred(3) treats binding and sufficient modules as if they were
required.

The third and final exception is that pam_chauthtok(3) runs the entire chain twice (once for preliminary

162

Chapter 17 Pluggable Authentication Modules (PAM)

checks and once to actually set the password), and in the preliminary phase it treats binding and
sufficient modules as if they were required.

17.6 PAM modules

17.6.1 Common Modules

17.6.1.1 pam_deny(8)

The pam_deny(8) module is one of the simplest modules available; it responds to any request with
PAM_AUTH_ERR. It is useful for quickly disabling a service (add it to the top of every chain), or for
terminating chains of sufficient modules.

17.6.1.2 pam_echo(8)

The pam_echo(8) module simply passes its arguments to the conversation function as a
PAM_TEXT_ INFO message. It is mostly useful for debugging, but can also serve to display messages such
as “Unauthorized access will be prosecuted” before starting the authentication procedure.

17.6.1.3 pam_exec(8)

The pam_exec(8) module takes its first argument to be the name of a program to execute, and the
remaining arguments are passed to that program as command-line arguments. One possible application is
to use it to run a program at login time which mounts the user’s home directory.

17.6.1.4 pam_ftpusers(8)

The pam_ftpusers(8) module successes if and only if the user is listed in Zetc/ftpusers. Currently, in
NetBSD, this module doesn’t understand the extended syntax of ftpd(8), but this will be fixed in the
future.

17.6.1.5 pam_group(8)

The pam_group(8) module accepts or rejects applicants on the basis of their membership in a particular
file group (normally wheel for su(1)). It is primarily intended for maintaining the traditional behaviour
of BSD su(1), but has many other uses, such as excluding certain groups of users from a particular
service.

In NetBSD, there is an argument called authenticate in which the user is asked to authenticate using
his own password.

163

Chapter 17 Pluggable Authentication Modules (PAM)

17.6.1.6 pam_guest(8)

The pam_guest(8) module allows guest logins using fixed login names. Various requirements can be
placed on the password, but the default behaviour is to allow any password as long as the login name is
that of a guest account. The pam_guest(8) module can easily be used to implement anonymous FTP
logins.

17.6.1.7 pam_krb5(8)

The pam_krb5(8) module provides functions to verify the identity of a user and to set user specific
credentials using Kerberos 5. It prompts the user for a password and obtains a new Kerberos TGT for the
principal. The TGT is verified by obtaining a service ticket for the local host. The newly acquired
credentials are stored in a credential cache and the environment variable KRBSCCNAME is set
appropriately. The credentials cache should be destroyed by the user at logout with kdestroy(1).

17.6.1.8 pam_ksu(8)

The pam_ksu(8) module provides only authentication serivices for Kerberos 5 to determine whether or
not the applicant is authorized to obtain the privileges of the target account.

17.6.1.9 pam_lastlog(8)

The pam_lastlog(8) module provides only session management services. It records the session in
utmp(5), utmpx(5), wtmp(5), wtmpx(5), lastlog(5) and lastlogx(5) databases.

17.6.1.10 pam_login_access(8)

The pam_login_access(8) module provides an implementation of the account management primitive
which enforces the login restrictions specified in the login.access(5) table.

17.6.1.11 pam_nologin(8)

The pam_nologin(8) module refuses non-root logins when /var/run/nologin exists. This file is
normally created by shutdown(8) when less than five minutes remain until the scheduled shutdown time.

17.6.1.12 pam_permit(8)

The pam_permit(8) module is one of the simplest modules available; it responds to any request with
PAM_SUCCESS. It is useful as a placeholder for services where one or more chains would otherwise be
empty.

17.6.1.13 pam_radius(8)

The pam_radius(8) module provides authentication services based upon the RADIUS (Remote
Authentication Dial In User Service) protocol.

164

Chapter 17 Pluggable Authentication Modules (PAM)

17.6.1.14 pam_rhosts(8)

The pam_rhosts(8) module provides only authentication services. It reports success if and only if the
target user’s ID is not 0 and the remote host and user are listed in /etc/hosts.equiv or in the target
user’s ~/ .rhosts.

17.6.1.15 pam_rootok(8)

The pam_rootok(8) module reports success if and only if the real user id of the process calling it (which
is assumed to be run by the applicant) is 0. This is useful for non-networked services such as su(1) or
passwd(1), to which the root should have automatic access.

17.6.1.16 pam_securetty(8)

The pam_securetty(8) module provides only account services. It is used when the applicant is attemping
to authenticate as superuser, and the process is attached to an insecure TTY.

17.6.1.17 pam_self(8)

The pam_self(8) module reports success if and only if the names of the applicant matches that of the
target account. It is most useful for non-networked services such as su(1), where the identity of the
applicant can be easily verified.

17.6.1.18 pam_ssh(8)

The pam_ssh(8) module provides both authentication and session services. The authentication service
allows users who have passphrase-protected SSH secret keys in their ~/_ssh directory to authenticate
themselves by typing their passphrase. The session service starts ssh-agent(1) and preloads it with the
keys that were decrypted in the authentication phase. This feature is particularly useful for local logins,
whether in X (using xdm(1) or another PAM-aware X login manager) or at the console.

This module implements what is fundamentally a password authentication scheme. Care should be taken
to only use this module over a secure session (secure TTY, encrypted session, etc.), otherwise the user’s
SSH passphrase could be compromised.

Additional consideration should be given to the use of pam_ssh(8). Users often assume that file
permissions are sufficient to protect their SSH keys, and thus use weak or no passphrases. Since the
system administrator has no effective means of enforcing SSH passphrase quality, this has the potential
to expose the system to security risks.

17.6.1.19 pam_unix(8)

The pam_unix(8) module implements traditional UNIX® password authentication, using getpwnam(3)
under FreeBSD or getpwnam_r(3) under NetBSD to obtain the target account’s password and compare it
with the one provided by the applicant. It also provides account management services (enforcing account
and password expiration times) and password-changing services. This is probably the single most useful
module, as the great majority of admins will want to maintain historical behaviour for at least some
services.

165

Chapter 17 Pluggable Authentication Modules (PAM)

17.6.2 FreeBSD-specific PAM Modules

17.6.2.1 pam_opie(8)

The pam_opie(8) module implements the opie(4) authentication method. The opie(4) system is a
challenge-response mechanism where the response to each challenge is a direct function of the challenge
and a passphrase, so the response can be easily computed “just in time” by anyone possessing the
passphrase, eliminating the need for password lists. Moreover, since opie(4) never reuses a challenge that
has been correctly answered, it is not vulnerable to replay attacks.

17.6.2.2 pam_opieaccess(8)

The pam_opieaccess(8) module is a companion module to pam_opie(8). Its purpose is to enforce the
restrictions codified in opieaccess(5), which regulate the conditions under which a user who would
normally authenticate herself using opie(4) is allowed to use alternate methods. This is most often used
to prohibit the use of password authentication from untrusted hosts.

In order to be effective, the pam_opieaccess(8) module must be listed as requisite immediately after a
sufficient entry for pam_opie(8), and before any other modules, in the auth chain.

17.6.2.3 pam_passwdqc(8)

The pam_passwdqc(8) module is a simple password strength checking module for PAM. In addition to
checking regular passwords, it offers support for passphrases and can provide randomly generated
passwords.

17.6.2.4 pam_tacplus(8)

The pam_tacplus(8) module provides authentication services based upon the TACACS+ protocol for the
PAM (Pluggable Authentication Module) framework.

17.6.3 NetBSD-specific PAM Modules

17.6.3.1 pam_skey(8)

The pam_skey(8) module implements S/Key One Time Password (OTP) authentication methods, using
the Zetc/skeykeys database.

17.7 PAM Application Programming

This section has not yet been written.

166

Chapter 17 Pluggable Authentication Modules (PAM)

17.8 PAM Module Programming

This section has not yet been written.

17.9 Sample PAM Application

The following is a minimal implementation of su(1) using PAM. Note that it uses the OpenPAM-specific
openpam_ttyconv(3) conversation function, which is prototyped in security/openpam.h. If you wish
build this application on a system with a different PAM library, you will have to provide your own
conversation function. A robust conversation function is surprisingly difficult to implement; the one
presented in the Sample PAM Conversation Function sub-chapter is a good starting point, but should not
be used in real-world applications.

#include <sys/param.h>
#include <sys/wait.h>

#include <err.h>

#include <pwd.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>

#include <security/pam_appl.h>
#include <security/openpam.h> /* for openpam_ttyconv() */

extern char **environ;

static pam_handle_t *pamh;
static struct pam_conv pamc;

static void
usage(void)

{

fprintf(stderr, "Usage: su [login [args]]\n'");
exit(l);
}

int
main(int argc, char *argv[])
{
char hostname [MAXHOSTNAMELEN] ;
const char *user, *tty;
char **args, **pam_envlist, **pam_env;
struct passwd *pwd;
int o, pam_err, status;
pid_t pid;

while ((o = getopt(argc, argv, "h'™)) 1= -1)

167

Chapter 17 Pluggable Authentication Modules (PAM)

switch (0) {

case “h”:

default:
usageQ);

}

argc -= optind;
argv += optind;

if (argc > 0) {
user = *argv;
--argc;
++argv;

} else {

user = "root”;

}

/* initialize PAM */
pamc.conv = &openpam_ttyconv;
pam_start(''su", user, &pamc, &pamh);

/* set some items */

gethostname(hostname, sizeof(hostname));

if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) !'= PAM_SUCCESS)
goto pamerr;

user = getlogin();

if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) !'= PAM_SUCCESS)
goto pamerr;

tty = ttyname(STDERR_FILENO);

if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) != PAM_SUCCESS)

goto pamerr;

/* authenticate the applicant */

if ((pam_err = pam_authenticate(pamh, 0)) = PAM_SUCCESS)

goto pamerr;

if ((pam_err = pam_acct_mgmt(pamh, 0)) == PAM_NEW_AUTHTOK_REQD)
pam_err = pam_chauthtok(pamh, PAM_CHANGE_EXPIRED_AUTHTOK) ;

if (pam_err '= PAM_SUCCESS)

goto pamerr;

/* establish the requested credentials */
if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)
goto pamerr;

/* authentication succeeded; open a session */
if ((pam_err = pam_open_session(pamh, 0)) = PAM_SUCCESS)
goto pamerr;

/* get mapped user name; PAM may have changed it */

pam_err = pam_get_item(pamh, PAM_USER, (const void **)&user);
if (pam_err '= PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)
goto pamerr;

168

Chapter 17 Pluggable Authentication Modules (PAM)

/* export PAM environment */
if ((pam_envlist = pam_getenvlist(pamh)) != NULL) {
for (pam_env = pam_envlist; *pam_env = NULL; ++pam_env) {
putenv(*pam_env);
free(*pam_env);
}

free(pam_envlist);

}

/* build argument list */
if ((args = calloc(argc + 2, sizeof *args)) == NULL) {
warn(*‘calloc()™);
goto err;
}
*args = pwd->pw_shell;
memcpy(args + 1, argv, argc * sizeof *args);

/* fork and exec */
switch ((pid = fork())) {
case -1:

warn(""fork()");

goto err;
case O:

/* child: give up privs and start a shell */

/* set uid and groups */

if (initgroups(pwd->pw_name, pwd->pw_gid) == -1) {
warn('initgroups(Q)'™);

_exit(l);
}

if (setgid(pwd->pw_gid) == -1) {
warn('setgid()’);

_exit(l);

}

if (setuid(pwd->pw_uid) == -1) {
warn('setuid()’);

_exit(l);

}

execve(*args, args, environ);
warn("'execve()');

_exit(l);
default:

/* parent: wait for child to exit */
waitpid(pid, &status, 0);

/* close the session and release PAM resources */
pam_err = pam_close_session(pamh, 0);

pam_end(pamh, pam_err);

exit(WEXITSTATUS(status));
}

pamerr:

169

Chapter 17 Pluggable Authentication Modules (PAM)

fprintf(stderr, "Sorry\n');
err:

pam_end(pamh, pam_err);
exit(1l);
}

17.10 Sample PAM Module

The following is a minimal implementation of pam_unix(8), offering only authentication services. It
should build and run with most PAM implementations, but takes advantage of OpenPAM extensions if
available: note the use of pam_get_authtok(3), which enormously simplifies prompting the user for a
password.

#include <sys/param.h>

#include <pwd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules._h>
#include <security/pam_appl.h>

#ifndef _OPENPAM
static char password_prompt[] = "Password:*;
#endif

#ifndef PAM_EXTERN
#define PAM_EXTERN
#endif

PAM_EXTERN int
pam_sm_authenticate(pam_handle_t *pamh, int flags,
int argc, const char *argv[])
{
#ifndef _OPENPAM
struct pam_conv *conv;
struct pam_message msg;
const struct pam_message *msgp;
struct pam_response *resp;
#endif
struct passwd *pwd;
const char *user;
char *crypt_password, *password;
int pam_err, retry;

/* identify user */

if ((pam_err = pam_get_user(pamh, &user, NULL)) '= PAM_SUCCESS)
return (pam_err);

if ((pwd = getpwnam(user)) == NULL)

170

Chapter 17 Pluggable Authentication Modules (PAM)
return (PAM_USER_UNKNOWN) ;

/* get password */
#ifndef _OPENPAM
pam_err = pam_get_item(pamh, PAM_CONV, (const void **)&conv);
if (pam_err '= PAM_SUCCESS)
return (PAM_SYSTEM_ERR);
msg.msg_style = PAM_PROMPT_ECHO_OFF;
msg.msg = password_prompt;
msgp = &msg;
#endif
for (retry = 0; retry < 3; ++retry) {
#ifdef _OPENPAM
pam_err = pam_get_authtok(pamh, PAM_AUTHTOK,
(const char **)&password, NULL);
#else
resp = NULL;
pam_err = (*conv->conv)(1, &msgp, &resp, conv->appdata_ptr);
if (resp '= NULL) {
if (pam_err == PAM_SUCCESS)
password = resp->resp;
else
free(resp->resp);
free(resp);
}
#endif
it (pam_err == PAM_SUCCESS)
break;
¥
if (pam_err == PAM_CONV_ERR)
return (pam_err);
if (pam_err '= PAM_SUCCESS)
return (PAM_AUTH_ERR);

/* compare passwords */
if ((Ipwd->pw_passwd[0] && (Flags & PAM_DISALLOW_NULL_AUTHTOK)) |1
(crypt_password = crypt(password, pwd->pw_passwd)) == NULL ||
strcmp(crypt_password, pwd->pw_passwd) != 0)
pam_err = PAM_AUTH_ERR;
else
pam_err = PAM_SUCCESS;
#ifndef _OPENPAM
free(password);
#endif
return (pam_err);

}
PAM_EXTERN int
pam_sm_setcred(pam_handle_t *pamh, int flags,

int argc, const char *argv[])

{

return (PAM_SUCCESS);

171

Chapter 17 Pluggable Authentication Modules (PAM)

}

PAM_EXTERN int
pam_sm_acct_mgmt(pam_handle_t *pamh, int flags,
int argc, const char *argv[])

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_open_session(pam_handle_t *pamh, int flags,
int argc, const char *argv[])

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session(pam_handle_t *pamh, int flags,
int argc, const char *argv[])

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok(pam_handle_t *pamh, int flags,
int argc, const char *argv[])

{

return (PAM_SERVICE_ERR);
}

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY("*pam_unix");
#endif

17.11 Sample PAM Conversation Function

The conversation function presented below is a greatly simplified version of OpenPAM’s
openpam_ttyconv(3). It is fully functional, and should give the reader a good idea of how a conversation
function should behave, but it is far too simple for real-world use. Even if you’re not using OpenPAM,
feel free to download the source code and adapt openpam_ttyconv(3) to your uses; we believe it to be as
robust as a tty-oriented conversation function can reasonably get.

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

172

Chapter 17 Pluggable Authentication Modules (PAM)

#include <security/pam_appl.h>

int
converse(int n, const struct pam_message **msg,
struct pam_response **resp, void *data)
{

struct pam_response *aresp;

char buf[PAM_MAX_RESP_SIZE];

int i;

data = data;
if (n <= 0 || n > PAM_MAX_NUM_MSG)
return (PAM_CONV_ERR);
if ((aresp = calloc(n, sizeof *aresp)) == NULL)
return (PAM_BUF_ERR);
for (i =0; 1 <n; ++i) {
aresp[i]-resp_retcode = 0;
aresp[i]-resp = NULL;
switch (msg[i]->msg_style) {
case PAM_PROMPT_ECHO OFF:
aresp[i]-resp = strdup(getpass(msg[i]->msg));
if (aresp[i].resp == NULL)
goto fail;
break;
case PAM_PROMPT_ECHO ON:
fputs(msg[i]->msg, stderr);
if (fgets(buf, sizeof buf, stdin) == NULL)
goto fail;
aresp[i]-resp = strdup(buf);
if (aresp[i]-resp == NULL)
goto fail;
break;
case PAM_ERROR_MSG:
fputs(msg[i]->msg, stderr);
if (strlen(mnsg[i]->msg) > 0 &&
msg[i]->msg[strien(msg[i]->msg) - 1] !'= "\n”)
fputc(’\n”, stderr);
break;
case PAM_TEXT_INFO:
fputs(msg[i]->msg, stdout);
ifT (strlen(msg[i]->msg) > 0 &&
msg[i]->msg[strien(msg[i]->msg) - 1] = "\n”)
fputc(’\n”, stdout);
break;
default:
goto fail;
}
¥
*resp = aresp;
return (PAM_SUCCESS);
fail:
for (i =0; 1 <n; ++i) {
if (aresp[i]-resp = NULL) {

Chapter 17 Pluggable Authentication Modules (PAM)

memset(aresp[i]-.resp, 0, strlen(aresp[i]-resp));
free(aresp[i]-resp);

}
¥
memset(aresp, 0, n * sizeof *aresp);
*resp = NULL;
return (PAM_CONV_ERR);
}

17.12 Further Reading
Bibliography

Papers

Making Login Services Independent of Authentication Technologies
(http://www.sun.com/software/solaris/pam/pam.external.pdf), Vipin Samar and Charlie Lai, Sun
Microsystems.

X/Open Single Sign-on Preliminary Specification (http://www.opengroup.org/pubs/catalog/p702.htm),
The Open Group, 1-85912-144-6, June 1997.

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/pre/doc/current-draft.txt),
Andrew G. Morgan, October 6, 1999.

User Manuals

PAM Administration (http://www.sun.com/software/solaris/pam/pam.admin.pdf), Sun Microsystems.

Related Web pages

OpenPAM homepage (http://openpam.sourceforge.net/), Dag-Erling Smargrav, ThinkSec AS.
Linux-PAM homepage (http://www.kernel.org/pub/linux/libs/pam/), Andrew G. Morgan.

Solaris PAM homepage (http://wwws.sun.com/software/solaris/pam/), Sun Microsystems.

174

Chapter 18
Tuning NetBSD

18.1 Introduction

18.1.1 Overview

This section covers a variety of performance tuning topics. It attempts to span tuning from the
perspective of the system administrator to systems programmer. The art of performance tuning itself is
very old. To tune something means to make it operate more efficiently, whether one is referring to a
NetBSD based technical server or a vacuum cleaner, the goal is to improve something, whether that be
the way something is done, how it works or how it is put together.

18.1.1.1 What is Performance Tuning?

A view from 10,000 feet pretty much dictates that everything we do is task oriented, this pertains to a
NetBSD system as well. When the system boots, it automatically begins to perform a variety of tasks.
When a user logs in, they usually have a wide variety of tasks they have to accomplish. In the scope of
these documents, however, performance tuning strictly means to improve how efficient a NetBSD system
performs.

The most common thought that crops into someone’s mind when they think "tuning" is some sort of
speed increase or decreasing the size of the kernel - while those are ways to improve performance, they
are not the only ends an administrator may have to take for increasing efficiency. For our purposes,
performance tuning means this: To make a NetBSD system operate in an optimum state.

Which could mean a variety of things, not necessarily speed enhancements. A good example of this is
filesystem formatting parameters, on a system that has a lot of small files (say like a source repository) an
administrator may need to increase the number of inodes by making their size smaller (say down to
1024Kk) and then increasing the amount of inodes. In this case the number of inodes was increased,
however, it keeps the administrator from getting those nasty out of inodes messages, which ultimately
makes the system more efficient.

Tuning normally revolves around finding and eliminating bottlenecks. Most of the time, such bottlenecks
are spurious, for example, a release of Mozilla that does not quite handle java applets too well can cause
Mozilla to start crunching the CPU, especially applets that are not done well. Occasions when processes
seem to spin off into nowhere and eat CPU are almost always resolved with a kill. There are instances,
however, when resolving bottlenecks takes a lot longer, for example, say an rsynced server is just getting
larger and larger. Slowly, performance begins to fade and the administrator may have to take some sort of
action to speed things up, however, the situation is relative to say an emergency like an instantly spiked
CPU.

175

Chapter 18 Tuning NetBSD

18.1.1.2 When does one tune?

Many NetBSD users rarely have to tune a system. The GENERIC kernel may run just fine and the
layout/configuration of the system may do the job as well. By the same token, as a pragma it is always
good to know how to tune a system. Most often tuning comes as a result of a sudden bottleneck issue
(which may occur randomly) or a gradual loss of performance. It does happen in a sense to everyone at
some point, one process that is eating the CPU is a bottleneck as much as a gradual increase in paging.
So, the question should not be when to tune so much as when to learn to tune.

One last time to tune is if you can tune in a preventive manner (and you think you might need to) then do
it. One example of this was on a system that needed to be able to reboot quickly. Instead of waiting, | did
everything I could to trim the kernel and make sure there was absolutely nothing running that was not
needed, | even removed drivers that did have devices, but were never used (Ip). The result was reducing
reboot time by nearly two-thirds. In the long run, it was a smart move to tune it before it became an issue.

18.1.1.3 What these Documents Will Not Cover

Before | wrap up the introduction, | think it is important to note what these documents will not cover.
This guide will pertain only to the core NetBSD system. In other words, it will not cover tuning a web
server’s configuration to make it run better; however, it might mention how to tune NetBSD to run better
as a web server. The logic behind this is simple: web servers, database software, etc. are third party and
almost limitless. I could easily get mired down in details that do not apply to the NetBSD system.
Almost all third party software have their own documentation about tuning anyhow.

18.1.1.4 How Examples are Laid Out

Since there is ample man page documentation, only used options and arguments with examples are
discussed. In some cases, material is truncated for brevity and not thoroughly discussed because, quite
simply, there is too much. For example, every single device driver entry in the kernel will not be
discussed, however, an example of determining whether or not a given system needs one will be. Nothing
in this Guide is concrete, tuning and performance are very subjective, instead, it is a guide for the reader
to learn what some of the tools available to them can do.

18.2 Tuning Considerations

Tuning a system is not really too difficult when pro-active tuning is the approach. This document
approaches tuning from a “before it comes up” approach. While tuning in spare time is considerably
easier versus say, a server that is almost completely bogged down to 0.1% idle time, there are still a few
things that should be mulled over about tuning before actually doing it, hopefully, before a system is
even installed.

18.2.1 General System Confi guration

Of course, how the system is setup makes a big difference. Sometimes small items can be overlooked
which may in fact cause some sort of long term performance problem.

176

Chapter 18 Tuning NetBSD

18.2.1.1 Filesystems and Disks

How the filesystem is laid out relative to disk drives is very important. On hardware RAID systems, it is
not such a big deal, but, many NetBSD users specifically use NetBSD on older hardware where hardware
RAID simply is not an option. The idea of / being close to the first drive is a good one, but for example
if there are several drives to choose from that will be the first one, is the best performing the one that /
will be on? On a related note, is it wise to split off Zusr? Will the system see heavy usage say in
/usr/pkgsrc? It might make sense to slap a fast drive in and mount it under Zusr/pkgsrc, or it might
not. Like all things in performance tuning, this is subjective.

18.2.1.2 Swap Configuration

There are three schools of thought on swap size and about fifty on using split swap files with prioritizing
and how that should be done. In the swap size arena, the vendor schools (at least most commercial ones)
usually have their own formulas per OS. As an example, on a particular version of HP-UX with a
particular version of Oracle the formula was:

2.5 GB * Number_of_processor

Well, that all really depends on what type of usage the database is having and how large it is, for instance
if it is so large that it must be distributed, that formula does not fit well.

The next school of thought about swap sizing is sort of strange but makes some sense, it says, if possible,
get a reference amount of memory used by the system. It goes something like this:

1. Startup a machine and estimate total memory needs by running everything that may ever be needed
at once. Databases, web servers whatever. Total up the amount.

2. Add a few MB for padding.
3. Subtract the amount of physical RAM from this total.

If the amount leftover is 3 times the size of physical RAM, consider getting more RAM. The problem, of
course, is figuring out what is needed and how much space it will take. There is also another flaw in this
method, some programs do not behave well. A glaring example of misbehaved software is web browsers.
On certain versions of Netscape, when something went wrong it had a tendency to runaway and eat swap
space. So, the more spare space available, the more time to kill it.

Last and not least is the tried and true PHYSICAL_RAM * 2 method. On modern machines and even
older ones (with limited purpose of course) this seems to work best.

All in all, it is hard to tell when swapping will start. Even on small 16MB RAM machines (and less)
NetBSD has always worked well for most people until misbehaving software is running.

18.2.2 System Services

On servers, system services have a large impact. Getting them to run at their best almost always requires
some sort of network level change or a fundamental speed increase in the underlying system (which of
course is what this is all about). There are instances when some simple solutions can improve services.
One example, an ftp server is becoming slower and a new release of the ftp server that is shipped with the

177

Chapter 18 Tuning NetBSD

system comes out that, just happens to run faster. By upgrading the ftp software, a performance boost is
accomplished.

Another good example where services are concerned is the age old question: “To use inetd or not to use
inetd?” A great service example is pop3. Pop3 connections can conceivably clog up inetd. While the
pop3 service itself starts to degrade slowly, other services that are multiplexed through inetd will also
degrade (in some case more than pop3). Setting up pop3 to run outside of inetd and on its own may help.

18.2.3 The NetBSD Kernel

The NetBSD kernel obviously plays a key role in how well a system performs, while rebuilding and
tuning the kernel is covered later in the text, it is worth discussing in the local context from a high level.

Tuning the NetBSD kernel really involves three main areas:

1. removing unrequired drivers
2. configuring options

3. system settings

18.2.3.1 Removing Unrequired Drivers

Taking drivers out of the kernel that are not needed achieves several results; first, the system boots faster
since the kernel is smaller, second again since the kernel is smaller, more memory is free to users and
processes and third, the kernel tends to respond quicker.

18.2.3.2 Configuring Options

Configuring options such as enabling/disabling certain subsystems, specific hardware and filesystems
can also improve performance pretty much the same way removing unrequired drivers does. A very
simple example of this is a FTP server that only hosts ftp files - nothing else. On this particular server
there is no need to have anything but native filesystem support and perhaps a few options to help speed
things along. Why would it ever need NTFS support for example? Besides, if it did, support for NTFS
could be added at some later time. In an opposite case, a workstation may need to support a lot of
different filesystem types to share and access files.

18.2.3.3 System Settings

System wide settings are controlled by the kernel, a few examples are filesystem settings, network
settings and core kernel settings such as the maximum number of processes. Almost all system settings
can be at least looked at or modified via the sysctl facility. Examples using the sysctl facility are given
later on.

178

Chapter 18 Tuning NetBSD

18.3 Visual Monitoring Tools

NetBSD ships a variety of performance monitoring tools with the system. Most of these tools are
common on all UNIX systems. In this section some example usage of the tools is given with
interpretation of the output.

18.3.1 The top Process Monitor

The top monitor does exactly what it says: it displays the CPU hogs on the system. To run the monitor,
simply type top at the prompt. Without any arguments, it should look like:

load averages: 0.09, 0.12, 0.08 20:23:41
21 processes: 20 sleeping, 1 on processor

CPU states: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
Memory: 15M Act, 1104K lInact, 208K Wired, 22M Free, 129M Swap free

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
13663 root 2 0 1552K 1836K sleep 0:08 0.00% 0.00% httpd

127 root 10 0 129M 4464K sleep 0:01 0.00% 0.00% mount_mfs
22591 root 2 0 388K 1156K sleep 0:01 0.00% 0.00% sshd

108 root 2 0 132K 472K sleep 0:01 0.00% 0.00% syslogd
22597 jrf 28 0 156K 616K onproc 0:00 0.00% 0.00% top
22592 jrf 18 0 828K 1128K sleep 0:00 0.00% 0.00% tcsh

203 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron

1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init

205 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty

206 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty

208 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty

207 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
13667 nobody 2 0 1660K 1508K sleep 0:00 0.00% 0.00% httpd
9926 root 2 0 336K 588K sleep 0:00 0.00% 0.00% sshd

200 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd

182 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry

180 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry
13666 nobody -4 0 1600K 1260K sleep 0:00 0.00% 0.00% httpd

The top utility is great for finding CPU hogs, runaway processes or groups of processes that may be
causing problems. The output shown above indicates that this particular system is in good health. Now,
the next display should show some very different results:

load averages: 0.34, 0.16, 0.13 21:13:47
25 processes: 24 sleeping, 1 on processor

CPU states: 0.5% user, 0.0% nice, 9.0% system, 1.0% interrupt, 89.6% idle
Memory: 20M Act, 1712K Inact, 240K Wired, 30M Free, 129M Swap free

PID USERNAME PRI NICE SI1ZE RES STATE TIME WCPU CPU COMMAND
5304 jrf -5 0 56K 336K sleep 0:04 66.07% 19.53% bonnie
5294 root 2 0 412K 1176K sleep 0:02 1.01% 0.93% sshd

108 root 2 0 132K 472K sleep 1:23 0.00% 0.00% syslogd

187 root 2 0 1552K 1824K sleep 0:07 0.00% 0.00% httpd
5288 root 2 0 412K 1176K sleep 0:02 0.00% 0.00% sshd
5302 jrf 28 0 160K 620K onproc 0:00 0.00% 0.00% top

179

Chapter 18 Tuning NetBSD

5295 jrf 18 0 828K 1116K sleep 0:00 0.00% 0.00% tcsh
5289 jrf 18 0 828K 1112K sleep 0:00 0.00% 0.00% tcsh
127 root 10 0 129M 8388K sleep 0:00 0.00% 0.00% mount_mfs
204 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron
1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init
208 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty
210 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
209 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
211 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
217 nobody 2 0 1616K 1272K sleep 0:00 0.00% 0.00% httpd
184 root 2 0 336K 580K sleep 0:00 0.00% 0.00% sshd
201 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd

At first, it should seem rather obvious which process is hogging the system, however, what is interesting
in this case is why. The bonnie program is a disk benchmark tool which can write large files in a variety
of sizes and ways. What the previous output indicates is only that the bonnie program is a CPU hog, but
not why.

18.3.1.1 Other Neat Things About Top

A careful examination of the manual page top(1) shows that there is a lot more that can be done with top,
for example, processes can have their priority changed and killed. Additionally, filters can be set for
looking at processes.

18.3.2 The sysstat utility

As the man page sysstat(1) indicates, the sysstat utility shows a variety of system statistics using the
curses library. While it is running the screen is shown in two parts, the upper window shows the current
load average while the lower screen depends on user commands. The exception to the split window view
is when vmstat display is on which takes up the whole screen. Following is what sysstat looks like on a
fairly idle system with no arguments given when it was invoked:

/0 /1 /2 /3 /4 /5 /6 /7T /8 /9 /10
Load Average |

/0 /10 /20 /30 /40 /50 /60 /70 /80 /90 /100
S [o] [S>20.00.0.0.9.0.0.000.00.9.9.909009.09000099990009999009000.99.900

Basically a lot of dead time there, so now have a look with some arguments provided, in this case,
sysstat inet.tcp which looks like this:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average |

0 connections initiated 19 total TCP packets sent
0 connections accepted 11 data

0 connections established data (retransmit)
ack-only

window probes

window updates

0 connections dropped
0 in embryonic state

O O mwOo

180

Chapter 18 Tuning NetBSD

0 on retransmit timeout 0 urgent data only
0 by keepalive 0 control
0 by persist

29 total TCP packets received
11 potential rtt updates 17 in sequence
11 successful rtt updates completely duplicate
delayed acks sent with some duplicate data
retransmit timeouts out of order
persist timeouts duplicate acks
keepalive probes 1 acks
keepalive timeouts window probes
window updates

O OO oo
OOPrOoOhM~MOO

Now that is informative. The first poll is accumulative, so it is possible to see quite a lot of information in
the output when sysstat is invoked. Now, while that may be interesting, how about a look at the buffer
cache with sysstat bufcache:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB % Util %
/ 877 53 6171 93 6516 99 94
/var/tmp 5 0 17 O 28 0 60
Total: 882 53 6188 94 6544 99

Again, a pretty boring system, but great information to have available. While this is all nice to look at, it
is time to put a false load on the system to see how sysstat can be used as a performance monitoring tool.
As with top, bonnie++ will be used to put a high load on the 1/O subsystems and a little on the CPU. The
bufcache will be looked at again to see of there are any noticeable differences:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10
Load Average 111

There are 1642 buffers using 6568 kBytes of memory.

File Systenm Bufs used % kB in use % Bufsize kB % Util %
/ 811 49 6422 97 6444 98 99
Total: 811 49 6422 97 6444 98

First, notice that the load average shot up, this is to be expected of course, then, while most of the
numbers are close, notice that utilization is at 99%. Throughout the time that bonnie++ was running the
utilization percentage remained at 99, this of course makes sense, however, in a real troubleshooting
situation, it could be indicative of a process doing heavy /O on one particular file or filesystem.

181

Chapter 18 Tuning NetBSD

18.4 Monitoring Tools

In addition to screen oriented monitors and tools, the NetBSD system also ships with a set of command
line oriented tools. Many of the tools that ship with a NetBSD system can be found on other UNIX and
UNIX-like systems.

18.4.1 fstat

The fstat(1) utility reports the status of open files on the system, while it is not what many administrators
consider a performance monitor, it can help find out if a particular user or process is using an inordinate
amount of files, generating large files and similar information.

Following is a sample of some fstat output:

USER CMD PID FD MOUNT INUM MODE SZ|DV R/W
Jrf tcsh 21607 wd / 29772 drwxr-xr-x 512 r
jgrf tcsh 21607 3* unix stream c057acc0<-> c0553280

jgrf tcsh 21607 4* unix stream c0553280 <-> c057accO
root sshd 21597 wd / 2 drwxr-xr-x 512 r
root sshd 21597 0/ 11921 crw-rw-rw- null rw
nobody httpd 5032 wd / 2 drwxr-xr-x 512 r
nobody httpd 5032 0/ 11921 crw-rw-rw- null r
nobody httpd 5032 1/ 11921 crw-rw-rw- null w
nobody httpd 5032 2/ 15890 -rw-r--r-- 353533 rw

The fields are pretty self explanatory, again, this tool while not as performance oriented as others, can
come in handy when trying to find out information about file usage.

18.4.2 iostat

The iostat(8) command does exactly what it sounds like, it reports the status of the 1/O subsystems on the
system. When iostat is employed, the user typically runs it with a certain number of counts and an
interval between them like so:

$ iostat 55

tty wdO cdo fdo mdO cpu

tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id
0 1 5.13 1 0.00 0.00 O00.00 0.00 O0O0.00 0.00 0O0O0.00 O O O O 10

O 54 0.00 00.00 0.00 O0O0O.00 0.00 O0O0O.00 0.00 00.00 O O O O 10

0O 18 0.00 00.00 0.00 OO0O.00 0.00 O0OO0O.00 0.00 0000 O O O O 10f

O 18 8.00 00.00 0.00 OO0O.00 0.00 O0OO0O.00 0.00 0000 O O O O 10f

O 28 0.00 00.00 0.00 O0O0O.00 0.00 O0O0O.00 0.00 0000 O O O O 10

The above output is from a very quiet ftp server. The fields represent the various I/O devices, the tty
(which, ironically, is the most active because iostat is running), wd0 which is the primary IDE disk, cd0,
the cdrom drive, fd0, the floppy and the memory filesystem.

Now, let’s see if we can pummel the system with some heavy usage. First, a large ftp transaction
consisting of a tarball of netbsd-current source along with the bonnie++ disk benchmark program
running at the same time.

182

Chapter 18 Tuning NetBSD

$ iostat 55
tty wdO cdo fdo mdO cpu
tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id

0 1 5.68 10.00 0.00 00.00 0.00 O00.00 0.00 O0O0.00 O O O O 100
0O 5461.03 1508.92 0.00 O00.00 000 O00.00 000 O0O0.00 1 018 4 78
0O 26 63.14 157 9.71 0.00 0 0.00 0.00 O0O.00 0.00 0O0OO0.00 1 020 475
0O 20 43.58 26 1.12 0.00 O©0O0O0.00 000 O0OO0O.00 000 O0OO0O.00 O O 9 288
0O 28 19.49 82 1.55 0.00 O0O0.00 0.00 O0O.00 0.00 O0OO0.0O0 1 O 7 389

As can be expected, notice that wdO is very active, what is interesting about this output is how the
processor’s 1/0 seems to rise in proportion to wd0. This makes perfect sense, however, it is worth noting
that only because this ftp server is hardly being used can that be observed. If, for example, the cpu I/O
subsystem was already under a moderate load and the disk subsystem was under the same load as it is
now, it could appear that the cpu is bottlenecked when in fact it would have been the disk. In such a case,
we can observe that "one tool" is rarely enough to completely analyze a problem. A quick glance at
processes probably would tell us (after watching iostat) which processes were causing problems.

18.4.3 ps

Using the ps(1) command or process status, a great deal of information about the system can be
discovered. Most of the time, the ps command is used to isolate a particular process by name, group,
owner etc. Invoked with no options or arguments, ps simply prints out information about the user
executing it.

$ ps
PID TT STAT TIME COMMAND
21560 pO Is 0:00.04 -tcsh
21564 pO I+ 0:00.37 ssh jrf.odpn.net
21598 pl Ss 0:00.12 -tcsh
21673 pl R+ 0:00.00 ps
21638 p2 Is+ 0:00.06 -tcsh

Not very exciting. The fields are self explanatory with the exception of STAT which is actually the state a
process is in. The flags are all documented in the man page, however, in the above example, | is idle, S is
sleeping, R is runnable, the + means the process is in a foreground state, and the s means the process is a
session leader. This all makes perfect sense when looking at the flags, for example, PID 21560 is a shell,

it is idle and (as would be expected) the shell is the process leader.

In most cases, someone is looking for something very specific in the process listing. As an example,
looking at all processes is specified with -a, to see all processes plus those without controlling terminals
is -ax and to get a much more verbose listing (basically everything plus information about the impact
processes are having) aux:

ps aux

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND

root 0O 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)

root 23362 0.0 0.8 144 488 ?? S 12:38PM 0:00.01 ftpd -1

root 23328 0.0 0.4 428 280 pl1 S 12:34PM 0:00.04 -csh

Jgrf 23312 0.0 1.8 828 1132 pl1 Is 12:32PM 0:00.06 -tcsh

root 23311 0.0 1.8 388 1156 ?? S 12:32PM 0:01.60 sshd: jrf@ttypl
jgrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.net

183

Chapter 18 Tuning NetBSD

jgrf 21947 0.0 1.7 828 1128 pO Is 4:21PM 0:00.04 -tcsh
root 21946 0.0 1.8 388 1156 ?? S 4:21PM 0:04.94 sshd: jrf@ttypO
nobody 5032 0.0 2.0 1616 1300 ?? 1 19Jul02 0:00.02 Zusr/pkg/sbin/httpd

Again, most of the fields are self explanatory with the exception of VSZ and RSS which can be a little
confusing. RSS is the real size of a process in 1024 byte units while VSZ is the virtual size. This is all
great, but again, how can ps help? Well, for one, take a look at this modified version of the same output:

ps aux

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 0 0.0 9. 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)
root 23362 144 488 ?? S 12:38PM 0:00.01 ftpd -1
root 23328 428 280 pl1 S 12:34PM 0:00.04 -csh

Jgrf 23312 828 1132 pl1 Is 12:32PM 0:00.06 -tcsh

root 23311
grf 21951
jrf 21947
root 21946
nobody 5032

:01.60 sshd: jrf@ttypl
:02.90 ssh jrf.odpn.net
:00.04 -tcsh

:04.94 sshd: jrf@ttyp0
:00.02 /usr/pkg/sbin/httpd

244 1124 pO S+ 4:22PM
828 1128 pO Is 4:21PM
388 1156 ?? S 4:21PM
1616 1300 2?2 I 19Jul02

[(cNeoNeololNolNolNolNo
[eNeoNeolNolNoNolNolNo
NRRPRRLRREROO

6
8
4
8
.8 388 1156 ?? S 12:32PM
7
7
8
0

[eNeNeoNeolNeolNolNolNelNol

Given that on this server, our baseline indicates a relatively quiet system, the PID 5032 has an unusually
large amount of %CPU. Sometimes this can also cause high TIME numbers. The ps command can be
grepped on for PIDs, username and process name and hence help track down processes that may be
experiencing problems.

18.4.4 vimstat

Using vmstat(1), information pertaining to virtual memory can be monitored and measured. Not unlike
iostat, vmstat can be invoked with a count and interval. Following is some sample output using 5 5 like
the iostat example:

vnstat 5 5

procs memory page disks faults cpu

rbw avm fre flt re pi po fr sr wO cO fO mO in sy c¢s us sy id
0 7 0 17716 33160 2 0 O 0 0 0 1 0 0 0 105 15 4 0 0 100
0 7 0 17724 33156 2 0 o©O 0 0 0 1 0 0O 0 109 6 3 0 0 100
0 7 0 17724 33156 1 0 O 0 0 0 1 0 0O 0 105 6 3 0 0 100
0 7 0 17724 33156 1 0 O 0 0 0O 0 0 0 0 107 6 3 0 0 100
0 7 0 17724 33156 1 0 O 0 0 0O 0 0 0 O 105 6 3 0 0 100

Yet again, relatively quiet, for posterity, the exact same load that was put on this server in the iostat
example will be used. The load is a large file transfer and the bonnie benchmark program.

vnstat 5 5

procs memory page disks faults cpu

rbw avm fre Fflt re pi po fr sr wO cO fO mO in sy cs us sy id

1 8 0 18880 31968 2 0 o©O 0 0 01 0 0 0 105 15 4 0O O 100
0 8 O 18888 31964 2 0 O 0] 0 0 130 O O O 1804 5539 1094 31 22 47
1 7 0 18888 31964 1 0 O 0] 0 0 130 O O O 1802 5500 1060 36 16 49
1 8 0 18888 31964 1 0 O 0 0 0160 O O O 1849 5905 1107 21 22 57

184

Chapter 18 Tuning NetBSD
1 7 0 18888 31964 1 0 O 0 0 0175 0O O O 1893 6167 1082 1 25 75

Just a little different. Notice, since most of the work was 1/0 based, the actual memory used was not very
much. Since this system uses mfs for /tmp, however, it can certainly get beat up. Have a look at this:

vnstat 5 5

procs memory page disks faults cpu

rbw avm fre Fflt re pi po fr sr wO cO fO mO in sy cs us sy id

0 2 0 99188 500 2 0 O 0 0 0 1 0 0 0 105 16 4 0O O 100

0 2 0111596 436 592 0 587 624 586 1210 624 0 O O 741 883 1088 O 11 89
0 3 0123976 784 666 0O 662 643 683 1326 702 0 O O 828 993 1237 0 12 88
0 2 0134692 1236 581 0 571 563 595 1158 599 0 O O 722 863 1066 0 9 90
2 0 0142860 912 433 0 406 403 405 808 429 0O O O 552 602 768 0O 7 93

Pretty scary stuff. That was created by running bonnie in /tmp on a memory based filesystem. If it
continued for too long, it is possible the system could have started thrashing. Notice that even though the
VM subsystem was taking a beating, the processors still were not getting too battered.

18.5 Network Tools

Sometimes a performance problem is not a particular machine, it is the network or some sort of device
on the network such as another host, a router etc. What other machines that provide a service or some
sort of connectivity to a particular NetBSD system do and how they act can have a very large impact on
performance of the NetBSD system itself, or the perception of performance by users. A really great
example of this is when a DNS server that a NetBSD machine is using suddenly disappears. Lookups
take long and they eventually fail. Someone logged into the NetBSD machine who is not experienced
would undoubtedly (provided they had no other evidence) blame the NetBSD system. One of my
personal favorites, “the Internet is broke” usually means either DNS service or a router/gateway has
dropped offline. Whatever the case may be, a NetBSD system comes adequately armed to deal with
finding out what network issues may be cropping up whether the fault of the local system or some other
issue.

18.5.1 ping

The classic ping(8) utility can tell us if there is just plain connectivity, it can also tell if host resolution
(depending on how nsswitch.conT dictates) is working. Following is some typical ping output on a
local network with a count of 3 specified:

ping -c 3 nmarie

PING marie (172.16.14.12): 56 data bytes

64 bytes from 172.16.14.12: icmp_seq=0 ttl=255 time=0.571 ms
64 bytes from 172.16.14.12: icmp_seq=1 ttl=255 time=0.361 ms
64 bytes from 172.16.14.12: icmp_seq=2 ttl=255 time=0.371 ms

-——-marie PING Statistics---—-

3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.361/0.434/0.571/0.118 ms

185

Chapter 18 Tuning NetBSD

Not only does ping tell us if a host is alive, it tells us how long it took and gives some nice details at the
very end. If a host cannot be resolved, just the IP address can be specified as well:

ping -c 1 172.16.20.5
PING ash (172.16.20.5): 56 data bytes
64 bytes from 172.16.20.5: icmp_seq=0 ttl=64 time=0.452 ms

--—-ash PING Statistics----
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.452/0.452/0.452/0.000 ms

Now, not unlike any other tool, the times are very subjective, especially in regards to networking. For
example, while the times in the examples are good, take a look at the localhost ping:

ping -c 4 |ocal host

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0.091 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=255 time=0.129 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=0.120 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=255 time=0.122 ms

—----localhost PING Statistics-—--
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.091/0.115/0.129/0.017 ms

Much smaller because the request never left the machine. Pings can be used to gather information about
how well a network is performing. It is also good for problem isolation, for instance, if there are three
relatively close in size NetBSD systems on a network and one of them simply has horrible ping times,
chances are something is wrong on that one particular machine.

18.5.2 traceroute

The traceroute(8) command is great for making sure a path is available or detecting problems on a
particular path. As an example, here is a trace between the example ftp server and ftp.NetBSD.org:

traceroute ftp.NetBSD. org
traceroute to ftp_NetBSD.org (204.152.184.75), 30 hops max, 40 byte packets
1 208.44.95.1 (208.44.95.1) 1.646 ms 1.492 ms 1.456 ms

2 63.144.65.170 (63.144.65.170) 7.318 ms 3.249 ms 3.854 ms

3 chcgOl-edgel8.il.inet.qwest.net (65.113.85.229) 35.982 ms 28.667 ms 21.971 ms
4 chcgOl-coreOl.il.inet.gwest.net (205.171.20.1) 22.607 ms 26.242 ms 19.631 ms

5 snvaOl-coreOl.ca.inet.qwest._net (205.171.8.50) 78.586 ms 70.585 ms 84.779 ms

6 snvaOl-coreO3.ca.inet.gwest.net (205.171.14.122) 69.222 ms 85.739 ms 75.979 ms
7 paix01l-brdr02.ca.inet_gwest.net (205.171.205.30) 83.882 ms 67.739 ms 69.937 ms
8 198.32.175.3 (198.32.175.3) 72.782 ms 67.687 ms 73.320 ms

9 s0-1-0-0.orpa8.pf.isc.org (192.5.4.231) 78.007 ms 81.860 ms 77.069 ms

10 tunO.orrc5.pf.isc.org (192.5.4.165) 70.808 ms 75.151 ms 81.485 ms

11 ftp.NetBSD.org (204.152.184.75) 69.700 ms 69.528 ms 77.788 ms

All in all, not bad. The trace went from the host to the local router, then out onto the provider network
and finally out onto the Internet looking for the final destination. How to interpret traceroutes, again, are
subjective, but abnormally high times in portions of a path can indicate a bottleneck on a piece of

186

Chapter 18 Tuning NetBSD

network equipment. Not unlike ping, if the host itself is suspect, run traceroute from another host to the
same destination. Now, for the worst case scenario:

traceroute www. m crosoft.com

traceroute: Warning: www.microsoft.com has multiple addresses; using 207.46.230.220

traceroute to www.microsoft._akadns.net (207.46.230.220), 30 hops max, 40 byte packets
1 208.44.95.1 (208.44.95.1) 2.517 ms 4.922 ms 5.987 ms

©oOo~NOOUTA~WN

e
N RO

13 * * *

63.144.65.170 (63.144.65.170) 10.981 ms 3.374 ms 3.249 ms
chcgOl-edgel8.il.inet.qwest.net (65.113.85.229) 37.810 ms 37.505 ms 20.795 ms
chcgOl-coreO3.il._inet.qwest._net (205.171.20.21) 36.987 ms 32.320 ms
chcgO01-brdrO3.il.inet.qwest._net (205.171.20.142) 33.155 ms 32.859 ms 33.462 ms
205.171.1.162 (205.171.1.162) 39.265 ms 20.482 ms 26.084 ms
sl-bb24-chi-13-0.sprintlink.net (144.232.26.85) 26.681 ms 24.000 ms
sl-bb21-sea-10-0.sprintlink.net (144.232.20.30) 65.329 ms 69.694 ms 76.704 ms
sl-bb21-tac-9-1.sprintlink.net (144.232.9.221) 65.659 ms
144 .232.187.194 (144.232.187.194) 104.657 ms 89.958 ms 91.754 ms
207.46.154.1 (207.46.154.1) 89.197 ms 84.527 ms 81.629 ms
207.46.155.10 (207.46.155.10) 78.090 ms 91.550 ms 89.480 ms

22.430 ms

28.975 ms

66.797 ms 74.408 ms

In this case, the Microsoft server cannot be found either because of multiple addresses or somewhere
along the line a system or server cannot reply to the information request. At that point, one might think to
try ping, in the Microsoft case, a ping does not reply, that is because somewhere on their network ICMP

is most likely disabled.

18.5.3 netstat

Another problem that can crop up on a NetBSD system is routing table issues. These issues are not
always the systems fault. The route(8) and netstat(1) commands can show information about routes and
network connections (respectively).

The route command can be used to look at and modify routing tables while netstat can display
information about network connections and routes. First, here is some output from route show:

route show

Routing tables

Internet:
Destination
default
loopback
localhost
172.15.13.0
172.16.0.0
172.16.14.8
172.16.14.10
marie
172.16.14.37
172.16.16.15
loghost
artemus

Gateway
208.44.95.1
127.0.0.1
127.0.0.1
172.16.14.37
link#2
0:80:d3:cc:2c:0
link#2
0:10:83:f9:6F:2C
0:5:32:8F:d2:35
link#2
8:0:20:a7:f0:75
8:0:20:a8:d:7e

Flags
UG
UG
UH
UG

UH
UH
UH
UH
UH
UH
UH

187

ash
208.44.95.0
208.44.95.

208.44.9

1
2
208.44.95.2

5.
5.25
Internet6:
Destination
default
default
localhost
::127.0.0.0
::224.0.0.0
::255.0.0.0
cFFFF:0.0.0.0
2002::
2002:7F00::
2002:e000::
2002:ff00::
fe80::

fe80: :%ex0
fe80: - %ex1
fe80: :%100
fecO::
ffr01::

FF02: -%ex0
FF02: - %ex1
FF02: :%100

0:b0:d0:de:49:df
link#1
0:4:27:3:94:20
0:5:32:8f:d2:34
0:¢c0:4F:10:79:92

Gateway
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
link#1
link#2
fe80::1%l100
localhost
localhost
link#1
link#2
fe80::1%l100

UH

UH
UH
UH

Flags
UG
UG
UH
UG
UG
UG
UG
UG
UG
UG
UG
UG

cCc CccC

cCCcCccc

Chapter 18 Tuning NetBSD

The flags section shows the status and whether or not it is a gateway. In this case we see U, Hand G (U is

up, H is host and G is gateway, see the man page for additional flags).

Now for some netstat output using the -r (routing) and -n (show network numbers) options:

Routing tables

Internet:
Destination
default
127
127.0.0.1
172.15.13/24
172.16
Internet6:
Destination

Mtu Interface
::/104
33228
::/96

100 =>

Gateway
208.44.95.1
127.0.0.1
127.0.0.1
172.16.14.37
link#2

Flags Refs
uGs 0
UGRS 0
UH 1
uGs 0
uc 13

Gateway

o1

g

Use Mtu Interface
330309 1500 ex0
0 33228 100
1624 33228 100

0 1500 ex1
0 1500 ex1

Flags Refs Use
UGRS 0 0
UGRS 0 0

The above output is a little more verbose. So, how can this help? Well, a good example is when routes
between networks get changed while users are connected. | saw this happen several times when someone

188

Chapter 18 Tuning NetBSD

was rebooting routers all day long after each change. Several users called up saying they were getting
kicked out and it was taking very long to log back in. As it turned out, the clients connecting to the
system were redirected to another router (which took a very long route) to reconnect. | observed the M
flag or Modified dynamically (by redirect) on their connections. | deleted the routes, had them reconnect
and summarily followed up with the offending technician.

18.5.4 tcpdump

Last, and definitely not least is tcpdump(8), the network sniffer that can retrieve a lot of information. In
this discussion, there will be some sample output and an explanation of some of the more useful options
of tcpdump.

Following is a small snippet of tcpdump in action just as it starts:

tcpdunp

tcpdump: listening on ex0

14:07:29.920651 mail.ssh > 208.44.95.231.3551: P 2951836801:2951836845(44) ack 2
476972923 win 17520 <nop,nop,timestamp 1219259 128519450> [tos 0x10]
14:07:29.950594 12.125.61.34 > 208.44.95.16: ESP(spi=2548773187,seq=0x3e8c) (DF)
14:07:29.983117 smtp.somecorp.com.smtp > 208.44.95.30.42828: . ack 420285166 win
16500 (DF)

14:07:29.984406 208.44.95.30.42828 > smtp.somecorp.com.smtp: . 1:1376(1375) ack 0O
win 7431 (DF)

Given that the particular server is a mail server, what is shown makes perfect sense, however, the utility
is very verbose, | prefer to initially run tcpdump with no options and send the text output into a file for
later digestion like so:

tcpdunp > tcpdunp. out
tcpdump: listening on ex0

So, what precisely in the mish mosh are we looking for? In short, anything that does not seem to fit, for
example, messed up packet lengths (as in a lot of them) will show up as improper lens or malformed
packets (basically garbage). If, however, we are looking for something specific, tcpdump may be able to
help depending on the problem.

18.5.4.1 Specific tcpdump Usage
These are just examples of a few things one can do with tcpdump.

Look for duplicate IP addresses:
tcpdunp -e host ip-address
For example:

tcpdunp -e host 192.168.0.2
Routing Problems:

t cpdunp icnp

189

Chapter 18 Tuning NetBSD

There are plenty of third party tools available, however, NetBSD comes shipped with a good tool set for
tracking down network level performance problems.

18.6 Accounting

The NetBSD system comes equipped with a great deal of performance monitors for active monitoring,
but what about long term monitoring? Well, of course the output of a variety of commands can be sent to
files and re-parsed later with a meaningful shell script or program. NetBSD does, by default, offer some
extraordinarily powerful low level monitoring tools for the programmer, administrator or really astute
hobbyist.

18.6.1 Accounting

While accounting gives system usage at an almost userland level, kernel profiling with gprof provides
explicit system call usage.

Using the accounting tools can help figure out what possible performance problems may be laying in
wait, such as increased usage of compilers or network services for example.

Starting accounting is actually fairly simple, as root, use the accton(8) command. The syntax to start
accounting is: accton filename

Where accounting information is appended to filename, now, strangely enough, the lastcomm command
which reads from an accounting output file, by default, looks in /var/account/acct so | tend to just
use the default location, however, lastcomm can be told to look elsewhere.

To stop accounting, simply type accton with no arguments.

18.6.2 Reading Accounting Information

To read accounting information, there are two tools that can be used:

« lastcomm(1)
« 5a(8)

18.6.2.1 lastcomm

The lastcomm command shows the last commands executed in order, like all of them. It can, however,
select by user, here is some sample output:

$ lastcomm jrf

last - jgrf ttyp3 0.00 secs Tue Sep 3 14:39 (0:00:00.02)
man - jgrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
sh - jgrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
less - jgrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
lastcomm - grf ttyp3 0.02 secs Tue Sep 3 14:38 (0:00:00.02)
stty - grf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
tset - jgrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:01.05)

190

hostname
Is

jgrf
jgrf

ttyp3
ttypO

Chapter 18 Tuning NetBSD

0.00 secs Tue Sep 3 14:38 (0:00:00.02)
0.00 secs Tue Sep 3 14:36 (0:00:00.00)

Pretty nice, the lastcomm command gets its information from the default location of /var/account/acct,
however, using the -f option, another file may be specified.

As may seem obvious, the output of lastcomm could get a little heavy on large multi user systems. That
is where sa comes into play.

18.6.2.2 sa

The sa command (meaning "print system accounting statistics™) can be used to maintain information. It
can also be used interactively to create reports. Following is the default output of sa:

$ sa
77
3
2

N

10

A wWwNA~DN

10
11

©

12

From left to right, total times called, real time in minutes, sum of user and system time, in minutes,
Average number of 1/O operations per execution, size, command name.

[
[oe]

WO WOWOOOOOORr O N

.62re
27re
.68re
.09re
.6lre
.Olre
.00re
.00re
.0O3re
.02re
-98re
.00re
.95re
.00re
.97re

eNeolNeoNeoNeoNoNeolNoNoNoNoNeolNoNolNol

-02cp
-Olcp
-00cp
-00cp
.00cp
-00cp
.00cp
-00cp
.00cp
-00cp
.00cp
.00cp
-00cp
.00cp
-00cp

8avio
45avio
33avio
23avio
7avio
29avio
8avio
3avio
lavio
10avio
2avio
Oavio
12avio
4avio
lavio

Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok

ispell
mutt

Vi
***other
exim
lastcomm
atrun
cron*
exim*
less

Is

man

sa

sh

The sa command can also be used to create summary files or reports based on some options, for example,
here is the output when specifying a sort by CPU-time average memory usage:

$ sa -k
86
10

P WOAOADNMNWNDN

12
13

N

w
o

OO WOWOM~MOOOOO

.81re
.6lre
.00re
.03re
.Olre
.02re
27re
.00re
.O4re
.00re
.Olre
.68re
.00re

eNeoNeoNeolNoNoNolNoNoNeoNeoNoNe

.02cp
-00cp
.00cp
-00cp
.00cp
-00cp
.Olcp
.00cp
-00cp
.00cp
-00cp
.00cp
-00cp

8avio
7avio
3avio
lavio
29avio
10avio
45avio
8avio
2avio
Oavio
12avio
33avio
4avio

Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok
Ok

***other
atrun
cron*
exim
exim*
ispell
lastcomm
less

Is

man

mutt

sa

191

Chapter 18 Tuning NetBSD

14 8.03re 0.00cp lavio Ok sh

2 1.09re 0.00cp 23avio Ok vi

The sa command is very helpful on larger systems.

18.6.3 How to Put Accounting to Use

Accounting reports, as was mentioned earlier, offer a way to help predict trends, for example, on a
system that has cc and make being used more and more may indicate that in a few months some changes
will need to be made to keep the system running at an optimum level. Another good example is web
server usage. If it begins to gradually increase, again, some sort of action may need to be taken before it
becomes a problem. Luckily, with accounting tools, said actions can be reasonably predicted and planned
for ahead of time.

18.7 Kernel Profiling

Profiling a kernel is normally employed when the goal is to compare the difference of new changes in the
kernel to a previous one or to track down some sort of low level performance problem. Two sets of data
about profiled code behavior are recorded independently: function call frequency and time spent in each
function.

18.7.1 Getting Started

First, take a look at both Section 18.9 and Chapter 29. The only difference in procedure for setting up a
kernel with profiling enabled is when you run config add the -p option. The build area is

- ./compi le/<KERNEL_NAME>.PROF, for example, a GENERIC kernel would be

. ./compile/GENERIC.PROF

Following is a quick summary of how to compile a kernel with profiling enabled on the i386 port, the
assumptions are that the appropriate sources are available under Zusr/src and the GENERIC
configuration is being used, of course, that may not always be the situation:

1.cd /usr/src/sys/arch/i 386/ conf
2.config -p GENERI C

3.cd ../conpil e/ GENERI C. PROF

4. make depend && nake

5.cp /netbsd /netbsd. ol d

6.cp netbsd /

7.reboot

Once the new kernel is in place and the system has rebooted, it is time to turn on the monitoring and start
looking at results.

192

Chapter 18 Tuning NetBSD
18.7.1.1 Using kgmon
To start kgmon:

$ kgnon -Db
kgmon: kernel profiling is running.

Next, send the data into the file gmon.out:
$ kgnon -p

Now, it is time to make the output readable:
$ gprof /netbsd > gprof.out

Since gmon is looking for gmon . out, it should find it in the current working directory.

By just running kgmon alone, you may not get the information you need, however, if you are comparing
the differences between two different kernels, then a known good baseline should be used. Note that it is
generally a good idea to stress the subsystem if you know what it is both in the baseline and with the
newer (or different) kernel.

18.7.2 Interpretation of kgmon Output

Now that kgmon can run, collect and parse information, it is time to actually look at some of that
information. In this particular instance, a GENERIC kernel is running with profiling enabled for about an
hour with only system processes and no adverse load, in the fault insertion section, the example will be
large enough that even under a minimal load detection of the problem should be easy.

18.7.2.1 Flat Profile

The flat profile is a list of functions, the number of times they were called and how long it took (in
seconds). Following is sample output from the quiet system:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ns/call ns/call name
99.77 163.87 163.87 idle
0.03 163.92 0.05 219 228310.50 228354.34 _wdc_ata bio_start
0.02 163.96 0.04 219 182648.40 391184.96 wdc_ata_bio_intr
0.01 163.98 0.02 3412 5861.66 6463.02 pmap_enter
0.01 164.00 0.02 548 36496.35 36496.35 pmap_zero_page
0.01 164.02 0.02 Xspllower
0.01 164.03 0.01 481968 20.75 20.75 gettick
0.01 164.04 0.01 6695 1493.65 1493.65 VOP_LOCK
0.01 164.05 0.01 3251 3075.98 21013.45 syscall_plain

As expected, idle was the highest in percentage, however, there were still some things going on, for
example, a little further down there is the vn_lock function:

193

Chapter 18 Tuning NetBSD

0.00 164.14 0.00 6711 0.00 0.00 VOP_UNLOCK

0.00 164.14 0.00 6677 0.00 1493.65 wvn_lock
0.00 164.14 0.00 6441 0.00 0.00 genfs_unlock

This is to be expected, since locking still has to take place, regardless.

18.7.2.2 Call Graph Profile

The call graph is an augmented version of the flat profile showing subsequent calls from the listed
functions. First, here is some sample output:

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.01% of 164.14 seconds

index % time self children called name
<spontaneous>
[1] 99.8 163.87 0.00 idle [1]
<spontaneous>
[2] 0.1 0.01 0.08 syscalll [2]
0.01 0.06 325173251 syscall_plain [7]
0.00 0.01 414/1660 trap [9]
0.00 0.09 219/219 Xintrl4 [6]
[3] 0.1 0.00 0.09 219 pciide_compat_intr [3]
0.00 0.09 219/219 wdcintr [5]

Now this can be a little confusing. The index number is mapped to from the trailing number on the end of
the line, for example,

0.00 0.01 85/85 dofilewrite [68]
[72] 0.0 0.00 0.01 85 soo_write [72]
0.00 0.01 85789 sosend [71]

Here we see that dofilewrite was called first, now we can look at the index number for 64 and see what
was happening there:

0.00 0.01 1017103 ffs_full_fsync <cycle 6> [58]
[64] 0.0 0.00 0.01 103 bawrite [64]
0.00 0.01 1037105 VOP_BWRITE [60]

And so on, in this way, a "visual trace" can be established.

194

Chapter 18 Tuning NetBSD

At the end of the call graph right after the terms section is an index by function name which can help
map indexes as well.

18.7.3 Putting it to Use

In this example, | have modified an area of the kernel I know will create a problem that will be blatantly
obvious.

Here is the top portion of the flat profile after running the system for about an hour with little interaction
from users:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls wus/call wus/call name

93.97 139.13 139.13 idle

5.87 147 .82 8.69 23 377826.09 377842.52 check_exec
0.01 147.84 0.02 243 82.30 82.30 pmap_copy_page
0.01 147 .86 0.02 131 152.67 152.67 _wdc_ata bio_start
0.01 147 .88 0.02 131 152 .67 271.85 wdc_ata_bio_intr
0.01 147 .89 0.01 4428 2.26 2.66 uvn_findpage
0.01 147.90 0.01 4145 2.41 2.41 uvm_pageactivate
0.01 147 .91 0.01 2473 4.04 3532.40 syscall_plain
0.01 147.92 0.01 1717 5.82 5.82 i486_copyout
0.01 147.93 0.01 1430 6.99 56.52 uvm_fault

0.01 147 .94 0.01 1309 7.64 7.64 pool_get

0.01 147 .95 0.01 673 14.86 38.43 genfs_getpages
0.01 147 .96 0.01 498 20.08 20.08 pmap_zero_page
0.01 147.97 0.01 219 45.66 46.28 uvm_unmap_remove
0.01 147 .98 0.01 111 90.09 90.09 selscan

As is obvious, there is a large difference in performance. Right off the bat the idle time is noticeably less.
The main difference here is that one particular function has a large time across the board with very few
calls. That function is check_exec. While at first, this may not seem strange if a lot of commands had
been executed, when compared to the flat profile of the first measurement, proportionally it does not
seem right:

0.00 164.14 0.00 37 0.00 62747.49 check_exec

The call in the first measurement is made 37 times and has a better performance. Obviously something in
or around that function is wrong. To eliminate other functions, a look at the call graph can help, here is
the first instance of check_exec

0.00 8.69 23/23 syscall_plain [3]
[4] 5.9 0.00 8.69 23 sys_execve [4]

195

Chapter 18 Tuning NetBSD

8.69 0.00 23/23 check_exec [5]
0.00 0.00 20/20 el f32_copyargs [67]

Notice how the time of 8.69 seems to affect the two previous functions. It is possible that there is
something wrong with them, however, the next instance of check_exec seems to prove otherwise:

8.69 0.00 23/23 sys_execve [4]
[5]1 5.9 8.69 0.00 23 check_exec [5]

Now we can see that the problem, most likely, resides in check_exec. Of course, problems are not always
this simple and in fact, here is the simpleton code that was inserted right after check_exec (the function is
in sys/kern/kern_exec.c):

/* A Cheap fault insertion */
for (x = 0; x < 100000000; x++) {
y = X3

}

Not exactly glamorous, but enough to register a large change with profiling.

18.7.4 Summary

Kernel profiling can be enlightening for anyone and provides a much more refined method of hunting
down performance problems that are not as easy to find using conventional means, it is also not nearly as
hard as most people think, if you can compile a kernel, you can get profiling to work.

18.8 System Tuning

Now that monitoring and analysis tools have been addressed, it is time to look into some actual methods.
In this section, tools and methods that can affect how the system performs that are applied without
recompiling the kernel are addressed, the next section examines kernel tuning by recompiling.

18.8.1 Using sysctl

The sysctl utility can be used to look at and in some cases alter system parameters. There are so many
parameters that can be viewed and changed they cannot all be shown here, however, for the first example
here is a simple usage of sysctl to look at the system PATH environment variable:

$ sysctl user.cs_path
user.cs_path = /usr/bin:/bin:/usr/sbin:/sbin:/usr/pkg/bin:/usr/pkg/sbin:/usr/local/bin:/

196

Chapter 18 Tuning NetBSD

Fairly simple. Now something that is actually related to performance. As an example, lets say a system
with many users is having file open issues, by examining and perhaps raising the kern.maxfiles parameter
the problem may be fixed, but first, a look:

$ sysctl kern.maxfiles
kern.maxfiles = 1772

Now, to change it, as root with the -w option specified:

sysctl -w kern.maxfil es=1972
kern.maxfiles: 1772 -> 1972

Note, when the system is rebooted, the old value will return, there are two cures for this, first, modify
that parameter in the kernel and recompile, second (and simpler) add this line to /etc/sysctl .conf:

kern.maxfiles=1972

18.8.2 memfs & softdeps

An operating system can often benefit from a few configuration changes (along the same lines, it can also
be of great detriment). Two particular cases where system performance can be changed are by using
memory based filesystems and/or soft updates.

18.8.2.1 Using memfs

When to use and not to use the memory based filesystem can be hard on large multi user systems. In
some cases, however, it makes pretty good sense, for example, on a development machine used by only
one developer at a time, the obj directory might be a good place, or some of the tmp directories for
builds. In a case like that, it makes sense on machines that have a fair amount of RAM on them. On the
other side of the coin, if a system only has 16MB of RAM and /var/tmp is memfs based, there could be
severe applications issues that occur.

The GENERIC kernel has memfs enabled by default. To use it on a particular directory first determine
where the swap space is that you wish to use, in the example case, a quick look in Zetc/fstab indicates
that /dev/wdOb is the swap partition:

mail% cat /etc/fstab
/dev/wdOa / ffs rw 1 1
/dev/wdOb none swap sw 0 O
/kern /kern kernfs rw

This system is a mail server so | only want to use /tmp with memfs, also on this particular system | have
linked /tmp to /var/tmp to save space (they are on the same drive). All | need to do is add the
following entry:

/dev/wdOb /var/tmp mfs rw O O

Now, a word of warning, make sure said directories are empty and nothing is using them when you
mount the memory file system! At this point | can either mount -a or reboot the system.

197

Chapter 18 Tuning NetBSD

18.8.2.2 Using softdeps

Soft-dependencies is a mechanism that does not write meta-data to disk immediately, but it is written in
an ordered fashion, which keeps the filesystem consistent. Section 5.9 describes how to enable
soft-dependencies. A great deal more information about softdep capabilities can be found on the author’s
page (http://www.mckusick.com/softdep/index.html).

18.9 Kernel Tuning

While many system parameters can be changed with sysctl, many improvements by using enhanced
system software, layout of the system and managing services (moving them in and out of inetd for
example) can be achieved as well. Tuning the kernel however will provide better performance, even if it
appears to be marginal.

18.9.1 Preparing to Recompile a Kernel

First, get the kernel sources for the release as described in Chapter 27, reading Chapter 29 for more
information on building the kernel is recommended. Note, this document can be used for -current tuning,
however, a read of the Tracking -current (http://www.NetBSD.org/Documentation/current/)
documentation should be done first, much of the information there is repeated here.

18.9.2 Configuring the Kernel

Configuring a kernel in NetBSD can be daunting. This is because of multiple line dependencies within
the configuration file itself, however, there is a benefit to this method and that is, all it really takes is an
ASCII editor to get a new kernel configured and some dmesg output. The kernel configuration file is
under src/sys/arch/ARCH/conf where ARCH is your architecture (for example, on a SPARC it
would be under src/sys/arch/sparc/conf).

After you have located your kernel config file, copy it and remove (comment out) all the entries you
don’t need. This is where dmesg(8) becomes your friend. A clean dmesg(8)-output will show all of the
devices detected by the kernel at boot time. Using dmesg(8) output, the device options really needed can
be determined. For some automation, check the "adjustkernel” package.

18.9.2.1 Some example Configuration Iltems

In this example, an ftp server’s kernel is being reconfigured to run with the bare minimum drivers and
options and any other items that might make it run faster (again, not necessarily smaller, although it will
be). The first thing to do is take a look at some of the main configuration items. So, in
/usr/src/sys/arch/i386/conf the GENERIC file is copied to FTP, then the file FTP edited.

At the start of the file there are a bunch of options beginning with maxusers, which will be left alone,
however, on larger multi-user systems it might be help to crank that value up a bit. Next is CPU support,
looking at the dmesg output this is seen:

cpuO: Intel Pentium I1/Celeron (Deschutes) (686-class), 400.93 MHz

198

Chapter 18 Tuning NetBSD

Indicating that only the options 1686_CPU options needs to be used. In the next section, all options are
left alone except the PIC_DELAY which is recommended unless it is an older machine. In this case it is
enabled since the 686 is “relatively new.”

Between the last section all the way down to compat options there really was no need to change anything
on this particular system. In the compat section, however, there are several options that do not need to be
enabled, again this is because this machine is strictly a FTP server, all compat options were turned off.

The next section is File systems, and again, for this server very few need to be on, the following were left
on:

File systems

file-system FFS # UFS

file-system LFS # log-structured file system
file-system MFS # memory Ffile system

file-system CD9660 # 1SO 9660 + Rock Ridge file system
file-system FDESC # /dev/fd

file-system KERNFS # /kern

file-system NULLFS # loopback Ffile system

file-system PROCFS # /proc

file-system UMAPFS # NULLFS + uid and gid remapping
options SOFTDEP # FFS soft updates support.

Next comes the network options section. The only options left on were:

options INET # IP + ICMP + TCP + UDP
options INET6 # IPV6
options IPFILTER_LOG # ipmon(8) log support

IPFILTER_LOG is a nice one to have around since the server will be running ipf.

The next section is verbose messages for various subsystems, since this machine is already running and
had no major problems, all of them are commented out.

18.9.2.2 Some Drivers

The configurable items in the config file are relatively few and easy to cover, however, device drivers are
a different story. In the following examples, two drivers are examined and their associated “areas” in the
file trimmed down. First, a small example: the cdrom, in dmesg, is the following lines:

cd0 at atapibusO drive 0: <CD-540E, , 1.0A> type 5 cdrom removable

cd0: 32-bit data port

cdO: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 2

pciide0O: secondary channel interrupting at irg 15

cdO(pciide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (using DMA data transfer

Now, it is time to track that section down in the configuration file. Notice that the "cd"-drive is on an
atapibus and requires pciide support. The section that is of interest in this case is the kernel config’s "IDE
and related devices" section. It is worth noting at this point, in and around the IDE section are also ISA,

199

Chapter 18 Tuning NetBSD

PCMCIA etc., on this machine in the dmesg(8) output there are no PCMCIA devices, so it stands to
reason that all PCMCIA references can be removed. But first, the "cd" drive.

At the start of the IDE section is the following:

wd* at atabus? drive ? flags 0x0000

atapibus* at atapi?
Well, it is pretty obvious that those lines need to be kept. Next is this:

ATAPI devices
flags have the same meaning as for IDE drives.

cd* at atapibus? drive ? flags 0x0000 # ATAPI CD-ROM drives
sd* at atapibus? drive ? flags 0x0000 # ATAPI disk drives
st* at atapibus? drive ? flags 0x0000 # ATAPI tape drives
uk* at atapibus? drive ? flags 0x0000 # ATAPI unknown

The only device type that was in the dmesg(8) output was the cd, the rest can be commented out.

The next example is slightly more difficult, network interfaces. This machine has two of them:

ex0 at pciO dev 17 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x64)
ex0: interrupting at irq 10

ex0: MAC address 00:50:04:83:ff:b7

Ul 0x001018 model 0x0012 rev O at ex0 phy 24 not configured

exl at pciO dev 19 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x30)
ex1l: interrupting at irq 11

exl: MAC address 00:50:da:63:91:2e

exphyO at ex1l phy 24: 3Com internal media interface

exphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

At first glance it may appear that there are in fact three devices, however, a closer look at this line:
exphyO at ex1l phy 24: 3Com internal media interface

Reveals that it is only two physical cards, not unlike the cdrom, simply removing names that are not in
dmesg will do the job. In the beginning of the network interfaces section is:

Network Interfaces

PCI network interfaces

an* at pci? dev ? function ? # Aironet PC4500/PC4800 (802.11)
bge* at pci? dev ? function ? # Broadcom 570x gigabit Ethernet
en* at pci? dev ? function ? # EN1/Adaptec ATM

ep* at pci? dev ? function ? # 3Com 3c59x

epic* at pci? dev ? function ? # SMC EPIC/100 Ethernet

esh* at pci? dev ? function ? # Essential HIPPI card

200

Chapter 18 Tuning NetBSD

ex* at pci? dev ? function ? # 3Com 90x[BC]

There is the ex device. So all of the rest under the PCI section can be removed. Additionally, every single
line all the way down to this one:

exphy* at mii? phy ? # 3Com internal PHYs

can be commented out as well as the remaining.

18.9.2.3 Multi Pass

When | tune a kernel, 1 like to do it remotely in an X windows session, in one window the dmesg output,
in the other the config file. It can sometimes take a few passes to rebuild a very trimmed kernel since it is
easy to accidentally remove dependencies.

18.9.3 Building the New Kernel

Now it is time to build the kernel and put it in place. In the conf directory on the ftp server, the following
command prepares the build:

$ config FTP
When it is done a message reminding me to make depend will display, next:

$ cd ../conpil el FTP
$ make depend && neke

When it is done, | backup the old kernel and drop the new one in place:

cp /netbsd /netbsd.orig
cp netbsd /

Now reboot. If the kernel cannot boot, stop the boot process when prompted and type boot
net bsd. ori g to boot from the previous kernel.

18.9.4 Shrinking the NetBSD kernel

When building a kernel for embedded systems, it’s often necessary to modify the Kernel binary to reduce
space or memory footprint.

18.9.4.1 Removing ELF sections and debug information

We already know how to remove Kernel support for drivers and options that you don’t need, thus saving
memory and space, but you can save some KiloBytes of space by removing debugging symbols and two
ELF sections if you don’t need them: _.comment and . ident. They are used for storing RCS strings
viewable with ident(1) and a gcc(1) version string. The following examples assume you have your
TOOLDIR under Zusr/src/tooldir _NetBSD-2.0-i386 and the target architecture is i386.

201

Chapter 18 Tuning NetBSD

$ /usr/src/tool dir.Net BSD-2. 0-i 386/ bi n/i 386- - net bsdel f-obj dunp -h /netbsd

/netbsd: file format elf32-i386
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0057a374 ¢0100000 c0100000 00001000 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata 00131433 c067a380 c067a380 0057b380 2**5

CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .rodata.strl.1 00035ea0 c07ab7b3 c07ab7b3 006ac7b3 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA

3 .rodata.strl1.32 00059d13 c07e1l660 c07el1660 006e2660 2**5
CONTENTS, ALLOC, LOAD, READONLY, DATA

4 link_set_malloc_types 00000198 ¢c083b374 c083b374 0073c374 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

5 link_set _domains 00000024 c083b50c c¢083b50c 0073c50c 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

6 link_set_pools 00000158 c083b530 c083b530 0073c530 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

7 link_set_sysctl_funcs 000000f0 c083b688 ¢c083b688 0073c688 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

8 link_set_vfsops 00000044 c083b778 c083b778 0073c778 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

9 link_set_dkwedge_methods 00000004 c083b7bc ¢c083b7bc 0073c7bc 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

10 link_set_bufg_strats 0000000c c083b7c0 ¢083b7cO0 0073c7cO0 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

11 link_set_evcnts 00000030 ¢083b7cc c083b7cc 0073c7cc 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

12 _data 00048ae4 c083c800 c083c800 0073c800 2**5
CONTENTS, ALLOC, LOAD, DATA

13 .bss 00058974 c0885300 c0885300 00785300 2**5
ALLOC

14 _comment 0000cda0 00000000 00000000 00785300 2**0
CONTENTS, READONLY

15 .ident 000119e4 00000000 00000000 007920a0 2**0

CONTENTS, READONLY

On the third column we can see the size of the sections in hexadecimal form. By summing .comment
and . ident sizes we know how much we’re going to save with their removal: around 120KB (= 52640
+ 72164 = Oxcda0 + 0x119e4). To remove the sections and debugging symbols that may be present,
we’re going to use strip(1):

cp /netbsd /netbsd.orig

/usr/src/tool dir.Net BSD-2. 0-i 386/ bi n/i 386--netbsdel f-strip -S -R .ident -R .comment /netbsd
1s -1 /netbsd /netbsd.orig

-rwxr-xr-x 1 root wheel 8590668 Apr 30 15:56 netbsd

-rwxr-xr-x 1 root wheel 8757547 Apr 30 15:56 netbsd.orig

Since we also removed debugging symbols, the total amount of disk space saved is around 160KB.

202

Chapter 18 Tuning NetBSD

18.9.4.2 Compressing the Kernel

On some architectures, the bootloader can boot a compressed kernel. You can save several MegaBytes of
disk space by using this method, but the bootloader will take longer to load the Kernel.

cp /netbsd /netbsd. plain
gzip -9 /netbsd

To see how much space we’ve saved:

$ I's -1 /netbsd.plain /netbsd. gz

-rwxr-xr-x 1 root wheel 8757547 Apr 29 18:05 /netbsd.plain
-rwxr-xr-x 1 root wheel 3987769 Apr 29 18:05 /netbsd.gz

Note that you can only use gzip coding, by using gzip(1), bzip2 is not supported by the NetBSD
bootloaders!

203

Chapter 19
NetBSD Veriexec subsystem

Veriexec is NetBSD'’s file integrity subsystem. It’s kernel based, hence can provide some protection even

in the case of a root compromise. This chapter applies only to NetBSD 3.0 and ownards.

19.1 How it works

Veriexec works by loading a specification file, also called the signatures file, to the kernel. This file

contains information about files Veriexec should monitor, as well as their digital fingerprint (along with

the hashing algorithm used to produce this fingerprint), and various flags that will be discussed later.

At the moment, the following hashing algorithms are supported by Veriexec: MD5, SHA1, SHA256,
SHA384, SHA512, and RMD160.

19.2 Signatures file

An entry in the Veriexec signatures file looks like this:

/path/to/file algorithm fingerprint flags

Where the first element, the path, must always be an absolute path. The algorithm is one of the

algorithms listed above, and fingerprint is the ASCII fingerprint.

19.3 Generating fingerprints

You can generate ASCII fingerprints for each algorithm using the following tools:

Table 19-1. Veriexec fi ngerprintstools

Algorithm Tool

MD5 / usr/ bin/cksum -a nd5
SHA1 /usr/bin/cksum -a shal
SHA256 / usr/ bin/ cksum -a sha256
SHA384 / usr/ bin/cksum -a sha384
SHAS512 / usr/ bin/cksum -a sha512
RMD160 / usr/ bin/cksum -a rnd160

For example, to generate a MD5 fingerprint for /bin/1s:

204

Chapter 19 NetBSD Veriexec subsystem

% cksum -a nmd5 < /bin/ls
a8b525da46e758778564308ed9b1e493

And to generate a SHA512 fingerprint for /bin/ps:

% cksum -a sha512 < /bin/ps
381d4ad64¥d47800897446a2026ecad2151e03adeael58db5a34d12¢c529559113d928a9fef9a7c4615d2576:

Each entry may be associated with zero or more flags. Currently, these flags indicate how the file the
entry is describing should be accessed. Note that this access type is enforced only in strict level 2 (IPS
mode) and above.

The access types you can use are “DIRECT”, “INDIRECT”, and “FILE”.

« DIRECT access means that the file is executed directly, and not invoked as an interpreter for some
script, or opened with an editor. Usually, most programs you use will be accessed using this mode:

%ls /tnmp
% cp ~/foo /tnp/bar
% rm ~/foo

« INDIRECT access means that the file is executed indirectly, and is invoked to interpret a script. This
happens usually when scripts have a #! magic as their first line. For example, if you have a script with
the following as its first line:

#1/bin/sh
And you run it as:
% ./script.sh
Then /bin/sh will be executed indirectly -- it will be invoked to interpret the script.

« FILE entries refer to everything which is not (or should not) be an executable. This includes shared
libraries, configuration files, etc.

Some examples for Veriexec signature file entries:

/bin/ls MD5 dc2el4dc84bdefff4bf9777958c1b20b DIRECT
/usr/bin/perl MD5 914aa8aad47ebd79ccd7909a09ed61f81 INDIRECT
/etc/pf.conf MD5 950el1dd6fcb3f27dflbf6accf7029f7d FILE

Veriexec allows you to specify more than one way to access a file in an entry. For example, even though
/usr/bin/perl is mostly used as an interpreter, it may be desried to be able to execute it directly, too:

/usr/bin/perl MD5 914aa8aad47ebd79ccd7909a09ed61f81 DIRECT, INDIRECT

Shell scripts using #! magic to be “executable” also require two access types: We need them to be
“DIRECT” so we can execute them, and we need them to be “FILE” so that the kernel can feed their
contents to the interpreter they define:

/usr/src/build.sh MD5 e80dbb4c047eccl1d84053174cle9264a DIRECT, FILE

To make it easier to create signature files, and to make the signature files themselves more readable,
Veriexec allows you to use the following aliases:

205

Chapter 19 NetBSD Veriexec subsystem

Table 19-2. Veriexec access type aliases

Alias Expansion
PROGRAM DIRECT
INTERPRETER INDIRECT
SCRIPT DIRECT, FILE
LIBRARY FILE

Sample scripts for generating fingerprints are available in Zusr/share/examples/veriexecctl.
After you’ve generated a signatures file, you should save it as /etc/signatures, and enable Veriexec
in rc.conf:

veriexec=YES

19.4 Strict levels

Since different people might want to use Veriexec for different purposes, we also define four strict levels,
ranging 0-4, and named “learning”, “IDS”, “IPS”, and “lockdown” modes.

In strict level O, learning mode, Veriexec will act passively and simply warn about any anomalies.
Combined with verbose level 1, running the system in this mode can help you fine-tune the signatures
file. This is also the only strict level in which you can load new entries to the kernel.

Strict level 1, or IDS mode, will deny access to files with a fingerprint mismatch. This mode suits mostly
to users who simply want to prevent access to files which might’ve been maliciously modified by an
attacker.

Strict level 2, IPS mode, takes a step towards trying to protect the integrity of monitored files. In
addition to preventing access to files with a fingerprint mismatch, it will also deny write access and
prevent the removal of monitored files, and enforce the way monitored files are accessed. (as the
signatures file specifies).

Lockdown mode (strict level 3) can be used in highly critical situations such as custom made
special-purpose machines, or as a last line of defense after an attacker compromised the system and we
want to prevent traces from being removed, so we can perform post-mortem analysis. It will prevent the
creation of new files, and deny access to files not monitored by Veriexec.

It’s recommended to first run Veriexec in strict level 0 and verbose level 1 to fine-tune your signatures
file, ensuring that desired applications run correctly, and only then raise the strict level (and lower the
verbosity level). You can use Zetc/sysctl . conf to auto raise the strict level to the desired level after a
reboot:

kern.veriexec.strict=1

206

Chapter 19 NetBSD Veriexec subsystem

19.5 Kernel configuration

To use Veriexec, aside from creating a signatures file, you should enable it in your kernel’s config file:
(e.g. Zusr/src/sys/arch/i386/conf/GENERIC. local):

options VERIFIED_EXEC
Then, you need to enable the hashing algorithms you wish to support:

options VERIFIED_EXEC_FP_MD5
options VERIFIED_EXEC_FP_SHAL
options VERIFIED_EXEC_FP_RMD160
options VERIFIED_EXEC FP_SHA512
options VERIFIED_EXEC_FP_SHA384
options VERIFIED_EXEC FP_SHA256

And finally, enable the Veriexec pseudo device:

pseudo-device veriexec 1

All in the same file. Once done, rebuild and reinstall your kernel.

207

Chapter 20
Miscellaneous operations

This chapter collects various topics, in sparse order, which didn’t find a place in the previous chapters.

20.1 Creating a custom install/boot floppies for i386

Sometimes you may want to create your own boot/install floppies for i386 instead use the precompiled
ones, or tailor the ones built by the NetBSD build system. This section outlines the steps to do so.

The overall idea is to have a filesystem with some tools (sysinst, Is, whatever), and embed this filesystem
as some sort of ramdisk into a NetBSD kernel. The kernel needs to include the "md" pseudo device to be
able to hold a ramdisk. The kernel with the ramdisk can then be put on

To perform the following steps, you need to be running a kernel with the vnd pseudo device enabled (this
is the default for a GENERIC kernel).

1. First, you must create a valid kernel to put on your floppies, e.g. INSTALL. This kernel must include
the "md" pseudo device, which allows embedding a ramdisk later. See Chapter 29 for kernel
building instructions.

2. The nextstep is to create the ramdisk that gets embedded into the kernel. The ramdisk contains a
filesystem with whatever tools are needed, usually init(8) and some tools like sysinst, Is(1), etc. To
create the standard ramdisk, go to Zusr/src/distrib/i386/floppies/ramdisk-bigand run
make.

This will create the ramdisk. fs file in the directory. If you want to customize the contents of the
filesystem, customize the list file.

3. Now, the ramdisk gets inserted into the kernel, producing a new kernel which includes the ramdisk,
all in one file. To do so, change into the /usr/src/distrib/i386/floppies/instkernel
directory and run make.

4. The next step is to make one or more floppy images, depending on the size of the kernel (including
the ramdisk). This is done by changing into
/usr/src/distrib/i386/floppies/bootfloppy-big, and running make again.

This will create one or two (depending on the size of kernel) files named boot1 . fs and boot2.fs

5. Last, transfer these files to the floppies with the commands

dd if=bootl.fs of=/dev/fdOa bs=36b
dd if=boot2.fs of=/dev/fdOa bs=36b

6. Put the first floppy in the drive and power on!

208

Chapter 20 Miscellaneous operations

20.2 Synchronizing the system clock with NTP

It is not unusual to find that the system clock is wrong, often by several minutes: for some strange reason
it seems that computer clocks are not very accurate. The problem gets worse if you administer many
networked hosts: keeping the clocks in sync can easily become a nightmare. To solve this problem, the
NTP protocol (version 3) comes to our aid: this protocol can be used to synchronize the clocks of a
network of workstations using one or more NTP servers.

Thanks to the NTP protocol it is possible to adjust the clock of a single workstation but also to
synchronize an entire network. The NTP protocol is quite complex, defining a hierarchical master-slave
structure of servers divided in strata: the top of the hierarchy is occupied by stratum 1 servers, connected
to an external clock (ex. a radio clock) to guarantee a high level of accuracy. Underneath, stratum 2
servers synchronize their clocks with stratum 1, and so on. The accuracy decreases as we proceed
towards lower levels. This hierarchical structure avoids the congestion which could be caused by having
all hosts refer to the same (few) stratum 1 servers. If, for example, you want to synchronize a network,
you don’t connect all the hosts to the same public stratum 1 server. Instead, you create a local server
which connects to the main server and the remaining hosts synchronize their clocks with the local server.

Fortunately, to use the NTP tools you don’t need to understand the details of the protocol and of its
implementation (if you are interested, refer to RFC 1305) and you only need to know how to configure
and start some programs. The base system of NetBSD already contains the necessary tools to utilize this
protocol (and other time related protocols, as we’ll see), derived from the xntp implementation. This
section describes a simple method to always have a correct system time.

First, it is necessary to find the address of the public NTP servers to use as a reference; a detailed listing
can be found at http://ntp.isc.org/bin/view/Servers/WebHome. As an example, for Italy the two stratum 1
servers ntpl.ien.it and ntp2.ien.it can be used.

Next, to adjust the system clock give the following command as root:
ntpdate -b ntpl.ien.it ntp2.ien.it

(substitute the names of the servers in the example with the ones that you are actually using. Option -b
tells ntpdate to set the system time with the settimeofday system call, instead of slewing it with adjtime
(the default). This option is suggested when the difference between the local time and the correct time
can be considerable.

As you’ve seen, ntpdate is not difficult to use. The next step is to start it automatically, in order to always
have the correct system time. If you have a permanent connection to the Internet, you can start the
program at boot with the following line of Zetc/rc.conf:

ntpdate=YES ntpdate_hosts="ntpl.ien.it"

The name of the NTP server to use is specified in the ntpdate_hosts variable; if you leave this field
empty, the boot script will try to extract the name from the Zetc/ntp.conffile.

If you don’t have a permanent Internet connection (ex. you have a dial-up modem connection through an
ISP) you can start ntpdate from the ip-up script, as explained in Chapter 22. In this case add the
following line to the ip-up script:

/usr/sbin/ntpdate -s -b ntpl.ien.it

(the path is mandatory or the script will probably not find the executable). Option -s diverts logging
output from the standard output (this is the default) to the system syslog(3) facility, which means that the

209

Chapter 20 Miscellaneous operations

messages from ntpdate will usually end up in /var/log/messages.

Besides ntpdate there are other useful NTP commands. It is also possible to turn one of the local hosts
into an NTP server for the remaining hosts of the network. The local server will synchronize its clock
with a public server. For this type of configuration you must use the ntpd daemon and create the
/etc/ntp.contf configuration file. For example:

server ntpl.ien.it
server ntp2.ien.it

ntpd can be started too from rc.conf, using the relevant option:
ntpd=YES
NTP is not your only option if you want to synchronize your network: you can also use the timed

daemon or the rdate(8) command as well. timed was developed for 4.3BSD.

Timed too uses a master-slave hierarchy: when started on a host, timed asks the network time to a master
and adjusts the local clock accordingly. A mixed structure, using both timed and ntpd can be used. One of
the local hosts gets the correct time from a public NTP server and is the timed master for the remaining
hosts of network, which become its clients and synchronize their clocks using timed. This means that the
local server must run both NTP and timed; care must be taken that they don’t interfere with each other
(timed must be started with the -F hostname option so that it doesn’t try to adjust the local clock).

Finally, rdate(8) can be used to synchronize once against a given host, much like ntpdate(8). The host in
question must have the "time" service (port 37) enabled in /etc/inetd.conf.

20.3 Installing the boot manager

Sysinst, the NetBSD installation program usually installs the NetBSD boot manager on the hard disk.
The boot manager can also be installed or reconfigured at a later time, if needed, with the fdisk
command. For example:

fdisk -B wd0

If NetBSD doesn’t boot from the hard disk, you can boot it from the installation floppy and start the
kernel on the hard disk. Insert the installation disk and, at the boot prompt, give the following command:

> boot wdOa: net bsd

This boots the kernel on the hard disk (use the correct device, for example sdOa for a SCSI disk).

Note: Sometimes fdisk -B doesn'’t give the expected result (at least it happened to me), probably if
you install/remove other operating systems like Windows 95 or Linux with LILO. In this case, try
running fdisk -i (which is known as fdisk /mbr from DOS) and then run again fdisk from NetBSD.

210

Chapter 20 Miscellaneous operations

20.4 Deleting the disklabel

Though this is not an operation that you need to perform frequently, it can be useful to know how to do it
in case of need. Please be sure to know exactly what you are doing before performing this kind of
operation. For example:

dd if=/dev/zero of=/dev/rwdOc bs=8k count=1

The previous command deletes the disklabel (not the MBR partition table). To completely delete the
disk, the wd0d device must be used. For example:

dd if=/dev/zero of=/dev/rwd0d bs=8k

20.5 Speaker

I found this tip on a mailing list (I don’t remember the author). To output a sound from the speaker (for
example at the end of a long script) the spkr driver can be used in the kernel config, which is mapped on
/dev/speaker. For example:

echo “BPBPBPBPBP” > /dev/speaker

Note: The spkr device is not enabled in the generic kernel; a customized kernel is needed

20.6 Forgot root password?

If you forget root’s password, not all is lost and you can still “recover” the system with the following
steps: boot single user, mount / and change root’s password. In detail:

1. Boot single user: when the boot prompt appears and the five seconds countdown starts, give the
following command:

> boot -s

2. At the following prompt
Enter pathname of shell or RETURN for sh:
press Enter.

3. Write the following commands:

fsck -y [/

mount -u /

fsck -y /usr
mount /usr

4. Change root’s password:

passwd root
Changing local password for root.

211

Chapter 20 Miscellaneous operations

New password: (not echoed)
Retype new password: (not echoed)
#

5. Exit the shell to go to multiuser mode.

exit

20.7 Adding a new hard disk

This section describes how to add a new hard disk to an already working NetBSD system. In the

following example a new SCSI controller and a new hard disk, connected to the controller, will be added.
If you don’t need to add a new controller, skip the relevant part and go to the hard disk configuration. The
installation of an IDE hard disk is identical; only the device name will be different (wd# instead of sd#).

As always, before buying new hardware, consult the hardware compatibility list of NetBSD and make
sure that the new device is supported by the system.

When the SCSI controller has been physically installed in the system and the new hard disk has been
connected, it’s time to restart the computer and check that the device is correctly detected, using the
dmesg command. This is the sample output for an NCR-875 controller:

ncrO at pciO dev 15 function O0: ncr 53c875 fast20 wide scsi

ncrO: interrupting at irqg 10

ncrO: minsync=12, maxsync=137, maxoffs=16, 128 dwords burst, large dma fifo
ncrO: single-ended, open drain IRQ driver, using on-chip SRAM

ncrO: restart (scsi reset).

scsibusO at ncrO: 16 targets, 8 luns per target

sdO(ncr0:2:0): 20.0 MB/s (50 ns, offset 15)

sdO: 2063MB, 8188 cyl, 3 head, 172 sec, 512 bytes/sect x 4226725 sectors

If the device doesn’t appear in the output, check that it is supported by the kernel that you are using; if
necessary, compile a customized kernel (see Chapter 29).

Now the partitions can be created using the fdisk command. First, check the current status of the disk:

fdisk sdO
NetBSD disklabel disk geometry:
cylinders: 8188 heads: 3 sectors/track: 172 (516 sectors/cylinder)

BIOS disk geometry:
cylinders: 524 heads: 128 sectors/track: 63 (8064 sectors/cylinder)

Partition table:
0: sysid 6 (Primary ’big” DOS, 16-bit FAT (> 32MB))
start 63, size 4225473 (2063 MB), flag Ox0

beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

- <UNUSED>

- <UNUSED>

3: <UNUSED>

N =

212

Chapter 20 Miscellaneous operations

In this example the hard disk already contains a DOS partition, which will be deleted and replaced with a
native NetBSD partition. The command fdisk -u sd0 allows to modify interactively the partitions. The
modified data will be written on the disk only before exiting and fdisk will request a confirmation before

writing, so you can work relaxedly.

Disk geometries

The geometry of the disk reported by fdisk can appear confusing. Dmesg reports 4226725
sectors with 8188/3/172 for C/H/S, but 8188*3*172 gives 4225008 and not 4226725. What
happens is that most modern disks don’t have a fixed geometry and the number of sectors
per track changes depending on the cylinder: the only interesting parameter is the number of
sectors. The disk reports the C/H/S values but it’s a fictitious geometry: the value 172 is the
result of the total number of sectors (4226725) divided by 8188 and then by 3.

To make things more confusing, the BIOS uses yet another “fake” geometry (C/H/S
524/128/63) which gives a total of 4225536, a value which is a better approximation to the
real one than 425008. To partition the disk we will use the BIOS geometry, to maintain
compatibility with other operating systems, although we will loose some sectors (4226725 -
4225536 = 1189 sectors = 594 KB).

To create the BIOS partitions the command fdisk -u must be used; the result is the following:

Partition table:
0: sysid 169 (NetBSD)
start 63, size 4225473 (2063 MB), flag Ox0

beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

1: <UNUSED>

2: <UNUSED>

3: <UNUSED>

Now it’s time to create the disklabel for the NetBSD partition. The correct steps to do this are:
di skl abel sdO > tenpfile

vi tenpfile
disklabel -R -r sdO tenpfile

If you try to create the disklabel directly with
di skl abel -e sdO
you get the following message

disklabel: 1octl DIOCWDINFO: No disk label on disk;
use "disklabel -1" to install initial label

because the disklabel does not yet exist on the disk.

Now we create some disklabel partitions, editing the tempfi e as already explained. The result is:

213

Chapter 20 Miscellaneous operations

size offset fstype [fsize bsize cpal

a: 2048004 63 4.2BSD 1024 8192 16 # (Cyl. 0*- 3969%*)

c: 4226662 63 unused 0 0 # (Cyl. 0*- 8191%*)

d: 4226725 0 unused 0 0 # (Cyl. 0 - 8191%)

e: 2178658 2048067 4.2BSD 1024 8192 16 # (Cyl. 3969*- 8191%*)

Note: When the disklabel has been created it is possible to optimize it studying the output of the
command newfs -N /dev/sd0a, which warns about the existence of unallocated sectors at the end of
a disklabel partition. The values reported by newfs can be used to adjust the sizes of the partitions
with an iterative process.

The final operation is the creation of the file systems for the newly defined partitions (a and e).

newfs /dev/sdOa
newfs /dev/sdOe

The disk is now ready for usage, and the two partitions can be mounted. For example:
mount /dev/sdOa /mt

If this succeeds, you may want to put an entry for the partition into /7etc/fstab.

20.8 Password file is busy?

If you try to modify a password and you get the mysterious message “Password file is busy”, it probably
means that the file /etc/ptmp has not been deleted from the system. This file is a temporary copy of the
/etc/master -passwd file: check that you are not loosing important information and then delete it:

rm/etc/ptnp

Note: If the file / et ¢/ pt np exists you can also receive a warning message at system startup. For
example:

root: password file may be incorrect - /etc/ptnp exists

20.9 How to rebuild the devices in /dev

First shutdown to single user, partitions still mounted “rw” (read-write); You can do that by just typing
shutdown now while you are in multi user mode, or reboot with the -s option and make / and /dev
read-writable by doing.

mount -u /
nount -u /dev

Then:

214

nkdir / newdev

cd / newdev

cp / dev/ MAKEDEV*
sh ./ MAKEDEV al |
cd /

nmv dev ol ddev
nv newdev dev
rm-r ol ddev

HoH OH R R R R B

Or if you fetched all the sources in /usr/src:

nkdi r / newdev

cd / newdev

cp /usr/src/etc/ MAKEDEV. | ocal

(cd /usr/src/etc ; make MAKEDEV)
cp /usr/srcl/etc/obj*/ MAKEDEV .

sh ./ MAKEDEV al |

cd /

nv dev ol ddev; nv newdev dev
rm-r ol ddev

H OH H O H OH OH H R

You can determine $arch by
unanme -m
or

sysctl hw machi ne_arch

Chapter 20 Miscellaneous operations

215

V. Networking and related issues

Chapter 21

Introduction to TCP/IP
Networking

21.1 Audience

This section explains various aspects of networking. It is intended to help people with little knowledge
about networks to get started. It is divided into three big parts. We start by giving a general overview of
how networking works and introduce the basic concepts. Then we go into details for setting up various
types of networking in the second parts, and the third part of the networking section covers a number of
“advanced” topics that go beyond the basic operation as introduced in the first two sections.

The reader is assumed to know about basic system administration tasks: how to become root, edit files,
change permissions, stop processes, etc. See the other chapters of this NetBSD guide and e.g.
AeleenFrisch for further information on this topic. Besides that, you should know how to handle the
utilities we’re going to set up here, i.e. you should know how to use telnet, FTP, ... I will not explain the
basic features of those utilities, please refer to the appropriate man-pages, the references listed or of
course the other parts of this document instead.

This introduction to TCP/IP Networking was written with the intention in mind to give starters a basic
knowledge. If you really want to know what it’s all about, read CraigHunt. This book does not only cover
the basics, but goes on and explains all the concepts, services and how to set them up in detail. It’s great,
I loveit! :-)

21.2 Supported Networking Protocols

There are several protocol suites supported by NetBSD, most of which were inherited from NetBSD’s
predecessor, 4.4BSD, and subsequently enhanced and improved. The first and most important one today
is DARPA’s Transmission Control Protocol/Internet Protocol (TCP/IP). Other protocol suites available in
NetBSD include the Xerox Network System (XNS) which was only implemented at UCB to connect
isolated machines to the net, Apple’s AppleTalk protocol suite and the 1SO protocol suite, CCITT X.25
and ARGO TP. They are only used in some special applications these days.

Today, TCP/IP is the most widespread protocol of the ones mentioned above. It is implemented on
almost every hardware and operating system, and it is also the most-used protocol in heterogenous
environments. So, if you just want to connect your computer running NetBSD to some other machine at
home or you want to integrate it into your company’s or university’s network, TCP/IP is the right choice.
Besides the "old" IP version 4, NetBSD also supports the "new" IP version 6 (IPv6) since NetBSD 1.5,
thanks to code contributed by the KAME project.

217

Chapter 21 Introduction to TCP/IP Networking

There are other protocol suites such as DECNET, Novell’s IPX/SPX or Microsoft’s NetBI1OS, but these
are not currently supported by NetBSD. These protocols differ from TCP/IP in that they are proprietary,
in contrast to the others, which are well-defined in several RFCs and other open standards.

21.3 Supported Media

The TCP/IP protocol stack behaves the same regardless of the underlying media used, and NetBSD
supports a wide range of these, among them are Ethernet (10/100/1000MBd), Arcnet, serial line, ATM,
FDDI, Fiber Channel, USB, HIPPI, FireWire (IEEE 1394), Token Ring, and serial lines.

21.3.1 Serial Line

There are a couple of reasons for using TCP/IP over a serial line.

- If your remote host is only reachable via telephone, you can use a modem to access it.
« Many computers have a serial port, and the cable needed is rather cheap.

The disadvantage of a serial connection is that it’s slower than other methods. NetBSD can use at most
115200 bit/s, making it a lot slower than e.g. Ethernet’s minimum 10 Mbit/s and Arcnet’s 4 Mbit/s.

There are two possible protocols to connect a host running NetBSD to another host using a serial line
(possibly over a phone-line):

« Serial Line IP (SLIP)
« Point to Point Protocol (PPP)

The choice here depends on whether you use a dial-up connection through a modem or if you use a static
connection (null-modem or leased line). If you dial up for your IP connection, it’s wise to use PPP as it
offers some possibilities to auto-negotiate IP-addresses and routes, which can be quite painful to do by
hand. If you want to connect to another machine which is directly connected, use SLIP, as this is
supported by about every operating system and more easy to set up with fixed addresses and routes.

PPP on a direct connection is a bit difficult to setup, as it’s easy to timeout the initial handshake; with
SLIP, there’s no such initial handshake, i.e. you start up one side, and when the other site has its first
packet, it will send it over the line.

RFC1331 and RFC1332 describe PPP and TCP/IP over PPP. SLIP is defined in RFC1055.

21.3.2 Ethernet

Ethernet is the medium commonly used to build local area networks (LANS) of interconnected machines
within a limited area such as an office, company or university campus. Ethernet is based on a bus
structure to which many machines can connect to, and communication always happens between two
nodes at a time. When two or more nodes want to talk at the same time, both will restart communication
after some timeout. The technical term for this is CSMA/CD (Carrier Sense w/ Multiple Access and
Collision Detection).

Initially, Ethernet hardware consisted of a thick (yellow) cable that machines tapped into using special
connectors that poked through the cable’s outer shielding. The successor of this was called 10base5,

218

Chapter 21 Introduction to TCP/IP Networking

which used BNC-type connectors for tapping in special T-connectors and terminators on both ends of the
bus. Today, ethernet is mostly used with twisted pair lines which are used in a collapsed bus system that
are contained in switches or hubs. The twisted pair lines give this type of media its name - 10baseT for
10 Mbit/s networks, and 100baseT for 100 MBit/s ones. In switched environments there’s also the
distinction if communication between the node and the switch can happen in half- or in full duplex mode.

21.4 TCP/IP Address Format

TCP/IP uses 4-byte (32-bit) addresses in the current implementations (IPv4), also called IP-numbers
(Internet-Protocol numbers), to address hosts.

TCP/IP allows any two machines to communicate directly. To permit this all hosts on a given network
must have a unique IP address. To assure this, IP addresses are administrated by one central organisation,
the InterNIC. They give certain ranges of addresses (network-addresses) directly to sites which want to
participate in the internet or to internet-providers, which give the addresses to their customers.

If your university or company is connected to the Internet, it has (at least) one such network-address for
its own use, usually not assigned by the InterNIC directly, but rather through an Internet Service Provider
(ISP).

If you just want to run your private network at home, see below on how to “build” your own IP
addresses. However, if you want to connect your machine to the (real :-) Internet, you should get an IP
addresses from your local network-administrator or -provider.

IP addresses are usually written in “dotted quad”-notation - the four bytes are written down in decimal
(most significant byte first), separated by dots. For example, 132.199.15.99 would be a valid address.
Another way to write down IP-addresses would be as one 32-bit hex-word, e.g. 0x84c70f63. This is not
as convenient as the dotted-quad, but quite useful at times, too. (See below!)

Being assigned a network means nothing else but setting some of the above-mentioned 32 address-bits to
certain values. These bits that are used for identifying the network are called network-bits. The
remaining bits can be used to address hosts on that network, therefore they are called host-bits.

Figure 21-1 illustrates the separation.

Figure 21-1. IPv4-addresses are divided into more significant network- and less significant hostbits

n netbits 32-n hostbits

In the above example, the network-address is 132.199.0.0 (host-bits are set to 0 in network-addresses)
and the host’s address is 15.99 on that network.

How do you know that the host’s address is 16 bit wide? Well, this is assigned by the provider from
which you get your network-addresses. In the classless inter-domain routing (CIDR) used today, host
fields are usually between as little as 2 to 16 bits wide, and the number of network-bits is written after the
network address, separated by a “/”, e.g. 132.199.0.0/16 tells that the network in question has 16
network-bits. When talking about the “size” of a network, it’s usual to only talk about it as “/16”, “/24”,
etc.

Before CIDR was used, there used to be four classes of networks. Each one starts with a certain
bit-pattern identifying it. Here are the four classes:

219

Chapter 21 Introduction to TCP/IP Networking

« Class A starts with “0” as most significant bit. The next seven bits of a class A address identify the
network, the remaining 24 bit can be used to address hosts. So, within one class A network there can
be 22* hosts. It’s not very likely that you (or your university, or company, or whatever) will get a whole
class A address.

The CIDR notation for a class A network with its eight network bits is an “/8”.

« Class B starts with “10” as most significant bits. The next 14 bits are used for the networks address
and the remaining 16 bits can be used to address more than 65000 hosts. Class B addresses are very
rarely given out today, they used to be common for companies and universities before IPv4 address
space went scarce.

The CIDR notation for a class B network with its 16 network bits is an “/16”.

Returning to our above example, you can see that 132.199.15.99 (or 0x84c¢70f63, which is more
appropriate here!) is on a class B network, as 0x84... = 1000... (base 2).

Therefore, the address 132.199.15.99 can be split into an network-address of 132.199.0.0 and a
host-address of 15.99.

« Class C is identified by the MSBs being “110”, allowing only 256 (actually: only 254, see below) hosts
on each of the 2 possible class C networks. Class C addresses are usually found at (small) companies.

The CIDR notation for a class C network with its 24 network bits is an “/24”.

« There are also other addresses, starting with “111”. Those are used for special purposes (e. g.
multicast-addresses) and are not of interest here.

Please note that the bits which are used for identifying the network-class are part of the network-address.

When separating host-addresses from network-addresses, the “netmask” comes in handy. In this mask,
all the network-bits are set to “1”, the host-bits are “0”. Thus, putting together IP-address and netmask
with a logical AND-function, the network-address remains.

To continue our example, 255.255.0.0 is a possible netmask for 132.199.15.99. When applying this
mask, the network-address 132.199.0.0 remains.

For addresses in CIDR notation, the number of network-bits given also says how many of the most
significant bits of the address must be set to “1” to get the netmask for the corresponding network. For
classful addressing, every network-class has a fixed default netmask assigned:

« Class A (/8): default-netmask: 255.0.0.0, first byte of address: 1-127
«+ Class B (/16): default-netmask: 255.255.0.0, first byte of address: 128-191
« Class C (/24): default-netmask: 255.255.255.0, first byte of address: 192-223

Another thing to mention here is the “broadcast-address”. When sending to this address, all hosts on the
corresponding network will receive the message sent. The broadcast address is characterized by having
all host-bits set to “1”.

Taking 132.199.15.99 with its netmask 255.255.0.0 again, the broadcast-address would result in
132.199.255.255.

You’ll ask now: But what if | want a host’s address to be all bits “0” or “1”? Well, this doesn’t work, as
network- and broadcast-address must be present! Because of this, a class B (/16) network can contain at
most 2'-2 hosts, a class C (/24) network can hold no more than 28-2 = 254 hosts.

220

Chapter 21 Introduction to TCP/IP Networking

Besides all those categories of addresses, there’s the special IP-address 127.0.0.1 which always refers to
the “local” host, i.e. if you talk to 127.0.0.1 you’ll talk to yourself without starting any network-activity.
This is sometimes useful to use services installed on your own machine or to play around if you don’t
have other hosts to put on your network.

Let’s put together the things we’ve introduced in this section:

IP-address
32 bit-address, with network- and host-bits.

Network-address

IP-address with all host bits set to “0”.

Netmask

32-bit mask with “1” for network- and “0” for host-bits.

Broadcast

IP-address with all host bits set “1”.

locahost’s address
The local host’s IP address is always 127.0.0.1.

21.5 Subnetting and Routing

After talking so much about netmasks, network-, host- and other addresses, | have to admit that this is
not the whole truth.

Imagine the situation at your university, which usually has a class B (/16) address, allowing it to have up
to 2'° ~= 65534 hosts on that net. Maybe it would be a nice thing to have all those hosts on one single
network, but it’s simply not possible due to limitations in the transport media commonly used today.

For example, when using thinwire ethernet, the maximum length of the cable is 185 meters. Even with
repeaters in between, which refresh the signals, this is not enough to cover all the locations where
machines are located. Besides that, there is a maximum number of 1024 hosts on one ethernet wire, and
you’ll loose quite a bit of performance if you go to this limit.

So, are you hosed now? Having an address which allows more than 60000 hosts, but being bound to
media which allows far less than that limit?

Well, of course not! :-)

The idea is to divide the “big” class B net into several smaller networks, commonly called sub-networks
or simply subnets. Those subnets are only allowed to have, say, 254 hosts on them (i.e. you divide one
big class B network into several class C networks!).

To do this, you adjust your netmask to have more network- and less host-bits on it. This is usually done
on a byte-boundary, but you’re not forced to do it there. So, commonly your netmask will not be
255.255.0.0 as supposed by a class B network, but it will be set to 255.255.255.0.

In CIDR notation, you now write a “/24” instead of the “/16” to show that 24 bits of the address are used
for identifying the network and subnet, instead of the 16 that were used before.

221

Chapter 21 Introduction to TCP/IP Networking

This gives you one additional network-byte to assign to each (physical!) network. All the 254 hosts on
that subnet can now talk directly to each other, and you can build 256 such class C nets. This should fit
your needs.

To explain this better, let’s continue our above example. Say our host 132.199.15.99 (1’1l call him dusk
from now; we’ll talk about assigning hostnames later) has a netmask of 255.255.255.0 and thus is on the
subnet 132.199.15.0/24. Let’s furthermore introduce some more hosts so we have something to play
around with, see Figure 21-2.

Figure 21-2. Our demo-network

ftp cisco
132.199.1.202 132.199.1.8

Subnet 132.199.1.0
Broadcast 132.199.1.255
Netmask 255.255.256.0 5

132.199.1.33

rzi
132.199.15.1

Subnet 132.199.15.0
a Broadcast 132.199.15.255

Netmask 255.255.255.0

132.199.15.100 132.199.15.99
dawn dusk

132.199.15.98

SLIP

132.199.15.97
noon

In the above network, dusk can talk directly to dawn, as they are both on the same subnet. (There are
other hosts attached to the 132.199.15.0/24-subnet but they are not of importance for us now)

But what if dusk wants to talk to a host on another subnet?

Well, the traffic will then go through one or more gateways (routers), which are attached to two subnets.
Because of this, a router always has two different addresses, one for each of the subnets it is on. The
router is functionally transparent, i.e. you don’t have to address it to reach hosts on the “other” side.
Instead, you address that host directly and the packets will be routed to it correctly.

Example. Let’s say dusk wants to get some files from the local ftp-server. As dusk can’t reach ftp directly
(because it’s on a different subnet), all its packets will be forwarded to its "defaultrouter” rzi
(132.199.15.1), which knows where to forward the packets.

Dusk knows the address of its defaultrouter in its network (rzi, 132.199.15.1), and it will forward any
packets to it which are not on the same subnet, i.e. it will forward all 1P-packets in which the third
address-byte isn’t 15.

The (default)router then gives the packets to the appropriate host, as it’s also on the FTP-server’s
network.

In this example, all packets are forwarded to the 132.199.1.0/24-network, simply because it’s the
network’s backbone, the most important part of the network, which carries all the traffic that passes

222

Chapter 21 Introduction to TCP/IP Networking

between several subnets. Almost all other networks besides 132.199.15.0/24 are attached to the
backbone in a similar manner.

But what if we had hooked up another subnet to 132.199.15.0/24 instead of 132.199.1.0/24? Maybe
something the situation displayed in Figure 21-3.

Figure 21-3. Attaching one subnet to another one

Subnet 132.199.1.0
(Backbone)

132.199.1.33

rzi
132.199.15.1

Subnet 132.199.15.0
132.199.15.2 132.199.15.99
route2 dusk
132.199.16.1

When we now want to reach a host which is located in the 132.199.16.0/24-subnet from dusk, it won’t
work routing it to rzi, but you’ll have to send it directly to route2 (132.199.15.2). Dusk will have to know
to forward those packets to route2 and send all the others to rzi.

Subnet 132.199.16.6-

When configuring dusk, you tell it to forward all packets for the 132.199.16.0/24-subnet to route2, and
all others to rzi. Instead of specifying this default as 132.199.1.0/24, 132.199.2.0/24, etc., 0.0.0.0 can be
used to set the default-route.

Returning to Figure 21-2, there’s a similar problem when dawn wants to send to noon, which is
connected to dusk via a serial line running. When looking at the IP-addresses, noon seems to be attached
to the 132.199.15.0-network, but it isn’t really. Instead, dusk is used as gateway, and dawn will have to
send its packets to dusk, which will forward them to noon then. The way dusk is forced into accepting
packets that aren’t destined at it but for a different host (noon) instead is called “proxy arp”.

The same goes when hosts from other subnets want to send to noon. They have to send their packets to
dusk (possibly routed via rzi),

21.6 Name Service Concepts

In the previous sections, when we talked about hosts, we referred to them by their IP-addresses. This was
necessary to introduce the different kinds of addresses. When talking about hosts in general, it’s more
convenient to give them “names”, as we did when talking about routing.

Most applications don’t care whether you give them an IP address or a hostname. However, they’ll use IP
addresses internally, and there are several methods for them to map hostnames to IP addresses, each one
with its own way of configuration. In this section we’ll introduce the idea behind each method, in the
next chapter, we’ll talk about the configuration-part.

The mapping from hostnames (and domainnames) to IP-addresses is done by a piece of software called
the “resolver”. This is not an extra service, but some library routines which are linked to every

223

Chapter 21 Introduction to TCP/IP Networking

application using networking-calls. The resolver will then try to resolve (hence the name ;-) the
hostnames you give into IP addresses. See RFC1034 and RFC1035 for details on the resolver.

Hostnames are usually up to 256 characters long, and contain letters, numbers and dashes (“-”); case is
ignored.

Just as with networks and subnets, it’s possible (and desirable) to group hosts into domains and
subdomains. When getting your network-address, you usually also obtain a domainname by your
provider. As with subnets, it’s up to you to introduce subdomains. Other as with IP-addresses,
(sub)domains are not directly related to (sub)nets; for example, one domain can contain hosts from
several subnets.

Figure 21-2 shows this: Both subnets 132.199.1.0/24 and 132.199.15.0/24 (and others) are part of the
subdomain “rz.uni-regensburg.de”. The domain the University of Regensburg got from its IP-provider is
“uni-regensburg.de” (“.de” is for Deutschland, Germany), the subdomain “rz” is for Rechenzentrum,
computing center.

Hostnames, subdomain- and domainnames are separated by dots (“.”). It’s also possible to use more than
one stage of subdomains, although this is not very common. An example would be
fox_in.socs.uts.edu.au.

A hostname which includes the (sub)domain is also called a fully qualified domain name (FQDN). For
example, the IP-address 132.199.15.99 belongs to the host with the FQDN dusk.rz.uni-regensburg.de.

Further above I told you that the IP-address 127.0.0.1 always belongs to the local host, regardless what’s
the “real” IP-address of the host. Therefore, 127.0.0.1 is always mapped to the name “localhost”.

The three different ways to translate hostnames into IP addresses are: /etc/hosts, the Domain Name
Service (DNS) and the Network Information Service (NIS).

21.6.1/etc/ hosts

The first and simplest way to translate hostnames into IP-addresses is by using a table telling which IP
address belongs to which hostname(s). This table is stored in the file /etc/hosts and has the following
format:

IP-address hostname [nickname [...]]
Lines starting with a hash mark (“#”) are treated as comments. The other lines contain one IP-address
and the corresponding hostname(s).

It’s not possible for a hostname to belong to several IP addresses, even if | made you think so when
talking about routing. rzi for example has really two distinct names for each of its two addresses: rzi and
rzia (but please don’t ask me which name belongs to which address!).

Giving a host several nicknames can be convenient if you want to specify your favorite host providing a
special service with that name, as is commonly done with FTP-servers. The first (leftmost) name is
usually the real (canonical) name of the host.

Besides giving nicknames, it’s also convenient to give a host’s full name (including domain) as its
canonical name, and using only its hostname (without domain) as a nickname.

Important: There must be an entry mapping localhost to 127.0.0.1 in /etc/hosts!

224

Chapter 21 Introduction to TCP/IP Networking

21.6.2 Domain Name Service (DNS)

/etc/hosts bears an inherent problem, especially in big networks: when one host is added or one
host’s address changes, all the Zetc/hosts files on all machines have to be changed! This is not only
time-consuming, it’s also very likely that there will be some errors and inconsistencies, leading to
problems.

Another approach is to hold only one hostnames-table (-database) for a network, and make all the clients
query that “nameserver”. Updates will be made only on the nameserver.

This is the basic idea behind the Domain Name Service (DNS).

Usually, there’s one nameserver for each domain (hence DNS), and every host (client) in that domain
knows which domain it is in and which nameserver to query for its domain.

When the DNS gets a query about a host which is not in its domain, it will forward the query to a DNS

which is either the DNS of the domain in question or knows which DNS to ask for the specified domain.
If the DNS forwarded the query doesn’t know how to handle it, it will forward that query again to a DNS
one step higher. This is not ad infinitum, there are several “root”-servers, which know about any domain.

See Chapter 24 for details on DNS.

21.6.3 Network Information Service (NIS/YP)

Yellow Pages (YP) was invented by Sun Microsystems. The name has been changed into Network
Information Service (NIS) because YP was already a trademark of the British telecom. So, when I’m
talking about NIS you’ll know what | mean. ;-)

There are quite some configuration files on a Unix-system, and often it’s desired to maintain only one set
of those files for a couple of hosts. Those hosts are grouped together in a NIS-domain (which has nothing
to do with the domains built by using DNS!) and are usually contained in one workstation cluster.

Examples for the config-files shared among those hosts are Zetc/passwd, Zetc/group and - last but
not least - Zetc/hosts.

So, you can “abuse” NIS for getting a unique name-to-address-translation on all hosts throughout one
(NIS-)domain.

There’s only one drawback, which prevents NIS from actually being used for that translation: In contrast
to the DNS, NIS provides no way to resolve hostnames which are not in the hosts-table. There’s no hosts
“one level up” which the NIS-server can query, and so the translation will fail! Suns NIS+ takes measures
against that problem, but as NIS+ is only available on Solaris-systems, this is of little use for us now.

Don’t get me wrong: NIS is a fine thing for managing e.g. user-information (/etc/passwd, ...) in
workstation-clusters, it’s simply not too useful for resolving hostnames.

21.6.4 Other

The name resolving methods described above are what’s used commonly today to resolve hostnames into
IP addresses, but they aren’t the only ones. Basically, every database mechanism would do, but none is
implemented in NetBSD. Let’s have a quick look what you may encounter.

With NIS lacking hierarchy in data structures, NIS+ is intended to help out in that field. Tables can be
setup in a way so that if a query cannot be answered by a domain’s server, there can be another domain

225

Chapter 21 Introduction to TCP/IP Networking

“above” that might be able to do so. E.g. you could choose to have a domain that lists all the hosts (users,
groups, ...) that are valid in the whole company, one that defines the same for each division, etc. NIS+ is
not used a lot today, even Sun went back to ship back NIS by default.

Last century, the X.500 standard was designed to accommodate both simple databases like /etc/hosts
as well as complex, hierarchical systems as can be found e.g. in DNS today. X.500 wasn’t really a
success, mostly due to the fact that it tried to do too much at the same time. A cut-down version is
available today as the Lightweight Directory Access Protocol (LDAP), which is becoming popular in the
last years to manage data like users but also hosts and others in small to medium sized organisations.

21.7 Next generation Internet protocol - IPv6

21.7.1 The Future of the Internet

According to experts, the Internet as we know it will face a serious problem in a few years. Due to its
rapid growth and the limitations in its design, there will be a point at which no more free addresses are
available for connecting new hosts. At that point, no more new web servers can be set up, no more users
can sign up for accounts at ISPs, no more new machines can be setup to access the web or participate in
online games - some people may call this a serious problem.

Several approaches have been made to solve the problem. A very popular one is to not assign a
worldwide unique address to every user’s machine, but rather to assign them “private” addresses, and
hide several machines behind one official, globally unique address. This approach is called “Network
Address Translation” (NAT, also known as IP Masquerading). It has problems, as the machines hidden
behind the global address can’t be addressed, and as a result of this, opening connections to them - which
is used in online gaming, peer to peer networking, etc. - is not possible. For a more in-depth discussion
of the drawbacks of NAT, see RFC3027.

A different approach to the problem of internet addresses getting scarce is to abandon the old Internet
protocol with its limited addressing capabilities, and use a new protocol that does not have these
limitations. The protocol - or actually, a set of protocols - used by machines connected to form today’s
Internet is know as the TCP/IP (Transmission Control Protocol, Internet Protocol) suite, and version 4
currently in use has all the problems described above. Switching to a different protocol version that does
not have these problems of course requires for a *better’ version to be available, which actually is.
Version 6 of the Internet Protocol (IPv6) does fulfill any possible future demands on address space, and
also addresses further features such as privacy, encryption, and better support of mobile computing.

Assuming a basic understanding of how today’s IPv4 works, this text is intended as an introduction to the
IPv6 protocol. The changes in address formats and name resolution are covered. With the background
given here, Section 26.4 will show how to use IPv6 even if your ISP doesn’t offer it by using a simple yet
efficient transition mechanism called 6to4. The goal is to to get online with IPv6, giving example
configuration for NetBSD.

21.7.2 What good is IPv6?

When telling people to migrate from IPv4 to IPv6, the question you usually hear is “why?”. There are
actually a few good reasons to move to the new version:

226

Chapter 21 Introduction to TCP/IP Networking

- Bigger address space
« Support for mobile devices

« Built-in security

21.7.2.1 Bigger Address Space

The bigger address space that IPv6 offers is the most obvious enhancement it has over IPv4. While
today’s internet architecture is based on 32-bit wide addresses, the new version has 128 bit available for
addressing. Thanks to the enlarged address space, work-arounds like NAT don’t have to be used any
more. This allows full, unconstrained IP connectivity for today’s IP based machines as well as upcoming
mobile devices like PDAs and cell phones will benefit from full IP access through GPRS and UMTS.

21.7.2.2 Mobility

When mentioning mobile devices and IP, another important point to note is that some special protocol is
needed to support mobility, and implementing this protocol - called “Maobile IP” - is one of the
requirements for every IPv6 stack. Thus, if you have IPv6 going, you have support for roaming between
different networks, with everyone being updated when you leave one network and enter the other one.
Support for roaming is possible with IPv4 too, but there are a number of hoops that need to be jumped in
order to get things working. With IPv6, there’s no need for this, as support for mobility was one of the
design requirements for IPv6. See RFC3024 for some more information on the issues that need to be
addressed with Mobile IP on IPv4.

21.7.2.3 Security

Besides support for mobility, security was another requirement for the successor to today’s Internet
Protocol version. As a result, IPv6 protocol stacks are required to include IPsec. IPsec allows
authentication, encryption and compression of any IP traffic. Unlike application level protocols like SSL
or SSH, all IP traffic between two nodes can be handled, without adjusting any applications. The benefit
of this is that all applications on a machine can benefit from encryption and authentication, and that
policies can be set on a per-host (or even per-network) base, not per application/service. An introduction
to IPsec with a roadmap to the documentation can be found in RFC2411, the core protocol is described
in RFC2401.

21.7.3 Changes to IPv4

After giving a brief overview of all the important features of IPv6, we’ll go into the details of the basics
of IPv6 here. A brief understanding of how IPv4 works is assumed, and the changes in IPv6 will be
highlighted. Starting with IPv6 addresses and how they’re split up we’ll go into the various types of
addresses there are, what became of broadcasts, then after discussing the IP layer go into changes for
name resolving and what’s new in DNS for IPv6.

21.7.3.1 Addressing

An IPv4 address is a 32 bit value, that’s usually written in “dotted quad” representation, where each
“quad” represents a byte value between 0 and 255, for example:

227

Chapter 21 Introduction to TCP/IP Networking

127.0.0.1

This allows a theoretical number of 2% or ~4 billion hosts to be connected on the internet today. Due to
grouping, not all addresses are available today.

IPv6 addresses use 128 bit, which results in 2*? theoretically addressable hosts. This allows for a Really
Big number of machines to addressed, and it sure fits all of today’s requirements plus all those nifty
PDAs and cell phones with IP phones in the near future without any sweat. When writing IPv6
addresses, they are usually divided into groups of 16 bits written as four hex digits, and the groups are
separated by colons. An example is:

fe80::2a0:d2ff:fea5:e9f5

This shows a special thing - a number of consecutive zeros can be abbreviated by a single “::” once in the
IPv6 address. The above address is thus equivalent to fe80:0:00:000:2a0:d2ff:fea5:e9f5 - leading zeros
within groups can be omitted, and only one “::” can be used in an IPv6 address.

To make addresses manageable, they are split in two parts, which are the bits identifying the network a

machine is on, and the bits that identify a machine on a (sub)network. The bits are known as netbits and
hostbits, and in both IPv4 and IPv6, the netbits are the “left”, most significant bits of an IP address, and
the host bits are the “right”, least significant bits, as shown in Figure 21-4.

Figure 21-4. IPv6-addresses are divided into more significant network- and less significant hostbits,
too

n netbits 128-n hostbits

In IPv4, the border is drawn with the aid of the netmask, which can be used to mask all net/host bits.
Typical examples are 255.255.0.0 that uses 16 bit for addressing the network, and 16 bit for the machine,
or 255.255.255.0 which takes another 8 bit to allow addressing 256 subnets on e.g. a class B net.

When addressing switched from classful addressing to CIDR routing, the borders between net and host
bits stopped being on 8 bit boundaries, and as a result the netmasks started looking ugly and not really
manageable. As a replacement, the number of network bits is used for a given address, to denote the
border, e.g.

10.0.0.0/24
is the same as a netmask of 255.255.255.0 (24 1-bits). The same scheme is used in IPv6:
2001:638:a01:2::/64

tells us that the address used here has the first (leftmost) 64 bits used as the network address, and the last
(rightmost) 64 bits are used to identify the machine on the network. The network bits are commonly
referred to as (network) “prefix”, and the “prefixlen” here would be 64 bits.

Common addressing schemes found in IPv4 are the (old) class B and class C nets. With a class C
network (/24), you get 24 bits assigned by your provider, and it leaves 8 bits to be assigned by you. If
you want to add any subnetting to that, you end up with “uneven” netmasks that are a bit nifty to deal
with. Easier for such cases are class B networks (/16), which only have 16 bits assigned by the provider,
and that allow subnetting, i.e. splitting of the rightmost bits into two parts. One to address the on-site

228

Chapter 21 Introduction to TCP/IP Networking

subnet, and one to address the hosts on that subnet. Usually, this is done on byte (8 bit) boundaries.
Using a netmask of 255.255.255.0 (or a /24 prefix) allows flexible management even of bigger networks
here. Of course there is the upper limit of 254 machines per subnet, and 256 subnets.

With 128 bits available for addressing in IPv6, the scheme commonly used is the same, only the fields
are wider. Providers usually assign /48 networks, which leaves 16 bits for a subnetting and 64 hostbits.

Figure 21-5. IPv6-addresses have a similar structure to class B addresses

IPv4: | 16bit ‘8bit‘8bit|

IPV: | 48:bit \ 16:bit \ 64bit

Provider—assigned network-bits

Self-assigned subnet-bits

D Host-bits

Now while the space for network and subnets here is pretty much ok, using 64 bits for addressing hosts
seems like a waste. It’s unlikely that you will want to have several billion hosts on a single subnet, so
what is the idea behind this?

The idea behind fixed width 64 bit wide host identifiers is that they aren’t assigned manually as it’s
usually done for IPv4 nowadays. Instead, IPv6 host addresses are recommended (not mandatory!) to be
built from so-called EUI64 addresses. EU164 addresses are - as the name says - 64 bit wide, and derived
from MAC addresses of the underlying network interface. E.g. for ethernet, the 6 byte (48 bit) MAC
address is usually filled with the hex bits “fffe” in the middle and a bit is set to mark the address as
unique (which is true for Ethernet), e.g. the MAC address

01:23:45:67:89:ab

results in the EUI64 address

03:23:45:ff:fe:67:89:ab

which again gives the host bits for the IPv6 address as
::0323:45ff:fe67:89ab

These host bits can now be used to automatically assign IPv6 addresses to hosts, which supports
autoconfiguration of IPv6 hosts - all that’s needed to get a complete IPv6 address is the first (net/subnet)
bits, and IPv6 also offers a solution to assign them automatically.

When on a network of machines speaking IP, there’s usually one router which acts as the gateway to
outside networks. In IPv6 land, this router will send “router advertisement” information, which clients
are expected to either receive during operation or to solicit upon system startup. The router advertisement
information includes data on the router’s address, and which address prefix it routes. With this
information and the host-generated EUI64 address, an IPv6-host can calculate its IP address, and there is
no need for manual address assignment. Of course routers still need some configuration.

229

Chapter 21 Introduction to TCP/IP Networking

The router advertisement information they create are part of the Neighbor Discovery Protocol (NDP, see
RFC2461), which is the successor to IPv4’s ARP protocol. In contrast to ARP, NDP does not only do
lookup of IPv6 addresses for MAC addresses (the neighbor solicitation/advertisement part), but also does
a similar service for routers and the prefixes they serve, which is used for autoconfiguration of IPv6 hosts
as described in the previous paragraph.

21.7.3.2 Multiple Addresses

In IPv4, a host usually has one IP address per network interface or even per machine if the IP stack
supports it. Only very rare applications like web servers result in machines having more than one IP
address. In IPv6, this is different. For each interface, there is not only a globally unique IP address, but
there are two other addresses that are of interest: The link local address, and the site local address. The
link local address has a prefix of fe80::/64, and the host bits are built from the interface’s EU164 address.
The link local address is used for contacting hosts and routers on the same network only, the addresses
are not visible or reachable from different subnets. If wanted, there’s the choice of either using global
addresses (as assigned by a provider), or using site local addresses. Site local addresses are assigned the
network address fec0::/10, and subnets and hosts can be addressed just as for provider-assigned
networks. The only difference is, that the addresses will not be visible to outside machines, as these are
on a different network, and their “site local” addresses are in a different physical net (if assigned at all).
As with the 10/8 network in 1Pv4, site local addresses can be used, but don’t have to. For IPv6 it’s most
common to have hosts assigned a link-local and a global IP address. Site local addresses are rather
uncommon today, and are no substitute for globally unique addresses if global connectivity is required.

21.7.3.3 Multicasting

In IP land, there are three ways to talk to a host: unicast, broadcast and multicast. The most common one
is by talking to it directly, using its unicast address. In IPv4, the unicast address is the “normal” IP
address assigned to a single host, with all address bits assigned. The broadcast address used to address all
hosts in the same IP subnet has the network bits set to the network address, and all host bits set to “1”
(which can be easily done using the netmask and some bit operations). Multicast addresses are used to
reach a number of hosts in the same multicast group, which can be machines spread over the whole
internet. Machines must join multicast groups explicitly to participate, and there are special 1Pv4
addresses used for multicast addresses, allocated from the 224/8 subnet. Multicast isn’t used very much
in IPv4, and only few applications like the MBone audio and video broadcast utilities use it.

In IPv6, unicast addresses are used the same as in IPv4, no surprise there - all the network and host bits
are assigned to identify the target network and machine. Broadcasts are no longer available in IPv6 in the
way they were in IPv4, this is where multicasting comes into play. Addresses in the ff::/8 network are
reserved for multicast applications, and there are two special multicast addresses that supersede the
broadcast addresses from IPv4. One is the “all routers” multicast address, the others is for “all hosts”.
The addresses are specific to the subnet, i.e. a router connected to two different subnets can address all
hosts/routers on any of the subnets it’s connected to. Addresses here are:

- ffOX::1 for all hosts and
- ff0X::2 for all routers,

230

Chapter 21 Introduction to TCP/IP Networking
where “X” is the scope ID of the link here, identifying the network. Usually this starts from “1” for the

“node local” scope, “2” for the first link, etc. Note that it’s perfectly ok for two network interfaces to be
attached to one link, thus resulting in double bandwidth:

Figure 21-6. Several interfaces attached to a link result in only one scope ID for the link

node

~<— 200MBps

One use of the “all hosts” multicast is in the neighbor solicitation code of NDP, where any machine that
wants to communicate with another machine sends out a request to the “all hosts” group, and the
machine in question is expected to respond.

21.7.3.4 Name Resolving in IPv6

After talking a lot about addressing in IPv6, anyone still here will hope that there’s a proper way to
abstract all these long & ugly IPv6 addresses with some nice hostnames as one can do in IPv4, and of
course there is.

Hostname to IP address resolving in IPv4 is usually done in one of three ways: using a simple table in
/etc/hosts, by using the Network Information Service (NIS, formerly YP) or via the Domain Name
System (DNS).

As of this writing, NIS/NIS+ over IPv6 is currently only available on Solaris 8, for both database
contents and transport, using a RPC extension.

Having a simple address<->name map like Zetc/hosts is supported in all IPv6 stacks. With the KAME
implementation used in NetBSD, /etc/hosts contains IPv6 addresses as well as IPv4 addresses. A
simple example is the “localhost” entry in the default NetBSD installation:

127.0.0.1 localhost
i | localhost

For DNS, there are no fundamentally new concepts. IPv6 name resolving is done with AAAA records
that - as the name implies - point to an entity that’s four times the size of an A record. The AAAA record
takes a hostname on the left side, just as A does, and on the right side there’s an IPv6 address, e.g.

noon IN AAAA 3ffe:400:430:2:240:95FF:Ffe40:4385

For reverse resolving, IPv4 uses the in-addr.arpa zone, and below that it writes the bytes (in decimal) in
reversed order, i.e. more significant bytes are more right. For IPv6 this is similar, only that hex digits
representing 4 bits are used instead of decimal numbers, and the resource records are also under a
different domain, ip6.int.

So to have the reverse resolving for the above host, you would put into your /etc/named.conf
something like:

zone ""0.3.4.0.0.0.4.0.e.F.f.3_IP6.INT" {
type master;

231

Chapter 21 Introduction to TCP/IP Networking

file "db.reverse';

}:
and in the zone file db.reverse you put (besides the usual records like SOA and NS):

5.8.3.4.0.4.e.f.F.¥.5.9.0.4.2.0.2.0.0.0 IN PTR noon. ipv6.example.com.

The address is reversed here, and written down one hex digit after the other, starting with the least
significant (rightmost) one, separating the hex digits with dots, as usual in zone files.

One thing to note when setting up DNS for IPv6 is to take care of the DNS software version in use.
BIND 8.x does understand AAAA records, but it does not offer name resolving via IPv6. You need
BIND 9.x for that. Beyond that, BIND 9.x supports a number of resource records that are currently being
discussed but not officially introduced yet. The most noticeable one here is the A6 record which allows
easier provider/prefix changing.

To sum up, this section talked about the technical differences between IPv4 and I1Pv6 for addressing and
name resolving. Some details like IP header options, QoS and flows were deliberately left out to not
make this document more complex than necessary.

232

Chapter 22

Setting up TCP/IP on NetBSD In
practice

22.1 A walk through the kernel configuration

Before we dive into configuring various aspects of network setup, we want to walk through the necessary
bits that have to or can be present in the kernel. See Chapter 29 for more details on compiling the kernel,
we will concentrate on the configuration of the kernel here. We will take the i386/GENERIC config file
as an example here. Config files for other platforms should contain similar information, the comments in
the config files give additional hints. Besides the information given here, each kernel option is also
documented in the options(4) manpage, and there is usually a manpage for each driver too, e.g. tlp(4).

The first line of each config file shows the version. It can be used to compare against other versions via
CVS, or when reporting bugs.

options NTP # NTP phase/frequency locked loop

If you want to run the Network Time Protocol (NTP), this option can be enabled for maximum precision.
If the option is not present, NTP will still work. See ntpd(8) for more information.

file-system NFS # Network File System client

If you want to use another machine’s hard disk via the Network File System (NFS), this option is heeded.
Section 26.2 gives more information on NFS.

options NFSSERVER # Network File System server

This option includes the server side of the NFS remote file sharing protocol. Enable if you want to allow
other machines to use your hard disk. Section 26.2 contains more information on NFS.

#options GATEWAY # packet forwarding

If you want to setup a router that forwards packets between networks or network interfaces, setting this
option is needed. If doesn’t only switch on packet forwarding, but also increases some buffers. See
options(4) for details.

options INET # IP + ICMP + TCP + UDP

This enables the TCP/IP code in the kernel. Even if you don’t want/use networking, you will still need
this for machine-internal communication of subsystems like the X Window System. See inet(4) for more
details.

233

Chapter 22 Setting up TCP/IP on NetBSD in practice
options INET6 # IPV6

If you want to use IPv6, this is your option. If you don’t want IPv6, which is part of NetBSD since the
1.5 release, you can remove/comment out that option. See the inet6(4) manpage and Section 21.7 for
more information on the next generation Internet protocol.

#options IPSEC # IP security

Includes support for the IPsec protocol, including key and policy management, authentication and
compression. This option can be used without the previous option INETS, if you just want to use IPsec
with IPv4, which is possible. See ipsec(4) for more information.

#options IPSEC_ESP # IP security (encryption part; define w/IPSEC)
This option is needed in addition to IPSEC if encryption is wanted in IPsec.
#options MROUT ING # 1P multicast routing

If multicast services like the MBone services should be routed, this option needs to be included. Note
that the routing itself is controlled by the mrouted(8) daemon.

options NS # XNS
#options NSIP # XNS tunneling over IP

These options enable the Xerox Network Systems(TM) protocol family. I1t’s not related to the TCP/IP
protocol stack, and in rare use today. The ns(4) manpage has some details.

options 1SO,TPIP # 0SlI
#options EON # 0S1 tunneling over IP

These options include the OSI protocol stack, which was said for a long time to be the future of
networking. 1t’s mostly history these days. :-) See the iso(4) manpage for more information.

options CCITT,LLC,HDLC # X.25

These options enable the X.25 protocol set for transmission of data over serial lines. It is/was used
mostly in conjunction with the OSI protocols and in WAN networking.

options NETATALK # AppleTalk networking protocols

Include support for the AppleTalk protocol stack. Userland server programs are needed to make use of
that. See pkgsrc/net/netatalk and pkgsrc/net/netatalk-asun for such packages. More information on the
AppleTalk protocol and protocol stack are available in the atalk(4) manpage.

options PPP_BSDCOMP # BSD-Compress compression support for PPP
options PPP_DEFLATE # Deflate compression support for PPP
options PPP_FILTER # Active filter support for PPP (requires bpf)

These options tune various aspects of the Point-to-Point protocol. The first two determine the
compression algorithms used and available, while the third one enables code to filter some packets.

options PFIL_HOOKS # pFil(9) packet filter hooks
options IPFILTER_LOG # 1pmon(8) log support

234

Chapter 22 Setting up TCP/IP on NetBSD in practice

These options enable firewalling in NetBSD, using IPfilter. See the ipf(4) and ipf(8) manpages for more
information on operation of IPfilter, and Section 22.5.1 for a configuration example.

Compatibility with 4.2BSD implementation of TCP/IP. Not recommended.
#options TCP_COMPAT_42

This option is only needed if you have machines on the network that still run 4.2BSD or a network stack
derived from it. If you’ve got one or more 4.2BSD-systems on your network, you’ve to pay attention to
set the right broadcast-address, as 4.2BSD has a bug in its networking code, concerning the broadcast
address. This bug forces you to set all host-bits in the broadcast-address to “0”. The TCP_COMPAT _42
option helps you ensuring this.

options NFS_BOOT_DHCP ,NFS_BOOT_BOOTPARAM

These options enable lookup of data via DHCP or the BOOTPARAM protocol if the kernel is told to use
a NFS root file system. See the diskless(8) manpage for more information.

Kernel root file system and dump configuration.

config netbsd root on ? type ?
#config netbsd root on sdOa type ffs
#config netbsd root on ? type nfs

These lines tell where the kernel looks for its root file system, and which filesystem type it is expected to
have. If you want to make a kernel that uses a NFS root filesystem via the tlp0 interface, you can do this
with “root on tlp0 type nfs”. Ifa ? is used instead of a device/type, the kernel tries to figure one
out on its own.

ISA serial interfaces

comO at isa? port Ox3f8 irqg 4 # Standard PC serial ports
coml at isa? port Ox2f8 irq 3
com2 at isa? port 0x3e8 irg 5

If you want to use PPP or SLIP, you will need some serial (com) interfaces. Others with attachment on
USB, PCMCIA or PUC will do as well.

Network Interfaces

This rather long list contains all sorts of network drivers. Please pick the one that matches your hardware,
according to the comments. For most drivers, there’s also a manual page available, e.g. tlp(4), ne(4), etc.

MI1/PHY support

This section lists media independent interfaces for network cards. Pick one that matches your hardware.
If in doubt, enable them all and see what the kernel picks. See the mii(4) manpage for more information.

USB Ethernet adapters

aue* at uhub? port ? # ADMtek AN986 Pegasus based adapters
cue* at uhub? port ? # CATC USB-EL1201A based adapters
kue* at uhub? port ? # Kawasaki LSI KL5KUSB101B based adapters

USB-ethernet adapters only have about 2MBit/s bandwidth, but they are very convenient to use. Of
course this needs other USB related options which we won’t cover here, as well as the necessary
hardware. See the corresponding manpages for more information.

235

Chapter 22 Setting up TCP/IP on NetBSD in practice

network pseudo-devices
pseudo-device bpfilter 8 # Berkeley packet filter

This pseudo-device allows sniffing packets of all sorts. It’s needed for tcpdump, but also rarpd and some
other applications that need to know about network traffic. See bpf(4) for more information.

pseudo-device ipfilter # IP Filter (firewall) and NAT

This one enables the IPfilter’s packet filtering kernel interface used for firewalling, NAT (IP
Masquerading) etc. See ipf(4) and Section 22.5.1 for more information.

pseudo-device loop # network loopback

This is the “l00” software loopback network device which is used by some programs these days, as well
as for routing things. It should not be omitted. See lo(4) for more details.

pseudo-device ppp 2 # Point-to-Point Protocol

If you want to use PPP either over a serial interface or ethernet (PPPoE), you will need this option. See
ppp(4) for details on this interface.

pseudo-device sl 2 # Serial Line IP

Serial Line IP is a simple encapsulation for IP over (well :) serial lines. It does not include negotiation of
IP addresses and other options, which is the reason that it’s not in widespread use today any more. See
sl(4).

pseudo-device strip 2 # Starmode Radio IP (Metricom)

If you happen to have one of the old Metricon Ricochet packet radio wireless network devices, use this
pseudo-device to use it. See the strip(4) manpage for detailed information.

pseudo-device tun 2 # network tunneling over tty

This network device can be used to tunnel network packets to a device file, /dev/tun*. Packets routed
to the tunO interface can be read from /dev/tun0, and data written to /dev/tun0 will be sent out the
tun0 network interface. This can be used to implement e.g. QoS routing in userland. See tun(4) for
details.

pseudo-device gre 2 # generic L3 over IP tunnel

The GRE encapsulation can be used to tunnel arbitrary layer 3 packets over IP, e.g. to implement VPNs.
See gre(4) for more.

pseudo-device ipip 2 # 1P Encapsulation within IP (RFC 2003)

Another IP-in-1P encapsulation device, with a different encapsulation format. See the ipip(4) manpage
for details.

pseudo-device gif 4 # 1Pv[46] over IPv[46] tunnel (RFC 1933)

236

Chapter 22 Setting up TCP/IP on NetBSD in practice

Using the GIF interface allows to tunnel e.g. IPv6 over IPv4, which can be used to get IPv6 connectivity
if no IPv6-capable uplink (ISP) is available. Other mixes of operations are possible, too. See the gif(4)
manpage for some examples.

#pseudo-device fTaith 1 # 1Pv[46] tcp relay translation i/f

The faith interface captures IPv6 TCP traffic, for implementing userland IPv6-to-1Pv4 TCP relays e.g.
for protocol transitions. See the faith(4) manpage for more details on this device.

#pseudo-device stf 1 # 6tod4 IPv6 over IPv4 encapsulation

This adds a network device that can be used to tunnel IPv6 over IPv4 without setting up a configured
tunnel before. The source address of outgoing packets contains the IPv4 address, which allows routing
replies back via IPv4. See the stf(4) manpage and Section 26.4 for more details.

pseudo-device vlan # IEEE 802.1g encapsulation

This interface provides support for IEEE 802.1Q Virtual LANSs, which allows tagging Ethernet frames
with a “vlan” ID. Using properly configured switches (that also have to support VLAN, of course), this
can be used to build virtual LANs where one set of machines doesn’t see traffic from the other (broadcast
and other). The vlan(4) manpage tells more about this.

22.2 Overview of the network configuration files

The following is a list of the files used to configure the network. The usage of these files, some of which
have already been met the first chapters, will be described in the following sections.

/etc/hosts
Local hosts database file. Each line contains information regarding a known host and contains the
internet address, the host’s name and the aliases. Small networks can be configured using only the
hosts file, without a name server.

/etc/resolv._conf
This file specifies how the routines which provide access to the Internet Domain Name System
should operate. Generally it contains the addresses of the name servers.

/etc/ifconfig.xxx

This file is used for the automatic configuration of the network card at boot.

/etc/mygate

Contains the IP address of the gateway.

/etc/nsswitch.conf

Name service switch configuration file. It controls how a process looks up various databases
containing information regarding hosts, users, groups, etc. Specifically, this file defines the order to
look up the databases. For example, the line:

hosts: files dns

237

Chapter 22 Setting up TCP/IP on NetBSD in practice
specifies that the hosts database comes from two sources, files (the local Zetc/hosts file) and
DNS, (the Internet Domain Name System) and that the local files are searched before the DNS.

It is usually not necessary to modify this file.

22.3 Connecting to the Internet with a modem

There are many types of Internet connections: this section explains how to connect to a provider using a
modem over a telephone line using the PPP protocol, a very common setup. In order to have a working
connection, the following steps must be done:

Get the necessary information from the provider.
Edit the file /etc/resolv.conf and check Zetc/nsswitch.conf.

1
2
3. Create the directories Zetc/ppp and Zetc/ppp/peers if they don’t exist.
4. Create the connection script, the chat file and the pppd options file.

5

Created the user-password authentication file.

Judging from the previous list it looks like a complicated procedure that requires a lot of work. Actually,
the single steps are very easy: it’s just a matter of modifying, creating or simply checking some small
text files. In the following example it will be assumed that the modem is connected to the second serial
port /dev/tty01 (COM2 in DOS).

A few words on the difference between com, COM and tty. For NetBSD, “com” is the name of the serial
port driver (the one that is displayed by dmesg) and “tty” is the name of the port. Since numbering starts
at 0, com0 is the driver for the first serial port, named tty00. In the DOS world, instead, COML1 refers to

the first serial port (usually located at (0x3f8), COM2 to the second, and so on. Therefore COM1 (DOS)
corresponds to /dev/tty00 (NetBSD).

Besides external modems connected to COM ports (using /dev/tty0[012] on i386, /dev/tty[ab]
on sparc, ...) modems on USB (/dev/ttyU*) and pcmcia/cardbus (/dev/tty0[012]) can be used.

22.3.1 Getting the connection information

The first thing to do is ask the provider the necessary information for the connection, which means:

« The phone number of the nearest POP.
+ The authentication method to be used.
« The username and password for the connection.

- The IP addresses of the name servers.

22.3.2 resol v. conf and nsswi t ch. conf

The /etc/resolv.conf file must be configured using the information supplied by the provider,
especially the addresses of the DNS. In this example the two DNS will be “194.109.123.2” and
“191.200.4.52”.

238

Chapter 22 Setting up TCP/IP on NetBSD in practice

Example 22-1.r esol v. conf

nameserver 194.109.123.2
nameserver 191.200.4.52

And now an example of the Zetc/nsswitch.conffile.

Example 22-2. nsswi t ch. conf

/etc/nsswitch.conf

group: compat

group_compat: nis

hosts: files dns

netgroup: files [notfound=return] nis
networks: files

passwd: compat

passwd_compat: nis

shells: files

The defaults of doing hostname lookups via Zetc/hosts followed by the DNS works fine and there’s
usually no need to modify this.

22.3.3 Creating the directories for pppd

The directories Zetc/ppp and Zetc/ppp/peers will contain the configuration files for the PPP
connection. After a fresh install of NetBSD they don’t exist and must be created (chmod 700).

nkdir /etc/ppp
nkdir /etc/ppp/ peers

22.3.4 Connection script and chat file

The connection script will be used as a parameter on the pppd command line; it is located in
/etc/ppp/peers and has usually the name of the provider. For example, if the provider’s name is
BigNet and your user name for the connection to the provider is alan, an example connection script could
be:

Example 22-3. Connection script

/etc/ppp/peers/bignet

connect ”/usr/sbin/chat -v -f /etc/ppp/peers/bignet._chat’
noauth

user alan

remotename bignet.it

In the previous example, the script specifies a chat file to be used for the connection. The options in the
script are detailed in the pppd(8) man page.

239

Chapter 22 Setting up TCP/IP on NetBSD in practice
Note: If you are experiencing connection problems, add the following two lines to the connection
script

debug
kdebug 4

You will get a log of the operations performed when the system tries to connect. See pppd(8),
syslog.conf(5).

The connection script calls the chat application to deal with the physical connection (modem
initialization, dialing, ...) The parameters to chat can be specified inline in the connection script, but it is
better to put them in a separate file. If, for example, the telephone number of the POP to call is 02
99999999, an example chat script could be:

Example 22-4. Chat file

/etc/ppp/peers/bignet.chat
ABORT BUSY

ABORT ""NO CARRIER™

ABORT "NO DIALTONE"

” ATDT0299999999

CONNECT

Note: If you have problems with the chat file, you can try connecting manually to the POP with the
cu(1) program and verify the exact strings that you are receiving.

22.3.5 Authentication

During authentication each of the two systems verifies the identity of the other system, although in
practice you are not supposed to authenticate the provider, but only to be verified by him, using one of
the following methods:

« PAP/CHAP
« login

Most providers use a PAP/CHAP authentication.

22.3.5.1 PAP/CHAP authentication

The authentication information (speak: password) is stored in the /etc/ppp/pap-secrets for PAP
and in /etc/ppp/chap-secrets for CHAP. The lines have the following format:

user * password
For example:

alan * pzZY9o

240

Chapter 22 Setting up TCP/IP on NetBSD in practice

For security reasons the pap-secrets and chap-secrets files should be owned by root and have
permissions “600”.

chown root /etc/ppp/pap-secrets
chown root /etc/ppp/chap-secrets
chnmod 600 /etc/ ppp/ pap-secrets

chnod 600 /etc/ppp/chap-secrets

B OH H H

22.3.5.2 Login authentication

This type of authentication is not widely used today; if the provider uses login authentication, user name
and password must be supplied in the chat file instead of the PAP/CHAP files, because the chat file
simulates an interactive login. In this case, set up appropriate permissions for the chat file.

The following is an example chat file with login authentication:

Example 22-5. Chat file with login

/etc/ppp/peers/bignet.chat
ABORT BUSY

ABORT "'NO CARRIER™

ABORT ""NO DIALTONE"

”” ATDT0299999999

CONNECT ~

TIMEOUT 50

ogin: alan

ssword: pZY9o

22.3.6 pppd options

The only thing left to do is the creation of the pppd options file, which is /etc/ppp/options (chmod
644).

Example 22-6./ et ¢/ ppp/ opt i ons

/dev/tty01
lock

crtscts
57600

modem
defaultroute
noipdefault

Check the pppd(8) man page for the meaning of the options.

241

Chapter 22 Setting up TCP/IP on NetBSD in practice

22.3.7 Testing the modem

Before activating the link it is a good idea to make a quick modem test, in order to verify that the
physical connection and the communication with the modem works. For the test the cu(1) program can
be used, as in the following example.

1. Create the file /etc/uucp/port with the following lines:

type modem

port modem

device /dev/tty01
speed 115200

(substitute the correct device in place of /dev/tty01).

2. Write the command cu -p modem to start sending commands to the modem. For example:

cu -p nodem
Connected.
ATZ

OK

Disconnected.
#

In the previous example the reset command (ATZ) was sent to the modem, which replied with OK:
the communication works. To exit cu(1), write ~ (tilde) followed by . (dot), as in the example.

If the modem doesn’t work, check that it is connected to the correct port (i.e. you are using the right port
with cu(1). Cables are a frequent cause of trouble, too.

When you start cu(1) and a message saying “Permission denied” appears, check who is the owner of the
/dev/tty## device, it must be "uucp". For example:

$1s -1 /dev/tty00
Crw—————-—- 1 uucp wheel 8, 0 Mar 22 20:39 /dev/tty00

If the owner is root, the following happens:

$ Is -1 /dev/tty00

Crw——————- 1 root wheel 8, 0 Mar 22 20:39 /dev/tty00
$ cu -p nodem

cu: open (/dev/tty00): Permission denied

cu: All matching ports in use

22.3.8 Activating the link

At last everything is ready to connect to the provider with the following command:
pppd call bignet

where bignet is the name of the already described connection script. To see the connection messages of
pppd, give the following command:

242

Chapter 22 Setting up TCP/IP on NetBSD in practice

tail -f /var/log/ nessages
To disconnect, do a kill -HUP of pppd.

pkill -HUP pppd

22.3.9 Using a script for connection and disconnection

When the connection works correctly, it’s time to write a couple of scripts to avoid repeating the
commands every time. These two scripts can be named, for example, ppp-start and ppp-stop.

ppp-start is used to connect to the provider:

Example 22-7. ppp- st art

#1/bin/sh

MODEM=tty01

POP=bignet

if [-f /var/spool/lock/LCK._$MODEM]; then
echo ppp is already running...

else

pppd call $POP

tail -f /var/log/messages

fi

ppp-stop is used to close the connection:

Example 22-8. ppp- st op

#1/bin/sh

MODEM=tty01

if [-f /var/spool/lock/LCK._$MODEM]; then
echo -f killing pppd...

kill -HUP “cat /var/spool/lock/LCK. . $MODEM*“
echo done

else

echo ppp is not active

fi

The two scripts take advantage of the fact that when pppd is active, it creates the file LCK

..tty0linthe

/var/spool/lock directory. This file contains the process ID (pid) of the pppd process.

The two scripts must be executable:

chnmod u+x ppp-start ppp-stop

243

Chapter 22 Setting up TCP/IP on NetBSD in practice

22.3.10 Running commands after dialin

If you find yourself to always run the same set of commands each time you dial in, you can put them in a
script Zetc/ppp/ ip-up which will be called by pppd(8) after successful dial-in. Likewise, before the
connection is closed down, Zetc/ppp/ip-down is executed. Both scripts are expected to be executable.
See pppd(8) for more details.

22.4 Creating a small home network

Networking is one of the main strengths of Unix and NetBSD is no exception: networking is both
powerful and easy to set up and inexpensive too, because there is no need to buy additional software to
communicate or to build a server. Section 22.5 explains how to configure a NetBSD machine to act as a
gateway for a network: with IPNAT all the hosts of the network can reach the Internet with a single
connection to a provider made by the gateway machine. The only thing to be checked before creating the
network is to buy network cards supported by NetBSD (check the INSTALL .* files for a list of
supported devices).

First, the network cards must be installed and connected to a hub, switch or directly (see Figure 22-1).

Next, check that the network cards are recognized by the kernel, studying the output of the dmesg
command. In the following example the kernel recognized correctly an NE2000 clone:

ne0 at isa0 port 0x280-0x29F irq 9
neO: NE2000 Ethernet
ne0: Ethernet address 00:c2:dd:cl1:d1:21

If the card is not recognized by the kernel, check that it is enabled in the kernel configuration file and
then that the card’s IRQ matches the one that the kernel expects. For example, this is the isa NE2000 line
in the configuration file; the kernel expects the card to be at IRQ 9.

ne0 at isa? port 0x280 irq 9 # NE[12]000 ethernet cards

If the card’s configuration is different, it will probably not be found at boot. In this case, either change
the line in the kernel configuration file and compile a new kernel or change the card’s setup (usually
through a setup disk or, for old cards, a jumper on the card).

The following command shows the network card’s current configuration:

ifconfig ne0

nel0: flags=8822<BROADCAST ,NOTRAILERS,SIMPLEX,MULTICAST> mtu 1500
address: 00:50:ba:aa:a7:7f
media: Ethernet autoselect (10baseT)
inet6 feB80::250:baff:feaa:a77f%ne0 prefixlen 64 scopeid Ox1

The software configuration of the network card is very easy. The IP address “192.168.1.1” is assigned to
the card.

244

Chapter 22 Setting up TCP/IP on NetBSD in practice
ifconfig ne0 inet 192.168.1.1 netmask Oxffffff00

Note that the networks 10.0.0.0/8 and 192.168.0.0/16 are reserved for private networks, which is what
we’re setting up here.

Repeating the previous command now gives a different result:

ifconfig ne0
ne0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST> mtu 1500
address: 00:50:ba:aa:a7:7f
media: Ethernet autoselect (10baseT)
inet 192.168.1.1 netmask OxFFFFFFOO broadcast 192.168.1.255
inet6 fe80::250:baff:feaa:a77f%ne0 prefixlen 64 scopeid Ox1

The output of ifconfig has now changed: the IP address is now printed and there are two new flags, “UP”
and “RUNNING” If the interface isn’t “UP”, it will not be used by the system to send packets.

The host was given the IP address 192.168.1.1, which belongs to the set of addresses reserved for
internal networks which are not reachable from the Internet. The configuration is finished and must now
be tested; if there is another active host on the network, a ping can be tried. For example, if 192.168.1.2
is the address of the active host:

ping 192.168.1.2

PING ape (192.168.1.2): 56 data bytes

64 bytes from 192.168.1.2: icmp_seq=0 ttl=255 time=1.286 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=255 time=0.649 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=255 time=0.681 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=255 time=0.656 ms
~C

--—-ape PING Statistics----

4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.649/0.818/1.286/0.312 ms

With the current setup, at the next boot it will be necessary to repeat the configuration of the network
card. In order to avoid repeating the card’s configuration at each boot, add the following lines to
/etc/rc.conf:

auto_ifconfig=yes
ifconfig_neO="inet 192.168.1.1 netmask OxfFFFFFOO"

In this example the variable i fconfig_ne0 was set because the network card was recognized as ne0 by
the kernel; if you are using a different adapter, substitute the appropriate name in place of ne0.
At the next boot the network card will be configured automatically.

If you have a router that is connected to the internet, you can use it as default router, which will handle
all your packets. To do so, set defaultroute to the router’s IP address in /etc/rc.conf:

defaultroute=192.168.0.254

Be sure to use the default router’s IP address instead of name, in case your DNS server is beyond the
default router. In that case, the DNS server couldn’t be reached to resolve the default router’s hostname
and vice versa, creating a chicken-and-egg problem.

245

Chapter 22 Setting up TCP/IP on NetBSD in practice

To reach hosts on your local network, and assuming you really have very few hosts, adjust Zetc/hosts
to contain the addresses of all the hosts belonging to the internal network. For example:

Example 22-9./ et ¢/ host s

#

Host Database

This File should contain the addresses and aliases
for local hosts that share this file.

It is used only for "ifconfig" and other operations
before the nameserver is started.

#

#

127.0.0.1 localhost

i localhost

#

RFC 1918 specifies that these networks are "internal™.
10.0.0.0 10.255.255.255

172.16.0.0 172.31.255.255

192.168.0.0 192.168.255.255

192.168.1.1 ape.insetti.net ape
192.168.1.2 vespa.insetti.net vespa
192.168.1.0 insetti.net

If you are dialed in via an Internet Service Provider, or if you have a local Domain Name Server (DNS)
running, you may want to use it to resolve hostnames to IP addresses, possibly in addition to
/etc/hosts, which would only know your own hosts. To configure a machine as DNS client, you need
to edit /etc/resolv.conf, and enter the DNS server’s address, in addition to an optional domain name
that will be appended to hosts with no domain, in order to create a FQDN for resolving. Assuming your
DNS server’s IP address is 192.168.1.2 and it is setup to serve for "home.net", put the following into
/etc/resolv.conf:

/etc/resolv.conf
domain home.net
nameserver 192.168.1.2

The /etc/nsswitch.conf file should be checked as explained in Example 22-2.

Summing up, to configure the network the following must be done: the network adapters must be
installed and physically connected. Next they must be configured (with ifconfig) and, finally, the file
/etc/rc.conf must be modified to configure the interface and possibly default router, and
/etc/resolv._confand /etc/nsswitch.confshould be adjusted if DNS should be used. This type
of network management is sufficient for small networks without sophisticated needs.

22.5 Setting up an Internet gateway with IPNAT

The mysterious acronym IPNAT hides the Internet Protocol Network Address Translation, which enables
the routing of an internal network (e.g. your home network as described in Section 22.4) on a real
network (Internet). This means that with only one “real” IP, static or dynamic, belonging to a gateway

246

Chapter 22 Setting up TCP/IP on NetBSD in practice

running IPNAT, it is possible to create simultaneous connections to the Internet for all the hosts of the
internal network.

Some usage examples of IPNAT can be found in the subdirectory Zusr/share/examples/ipf: look at
the files BASIC.NAT and nat-setup.

The setup for the example described in this section is detailed in Figure 22-1: host 1 can connect to the
Internet calling a provider with a modem and getting a dynamic IP address. host 2 and host 3 can’t
communicate with the Internet with a normal setup: IPNAT allows them to do it: host 1 will act as a
Internet gateway for hosts 2 and 3. Using host 1 as default router, hosts 2 and 3 will be able to access the
Internet.

Figure 22-1. Network with gateway

local net 192.168.1.0

: Gat eway static/dynanic IP :

' host 3 host 2 host 1 ' m

! pppO modem : | SP -
: A\ |3
, neo neo neo . g
' 192.168.1.3 192.168.1. 2 192.168.1.1 : m
. '

. '

22.5.1 Configuring the gateway/fi rewall
To use IPNAT, the “pseudo-device ipfilter” must be compiled into the kernel, and IP packet forwarding
must be enabled in the kernel. To check, run:

sysctl net.inet.ip.forwarding
net._inet_ip.forwarding = 1

If the result is “1” as in the previous example, the option is enabled, otherwise, if the result is “0” the
option is disabled. You can do two things:

1. Compile a new kernel, with the GATEWAY option enabled.
2. Enable the option in the current kernel with the following command:
sysctl -w net.inet.ip.forwarding=1

You can add sysctl settings to Zetc/sysctl . conf to have them set automatically at boot. In this
case you would want to add

net.inet.ip.forwarding=1

The rest of this section explains how to create an IPNAT configuration that is automatically started every
time that a connection to the provider is activated with the PPP link. With this configuration all the host
of a home network (for example) will be able to connect to the Internet through the gateway machine,
even if they don’t use NetBSD.

For the setup, first, create the /etc/ipnat.conf file containing the following rules:

247

Chapter 22 Setting up TCP/IP on NetBSD in practice

map ppp0 192.168.1.0/24 -> 0/32 proxy port ftp ftp/tcp
map ppp0 192.168.1.0/24 -> 0/32 portmap tcp/udp 40000:60000
map ppp0 192.168.1.0/24 -> 0/32

192.168.1.0/24 are the network addresses that should be mapped. The first line of the configuration file is
optional: it enables active FTP to work through the gateway. The second line is used to handle correctly
tcp and udp packets; the portmapping is necessary because of the many to one relationship). The third
line is used to enable ICMP, ping, etc.

Next, create the Zetc/ppp/ip-up file; it will be called automatically every time that the PPP link is
activated:

#1/bin/sh
/etc/ppp/ip-up
/etc/rc.d/ipnat forcestart

Create the file Zetc/ppp/ip-down; it will be called automatically when the PPP link is closed:

#1/bin/sh
/etc/ppp/ip-down
/etc/rc._d/ipnat forcestop

Both ip-up and ip-down must be executable:
chnmod u+x ip-up ip-down

The gateway machine is now ready.

22.5.2 Configuring the clients

Create a /etc/resolv.conf file like the one on the gateway machine, to make the clients access the
same DNS server as the gateway.

Next, make all clients use the gateway as their default router. Use the following command:
route add default 192.168.1.1

192.168.1.1 is the address of the gateway machine configured in the previous section.

Of course you don’t want to give this command every time, so it’s better to define the “defaultroute”
entry in the Zetc/rc.conf file: the default route will be set automatically during system initialization,
using the defaultroute option as an argument to the route add default command.

If the client machine is not using NetBSD, the configuration will be different. On Windows PC’s you
need to set the gateway property of the TCP/IP protocol to the IP address of the NetBSD gateway.

That’s all that needs to be done on the client machines.

22.5.3 Some useful commands

The following commands can be useful for diagnosing problems:

248

Chapter 22 Setting up TCP/IP on NetBSD in practice

ping

netstat -r

Displays the routing tables (similar to route show).

traceroute

On the client it shows the route followed by the packets to their destination.

tcpdump
Use on the gateway to monitor TCP/IP traffic.

22.6 A common LAN setup

The small home network discussed in the previous section contained many items that were configured
manually. In bigger LANSs that are centrally managed, one can expect Internet connectivity being
available via some router, a DNS server being available, and most important, a DHCP server which
hands out IP addresses to clients on request. To make a NetBSD client run in such an environment, it’s
usually enough to set

dhclient=yes

in /etc/rc.cont, and the IP address will be set automatically, Zetc/resolv.conf will be created
and routing setup to the default router.

22.7 Connecting two PCs through a serial line

If you need to transfer files between two PCs which are not networked there is a simple solution which is
particularly handy when copying the files to a floppy is not practical: the two machines can be networked
with a serial cable (a null modem cable). The following sections describe some configurations.

22.7.1 Connecting NetBSD with BSD or Linux

The easiest case is when both machines run NetBSD: making a connection with the SLIP protocol is
very easy. On the first machine write the following commands:

slattach /dev/tty00
ifconfig sl0 inet 192.168.1.1 192.168.1.2

On the second machine write the following commands:

slattach /dev/tty00
ifconfig sl0 inet 192.168.1.2 192.168.1.1

Now you can test the connection with ping; for example, on the second PC write:

249

Chapter 22 Setting up TCP/IP on NetBSD in practice

ping 192.168.1.1

If everything worked there is now an active network connection between the two machines and ftp, telnet
and other similar commands can be executed. The textual aliases of the machines can be written in the
/etc/hosts file.

« In the previous example both PC’s used the first serial port (/dev/tty0). Substitute the appropriate
device if you are using another port.

- |P addresses like 192.168.x.x are reserved for “internal” networks. The first PC has address
192.168.1.1 and the second 192.168.1.2.

« To achieve a faster connection the -s speed option to slattach can be specified.

- ftp can be used to transfer files only if inetd is active and the ftpd server is enabled.

Linux: If one of the two PC’s runs Linux, the commands are slightly different (on the Linux machine
only). If the Linux machine gets the 192.168.1.2 address, the following commands are needed:

slattach -p slip -s 115200 /dev/ttySO &
ifconfig sl 0 192.168.1.2 pointopoint 192.168.1.1 up
route add 192.168.1.1 dev slO

Don't forget the “&” in the first command.

22.7.2 Connecting NetBSD and Windows NT

NetBSD and Windows NT can be (almost) easily networked with a serial null modem cable. Basically
what needs to be done is to create a “Remote Access” connection under Windows NT and to start pppd
on NetBSD.

Start pppd as root after having created a -ppprc in /root. Use the following example as a template.

connect /usr/sbin/chat -v CLIENT CLIENTSERVER”
local

tty00

115200

crtscts

lock

noauth

nodefaultroute

:192.168.1.2

The meaning of the first line will be explained later in this section; 192.168.1.2 is the IP address that will
be assigned by NetBSD to the Windows NT host; tty00 is the serial port used for the connection (first
serial port).

On the NT side a null modem device must be installed from the Control Panel (Modem icon) and a
Remote Access connection using this modem must be created. The null modem driver is standard under
Windows NT 4 but it’s not a 100% null modem: when the link is activated, NT sends the string CLIENT

250

Chapter 22 Setting up TCP/IP on NetBSD in practice
and expects to receive the answer CLIENTSERVER. This is the meaning of the first line of the _ppprc
file: chat must answer to NT when the connection is activated or the connection will fail.

In the configuration of the Remote Access connection the following must be specified: use the null
modem, telephone number “1” (it’s not used, anyway), PPP server, enable only TCP/IP protocol, use IP
address and nameservers from the server (NetBSD in this case). Select the hardware control flow and set
the port to 115200 8N 1.

Now everything is ready to activate the connection.

« Connect the serial ports of the two machines with the null modem cable.
« Launch pppd on NetBSD. To see the messages of pppd: tail -f /var/log/messages).

- Activate the Remote Access connection on Windows NT.

22.7.3 Connecting NetBSD and Windows 95

The setup for Windows 95 is similar to the one for Windows NT: Remote Access on Windows 95 and the
PPP server on NetBSD will be used. Most (if not all) Windows 95 releases don’t have the null modem
driver, which makes things a little more complicated. The easiest solution is to find one of the available
null modem drivers on the Internet (it’s a small . INF file) and repeat the same steps as for Windows NT.
The only difference is that the first line of the . ppprc file (the one that calls chat) can be removed.

If you can’t find a real null modem driver for Windows 95 it’s still possible to use a little trick:

« Create a Remote Access connection like the one described in Section 22.7.2 but using the “Standard
Modem?”.

« In .ppprc substitute the line that calls chat with the following line
connect “/usr/sbin/chat -v ATH OK AT OK ATEOV1 OK AT OK ATDT CONNECT~”
« Activate the connection as described in Section 22.7.2.

In this way the chat program, called when the connection is activated, emulates what Windows 95 thinks
is a standard modem, returning to Windows 95 the same answers that a standard modem would return.
Whenever Windows 95 sends a modem command string, chat returns OK.

251

Chapter 23
The Internet Super Server inetd

The "internet super server"”, or inetd(8), is available on all Unix(like) systems, providing many of the
basic network services available. This chapter describes the relationship between the daemon and several

of the config files in the /etc/ directory.

23.1 Overview

In this document we will look at a simple definition of inetd(8), how several files that relate to inetd(8)
work (not that these files are not related to other software), how to add a service to inetd(8) and some
considerations both to use inetd(8) for a particular service and times when a service might be better off

running outside of inetd(8).

23.2 What is inetd?

In traditional Unix scenarios, one server (daemon) process watches for connections on a particular port,
and handles incoming requests. Now if a machine offers many services, many daemon processes would
be needed, mostly running idle but still wasting resources like memory. The internet super server, inetd,
is an approach to this problem. It listens on a number of ports, and when it receives a request it then
determines which program to run to handle the request and starts an instance of that program.

Following is a very simple diagram to illustrate inetd(8):

ftpd ------- | INETD | ---- Internet / DMZ / Switch / Whatever . . .

cvsupserver - |

In the above diagram you can see the general idea. The inetd(8) process receives a request and then starts
the appropriate server process. What inetd(8) is doing is software multiplexing. An important note here,
regarding security: On many other UNIX-like systems, a package called tcpwrappers is used as a security
enhancement for inetd(8). On NetBSD the tcpwrapper functionality is built into inetd(8) using libwrap.

23.3 Configuring inetd - / et ¢/ i net d. conf

The operation of inetd(8) is controlled by its own config file, surprisingly named Zetc/inetd.conf,
see inetd.conf(5). The inetd. conf file basically provides enabling and mapping of services the systems
administrator would like to have multiplexed through inetd(8), indicating which program should be
started for incoming requests on which port.

252

Chapter 23 The Internet Super Server inetd

inetd.conf(5) is an ascii file containing one service per line, and several fields per line. The basic field
layout is:

service-name socket-type protocol wait/nowait user:group server-program arguments

service-name:
The service name indicates the port inetd(8) should listen on. It is either a decimal number, or a
name matching a service name given in /etc/services.

socket-type:

The communications socket type, the different types are "stream" for a TCP stream, "dgram" for an
UDP service, "raw" for a raw socket, "rdm" for reliably delivered message and "seqpacket" for a
sequenced packet socket. The most common socket types are "stream™ and "dgram".

protocol

The protocol used, mostly "tcp", "tcp6"”, "udp" and "udp6" for stream-oriented services via the
Transmission Control Protocol, or datagram-oriented services via the User Datagram Protocol. It is
worth noting that "tcp™ and "udp" mean they use the default (currently 1Pv4), "tcp4" specifically
means communication via IPv4 only, and "tcp6" and "udp6" are IPv6-only. In addition to those,
protocols based on Remote Procedure Calls (RPC) can be specified as either "rpc/tcp™ or "rpc/udp”.

wait/nowait

This field tells inetd(8) if it should wait for a server program to return or to continue processing new
connections immediately. Many connections to server processes require answers after data transfers
are complete, where other types can keep transmitting on a connection continuously, the latter is a
"nowait" and the former "wait". In most cases, this entry corresponds to the socket-type, for
example a streaming connection would (most of the time) have a "nowait" value in this field.
user[:group]
This field gives the user name and optionally a group name that the server process which inetd(8)
starts up runs as.
server-program

This field is the full path of the program that gets started.

program-arguments

This field contains the argument vector argv[] of the program started, including the program name
and additional arguments the systems administrator may need to specify for the server program that
is started.

That is all a lot to digest and there are other things the systems administrator can do with some of the
fields. Here is a sample line from an inetd.conf file:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -11

From the left, the service-name is "ftp", socket-type is "stream", protocol is "tcp", inetd(8) won’t wait for
the server process to terminate ("nowait"), the process runs as user "root", path is Zusr/libexec/ftpd

253

Chapter 23 The Internet Super Server inetd

and program name and arguments are "ftpd -11". Notice in the last field, the program name is different
from the service-name.

23.4 Services -/ etc/ servi ces

The next file to consider is the service name data base that can be found in Zetc/services. This file
basically contains information mapping a service name to a port number. The format of the
/etc/servicesfile is:

service-name port-number/protocol-name [aliases]

"service-name" is the name of the service, "port-number" is the port number assigned to the service,
"protocol-name" is either "tcp"” or "udp", and if alias names for a port are needed, they can be added as
"aliases", separated by white spaces. Comments may be added after a hash mark (#).

Let’s take a look at the "ssh" entries as an example:

ssh 22/tcp # Secure Shell
ssh 22/udp

As we can see, from the left, the service name is "ssh", the port number is "22", the protocols are both
"tcp" and "udp". Notice that there is a separate entry for every protocol a service can use (even on the
same port).

23.5 Protocols -/ et ¢/ prot ocol s

Another file read by inetd(8) is Zetc/protocols. This file has the information pertaining to DARPA
Internet protocols. The format of the protocols name data base is:

protocol-name number [aliases]

where "protocol-name" describes the payload of an IP packet, e.g. "tcp" or "udp". "number" is the official
protocol number assigned by IANA, and optional alias names can be added after that.

Let’s look at the seventh entry in the Zetc/protocols db as an example:

tcp 6 TCP # transmission control protocol

Starting from the left, we see that the protocol name is "tcp", the number is 6" and the only aliases listed
is "TCP", belonging to the Transmission Control Protocol as indicated by the comment in that line.

23.6 Remote Procedure Calls (RPC) -/etc/ rpc

The rpc program number data base used by services with the "rpc" protocol type in inetd.conf(5) is kept
in /etc/rpc and contains name mappings to rpc program numbers. The format of the file is:

server-name program-number aliases

For example, here is the nfs entry:

254

Chapter 23 The Internet Super Server inetd

nfs 100003 nfsprog

23.7 Allowing and denying hosts -/ et ¢/ host s. {al | ow, deny}

As mentioned above, NetBSD’s inetd(8) has the tcpwrapper package built in via the libwrap library. As
such, inetd(8) can allow or deny access to each service on a more fine-grained base than just allowing a
service to everyone, or not enabling it at all. The access control is defined in the files
/etc/hosts.allowand /etc/hosts.deny, see the hosts_access(5) manpage.

Each of the two files contains several lines that describe access restrictions for a certain server. Access is
allowed if permission is given in Zetc/hosts.al low. If the service is not listened in
/etc/hosts.allow but in Zetc/hosts.deny, it is denied. If a service is listed in neither file, it is
allowed, giving standard inetd(8) behaviour.

Each line in Z/etc/hosts.al low and /etc/hosts .deny contains a service either by name (as given in
the field for argv[0] in Zetc/inetd.conf, e.g. "ftpd" instead of "ftp"), or the special service "ALL"
which obviously applies to all services. Following the service name is - separated by a colon - a number
of access restrictions, which can be hostnames, domains, single IP addresses, whole IP subnets or some
other restrictions, please check hosts_access(5) for all the details.

An example configuration that is mostly open but denies access to services to a certain host and all
machines from a certain domain would look like this:

/etc/hostname.deny:
ALL: some.host.name, .some.domain

Another example that would be mostly closed, denying access to all but very few machines would need
entries in both Zetc/hosts.al low and /etc/hosts._deny. The entry for /etc/hosts.deny would
be:

/etc/hosts._deny
ALL: ALL

The entry to allow a few hosts would be put into /etc/hosts.allow:

/etc/hosts.allow
ALL: friend.host.domain otherfriend.otherhost.otherdomain

23.8 Adding a Service

Many times a systems administrator will find that they need to add a service to their system that is not
already in inetd(8) or they may wish to move a service to it because it does not get very much traffic. This
is usually pretty simple, so as an example we will look at adding a version of POP3 on a NetBSD system.

In this case we have retrieved and installed the "cucipop" package, which can be found in

pkgsrc/mai l/cucipop. This server is pretty simple to use, the only oddities are different path
locations. Since it is POP3 we know it is a stream oriented connection with "nowait". Running as "root"
will be fine, the only item that is different is the location of the program and the name of the program
itself.

255

Chapter 23 The Internet Super Server inetd

So the first half of the new entry in Zetc/inetd.conflooks like this:
pop3 stream tcp nowait root

After installation, pkgsrc deposited cucipop in Zusr/pkg/sbin/cucipop. So with the next field we
have:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop

Last, we want to use the Berkeley mailbox format, so our server program must be called with the -Y
option. This leaves the entire entry looking like so:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop cucipop -Y

We have added the service named "pop3" to Zetc/inetd.conf. Next item to check is that the system
can map the service name to a port number in Zetc/services:

grep "“pop3 /etc/services

pop3 110/tcp # POP version 3

pop3 110/udp

pop3s 995/tcp # pop3 protocol over TLS/SSL (was spop3)
pop3s 995/udp # pop3 protocol over TLS/SSL (was spop3)

The "pop3" entries here are of interest, i.e. they are already contained in the /etc/services file
shipped with NetBSD.

Now, to have inetd(8) use the new entry, we simply restart it using the rc script:
sh /etc/rc.d/inetd restart

All done, in most cases, the software you are using has documentation that will specify the entry, in the
off case it does not, sometimes it helps to try and find something similar to the server program you will
be adding. A classic example of this is a MUD server which has built-in telnet. You can pretty much
borrow the telnet entry and change parts where needed.

23.9 When to use or not to use inetd

The decision to add or move a service into or out of inetd(8) is usually based on server load. As an
example, on most systems the telnet daemon does not require as many new connections as say a mail
server. Most of the time the administrator has to feel out if a service should be moved.

A good example | have seen is mail services such as smtp and pop. | had setup a mail server in which
pop3 was in inetd(8) and exim was running in standalone, | mistakenly assumed it would run fine since
there was a low amount of users, namely myself and a diagnostic account. The server was also setup to
act as a backup MX and relay in case another heavily used one went down. When | ran some tests |
discovered a huge time lag for pop connections remotely. This was because of my steady fetching of mail
and the diagnostic user constantly mailing diagnostics back and forth. In the end | had to move the pop3
service out of inetd(8).

The reason for moving the service is actually quite interesting. When a particular service becomes
heavily used, of course, it causes a load on the system. In the case of a service that runs within the
inetd(8) meta daemon the effects of a heavily loaded service can also harm other services that use

256

Chapter 23 The Internet Super Server inetd

inetd(8). If the multiplexor is getting too many requests for one particular service, it will begin to affect
the performance of other services that use inetd(8). The fix, in a situation like that, is to make the
offending service run outside of inetd(8) so the response time of both the service and inetd(8) will
increase.

23.10 Other Resources

Following is some additional reading and information about topics covered in this document.

NetBSD manual pages:

« inetd(8) (http://netbsd.gw.com/cgi-bin/man-cgi/man?inetd+8+NetBSD-current)

« protocols(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?protocols+5+NetBSD-current)

« rpc(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?rpc+5+NetBSD-current)

« services(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?services+5+NetBSD-current)

« hosts_access(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?hosts_access+5+NetBSD-current)

Miscellaneous links:

« IANA: Protocol Numbers and Assignment Services (http://www.iana.org/numbers.htm)

« RFC1700: Assigned Numbers (http://www.isi.edu/in-notes/rfc1700.txt)

257

Chapter 24
The Domain Name System

Use of the Domain Name System has been discussed in previous chapters, without going into detail on
the setup of the server providing the service. This chapter describes setting up a simple, small domain
with one Domain Name System (DNS) nameserver on a NetBSD system. It includes a brief explanation
and overview of the DNS; further information can be obtained from the DNS Resources Directory
(DNSRD) at http://www.dns.net/dnsrd/.

24.1 DNS Background and Concepts

The DNS is a widely used naming service on the Internet and other TCP/IP networks. The network
protocols, data and file formats, and other aspects of the DNS are Internet Standards, specified in a
number of RFC documents, and described by a number of other reference and tutorial works. The DNS
has a distributed, client-server architecture. There are reference implementations for the server and
client, but these are not part of the standard. There are a number of additional implementations available
for many platforms.

24.1.1 Naming Services

Naming services are used to provide a mapping between textual names and configuration data of some
form. A nameserver maintains this mapping, and clients request the nameserver to resolve a name into
its attached data.

The reader should have a good understanding of basic hosts to IP address mapping and IP address class
specifications, see Section 21.6.

In the case of the DNS, the configuration data bound to a name is in the form of standard Resource
Records (RR’s). These textual names conform to certain structural conventions.

24.1.2 The DNS namespace

The DNS presents a hierarchical name space, much like a UNIX filesystem, pictured as an inverted tree
with the root at the top.

TOP-LEVEL .org

MID-LEVEL .diverge.org
I
I I I

BOTTOM-LEVEL strider.diverge.org samwise.diverge.org wormtongue.diverge.org

258

Chapter 24 The Domain Name System

The system can also be logically divided even further if one wishes at different points. The example
shown above shows three nodes on the diverge.org domain, but we could even divide diverge.org into
subdomains such as "strider.netl.diverge.org", "samwise.net2.diverge.org" and
"wormtongue.net2.diverge.org"; in this case, 2 nodes reside in "net2.diverge.org" and one in

"netl.diverge.org".

There are directories of names, some of which may be sub-directories of further names. These directories
are sometimes called zones. There is provision for symbolic links, redirecting requests for information
on one name to the records bound to another name. Each name recognised by the DNS is called a
Domain Name, whether it represents information about a specific host, or a directory of subordinate
Domain Names (or both, or something else).

Unlike most filesystem naming schemes, however, Domain Names are written with the innermost name
on the left, and progressively higher-level domains to the right, all the way up to the root directory if

necessary. The separator used when writing Domain Names is a period, ".".

Like filesystem pathnames, Domain Names can be written in an absolute or relative manner, though there
are some differences in detail. For instance, there is no way to indirectly refer to the parent domain like
with the UNIX . . directory. Many (but not all) resolvers offer a search path facility, so that
partially-specified names can be resolved relative to additional listed sub-domains other than the client’s
own domain. Names that are completely specified all the way to the root are called Fully Qualified
Domain Names or FQDNs. A defining characteristic of an FQDN is that it is written with a terminating
period. The same name, without the terminating period, may be considered relative to some other
sub-domain. It is rare for this to occur without malicious intent, but in part because of this possibility,
FQDNSs are required as configuration parameters in some circumstances.

On the Internet, there are some established conventions for the names of the first few levels of the tree, at
which point the hierarchy reaches the level of an individual organisation. This organisation is responsible
for establishing and maintaining conventions further down the tree, within its own domain.

24.1.3 Resource Records

Resource Records for a domain are stored in a standardised format in an ASCI|I text file, often called a
zone file. The following Resource Records are commonly used (a number of others are defined but not
often used, or no longer used). In some cases, there may be multiple RR types associated with a name,
and even multiple records of the same type.

Common DNS Resource Records

A: Address

This record contains the numerical IP address associated with the name.

CNAME: Canonical Name

This record contains the Canonical Name (an FQDN with an associated A record) of the host name
to which this record is bound. This record type is used to provide name aliasing, by providing a link
to another name with which other appropriate RR’s are associated. If a name has a CNAME record

bound to it, it is an alias, and no other RR’s are permitted to be bound to the same name.

259

Chapter 24 The Domain Name System

It is common for these records to be used to point to hosts providing a particular service, such as an
FTP or HTTP server. If the service must be moved to another host, the alias can be changed, and the
same name will reach the new host.

PTR: Pointer

This record contains a textual name. These records are bound to names built in a special way from
numerical IP addresses, and are used to provide a reverse mapping from an IP address to a textual
name. This is described in more detail in Section 24.1.8.

NS: Name Server

This record type is used to delegate a sub-tree of the Domain Name space to another nameserver.
The record contains the FQDN of a DNS nameserver with information on the sub-domain, and is
bound to the name of the sub-domain. In this manner, the hierarchical structure of the DNS is
established. Delegation is described in more detail in Section 24.1.4.

MX: Mail eXchange

This record contains the FQDN for a host that will accept SMTP electronic mail for the named
domain, together with a priority value used to select an MX host when relaying mail. It is used to
indicate other servers that are willing to receive and spool mail for the domain if the primary MX is
unreachable for a time. It is also used to direct email to a central server, if desired, rather than to
each and every individual workstation.

HINFO: Host Information

Contains two strings, intended for use to describe the host hardware and operating system platform.
There are defined strings to use for some systems, but their use is not enforced. Some sites, because
of security considerations, do not publicise this information.

TXT: Text

A free-form text field, sometimes used as a comment field, sometimes overlaid with site-specific
additional meaning to be interpreted by local conventions.

SOA: Start of Authority

This record is required to appear for each zone file. It lists the primary nameserver and the email
address of the person responsible for the domain, together with default values for a number of fields
associated with maintaining consistency across multiple servers and caching of the results of DNS
queries.

24.1.4 Delegation

Using NS records, authority for portions of the DNS namespace below a certain point in the tree can be
delegated, and further sub-parts below that delegated again. It is at this point that the distinction between
a domain and a zone becomes important. Any name in the DNS is called a domain, and the term applies
to that name and to any subordinate names below that one in the tree. The boundaries of a zone are
narrower, and are defined by delegations. A zone starts with a delegation (or at the root), and
encompasses all names in the domain below that point, excluding names below any subsequent
delegations.

260

Chapter 24 The Domain Name System

This distinction is important for implementation - a zone is a single administrative entity (with a single
SOA record), and all data for the zone is referred to by a single file, called a zone file. A zone file may
contain more than one period-separated level of the namespace tree, if desired, by including periods in
the names in that zone file. In order to simplify administration and prevent overly-large zone files, it is
quite legal for a DNS server to delegate to itself, splitting the domain into several zones kept on the same
server.

24.1.5 Delegation to multiple servers

For redundancy, it is common (and often administratively required) that there be more than one
nameserver providing information on a zone. It is also common that at least one of these servers be
located at some distance (in terms of network topology) from the others, so that knowledge of that zone
does not become unavailable in case of connectivity failure. Each nameserver will be listed in an NS
record bound to the name of the zone, stored in the parent zone on the server responsible for the parent
domain. In this way, those searching the name hierarchy from the top down can contact any one of the
servers to continue narrowing their search. This is occasionally called walking the tree.

There are a number of nameservers on the Internet which are called root nameservers. These servers
provide information on the very top levels of the domain namespace tree. These servers are special in
that their addresses must be pre-configured into nameservers as a place to start finding other servers.

Isolated networks that cannot access these servers may need to provide their own root nameservers.

24.1.6 Secondaries, Caching, and the SOA record

In order to maintain consistency between these servers, one is usually configured as the primary server,
and all administrative changes are made on this server. The other servers are configured as secondaries,
and transfer the contents of the zone from the primary. This operational model is not required, and if
external considerations require it, multiple primaries can be used instead, but consistency must then be
maintained by other means. DNS servers that store Resource Records for a zone, whether they be
primary or secondary servers, are said to be authoritative for the zone. A DNS server can be authoritative
for several zones.

When nameservers receive responses to queries, they can cache the results. This has a significant
beneficial impact on the speed of queries, the query load on high-level nameservers, and network
utilisation. It is also a major contributor to the memory usage of the nameserver process.

There are a number of parameters that are important to maintaining consistency amongst the secondaries
and caches. The values for these parameters for a particular domain zone file are stored in the SOA
record. These fields are:

Fields of the SOA Record

Serial

A serial number for the zone file. This should be incremented any time the data in the domain is
changed. When a secondary wants to check if its data is up-to-date, it checks the serial number on
the primary’s SOA record.

261

Chapter 24 The Domain Name System

Refresh

A time, in seconds, specifying how often the secondary should check the serial number on the
primary, and start a new transfer if the primary has newer data.

Retry

If a secondary fails to connect to the primary when the refresh time has elapsed (for example, if the
host is down), this value specifies, in seconds, how often the connection should be retried.

Expire

If the retries fail to reach the primary within this number of seconds, the secondary destroys its
copies of the zone data file(s), and stops answering requests for the domain. This stops very old and
potentially inaccurate data from remaining in circulation.

TTL

This field specifies a time, in seconds, that the resource records in this zone should remain valid in
the caches of other nameservers. If the data is volatile, this value should be short. TTL is a
commonly-used acronym, that stands for "Time To Live".

24.1.7 Name Resolution

DNS clients are configured with the addresses of DNS servers. Usually, these are servers which are
authoritative for the domain of which they are a member. All requests for name resolution start with a
request to one of these local servers. DNS queries can be of two forms:

« A recursive query asks the nameserver to resolve a name completely, and return the result. If the
request cannot be satisfied directly, the nameserver looks in its configuration and caches for a server
higher up the domain tree which may have more information. In the worst case, this will be a list of
pre-configured servers for the root domain. These addresses are returned in a response called a
referral. The local nameserver must then send its request to one of these servers.

« Normally, this will be an iterative query, which asks the second nameserver to either respond with an
authoritative reply, or with the addresses of nameservers (NS records) listed in its tables or caches as
authoritative for the relevant zone. The local nameserver then makes iterative queries, walking the tree
downwards until an authoritative answer is found (either positive or negative) and returned to the
client.

In some configurations, such as when firewalls prevent direct IP communications between DNS clients
and external nameservers, or when a site is connected to the rest of the world via a slow link, a
nameserver can be configured with information about a forwarder. This is an external nameserver to
which the local nameserver should make requests as a client would, asking the external nameserver to
perform the full recursive name lookup, and return the result in a single query (which can then be
cached), rather than reply with referrals.

24.1.8 Reverse Resolution

The DNS provides resolution from a textual name to a resource record, such as an A record with an IP
address. It does not provide a means, other than exhaustive search, to match in the opposite direction;

262

Chapter 24 The Domain Name System

there is no mechanism to ask which name is bound to a particular RR.

For many RR types, this is of no real consequence, however it is often useful to identify by name the host
which owns a particular IP address. Rather than complicate the design and implementation of the DNS
database engine by providing matching functions in both directions, the DNS utilises the existing
mechanisms and creates a special namespace, populated with PTR records, for IP address to name
resolution. Resolving in this manner is often called reverse resolution, despite the inaccurate
implications of the term.

The manner in which this is achieved is as follows:

« A normal domain name is reserved and defined to be for the purpose of mapping IP addresses. The
domain name used is "in-addr.arpa.” which shows the historical origins of the Internet in the US
Government’s Defence Advanced Research Projects Agency’s funding program.

« This domain is then subdivided and delegated according to the structure of IP addresses. IP addresses
are often written in decimal dotted quad notation, where each octet of the 4-octet long address is
written in decimal, separated by dots. IP address ranges are usually delegated with more and more of
the left-most parts of the address in common as the delegation gets smaller. Thus, to allow delegation
of the reverse lookup domain to be done easily, this is turned around when used with the hierarchical
DNS namespace, which places higher level domains on the right of the name.

- Each byte of the IP address is written, as an ASCII text representation of the number expressed in
decimal, with the octets in reverse order, separated by dots and appended with the in-addr.arpa.
domain name. For example, to determine the hostname of a network device with IP address
11.22.33.44, this algorithm would produce the string "44.33.22.11.in-addr.arpa.” which is a legal,
structured Domain Name. A normal nameservice query would then be sent to the nameserver asking
for a PTR record bound to the generated name.

« The PTR record, if found, will contain the FQDN of a host.

One consequence of this is that it is possible for mismatch to occur. Resolving a name into an A record,
and then resolving the name built from the address in that A record to a PTR record, may not result in a
PTR record which contains the original name. There is no restriction within the DNS that the "reverse"
mapping must coincide with the "forward" mapping. This is a useful feature in some circumstances,
particularly when it is required that more than one name has an A record bound to it which contains the
same IP address.

While there is no such restriction within the DNS, some application server programs or network libraries
will reject connections from hosts that do not satisfy the following test:

- the state information included with an incoming connection includes the IP address of the source of
the request.

« aPTR lookup is done to obtain an FQDN of the host making the connection

« an A lookup is then done on the returned name, and the connection rejected if the source IP address is
not listed amongst the A records that get returned.

This is done as a security precaution, to help detect and prevent malicious sites impersonating other sites
by configuring their own PTR records to return the names of hosts belonging to another organisation.

263

Chapter 24 The Domain Name System

24.2 The DNS Files

Now let’s look at actually setting up a small DNS enabled network. We will continue to use the examples
mentioned in Chapter 22, i.e. we assume that:

« Our IP networking is working correctly
« We have IPNAT working correctly
« Currently all hosts use the ISP for DNS

Our Name Server will be the “strider” host which also runs IPNAT, and our two clients use "strider" as a
gateway. It is not really relevant as to what type of interface is on "strider", but for argument’s sake we
will say a 56k dial up connection.

So, before going any further, let’s look at our Zetc/hosts file on "strider" before we have made the
alterations to use DNS.

Example 24-1. strider’s / et c/ host s file

127.0.0.1 localhost
192.168.1.1 strider
192.168.1.2 samwise sam
192.168.1.3 wormtongue worm

This is not exactly a huge network, but it is worth noting that the same rules apply for larger networks as
we discuss in the context of this section.

The other assumption we want to make is that the domain we want to set up is diverge.org, and that
the domain is only known on our internal network, and not worldwide. Proper registration of the
nameserver’s IP address as primary would be needed in addition to a static IP. These are mostly
administrative issues which are left out here.

The NetBSD operating system provides a set of config files for you to use for setting up DNS. They are
stored in the Zetc/namedb directory, | strongly suggest making a backup copy of this directory for
reference purposes.

The default directory contains the following files:

- named.conf
« localhost

. 127

« loopback.v6
« root.cache

You will see modified versions of these files in this section.

Note: The examples in this chapter refer to BIND major version 8, however, it should be noted that
format of the name database and other config files are almost 100% compatible between version.
The only difference | noticed was that the “$TTL” information was not required.

264

Chapter 24 The Domain Name System

24.2.1 | et ¢/ namedb/ named. conf

The first file we want to look at is Zetc/namedb/named . conf. This file is the config file for bind
(hence the catchy name). Setting up system like the one we are doing is relatively simple. First, here is
what mine looks like:

options {
directory "/etc/namedb™;
allow-transfer { 192.168.1.0/24; };
allow-query { 192.168.1.0/24; };
listen-on port 53 { 192.168.1.1; };
};

zone "localhost" {
type master;
notify no;
file "localhost";

}:

zone ""127_IN-ADDR.ARPA™ {
type master;
notify no;
file "127";

};

zone "0.1ip6.int" {
type master;
file "loopback.v6";

}:

zone "‘diverge.org” {
type master;
notify no;
file "diverge.org";

¥

zone "1.168.192.in-addr.arpa"™ {
type master;

notify no;

file "1.168.192";
};
zone "." in {

type hint;

file "root.cache";
};

Note that in my named . conf the root (".") section is last, that is because there is another domain called
diverge.org on the internet (1 happen to own it) so | want the resolver to look out on the internet last. This
is not normally the case on most systems.

Another very important thing to remember here is that if you have an internal setup, in other words no

live internet connection and/or no need to do root server lookups, comment out the root (*.") zone. It may

265

Chapter 24 The Domain Name System
cause lookup problems if a particular client decides it wants to reference a domain on the internet, which
our server couldn’t resolve itself.

Looks like a pretty big mess, upon closer examination it is revealed that many of the lines in each section
are somewhat redundant. So we should only have to explain them a few times.

Lets go through the sections of named - con¥:

24.2.1.1 options

This section defines some global parameters, most noticeable is the location of the DNS tables, on this
particular system, they will be put in Zetc/namedb as indicated by the "directory" option.

Following are the rest of the params:

allow-transfer

This option lists which remote DNS servers acting as secondaries are allowed to do zone transfers,
i.e. are allowed to read all DNS data at once. For privacy reasons, this should be restricted to
secondary DNS servers only.

allow-query

This option defines hosts from what network may query this name server at all. Restricting queries
only to the local network (192.168.1.0/24) prevents queries arriving on the DNS server’s external
interface, and prevent possible privacy issues.

listen-on port

This option defined the port and associated IP addresses this server will run named(8) on. Again, the
"external" interface is not listened here, to prevent queries getting received from "outside".

The rest of the named . conf file consists of “zone”s. A zone is an area that can have items to resolve
attached, e.g. a domain can have hostnames attached to resolve into IP addresses, and a reverse-zone can
have IP addresses attached that get resolved back into hostnames. Each zone has a file associated with it,
and a table within that file for resolving that particular zone. As is readily apparent, their format in
named . conf is strikingly similar, so I will highlight just one of their records:

24.2.1.2 zone “diverge.org”

type

The type of a zone is usually of type "master" in all cases except for the root zone “.” and for zones
that a secondary (backup) service is provided - the type obviously is "secondary" in the latter case.

notify

Do you want to send out notifications to secondaries when your zone changes? Obviously not in this
setup, so this is set to ""no".

file

This option sets the filename in our /etc/namedb directory where records about this particular
zone may be found. For the "diverge.org" zone, the file /etc/namedb/diverge.org is used.

266

Chapter 24 The Domain Name System

24.2.2 | et ¢/ namedb/ | ocal host

For the most part, the zone files look quite similar, however, each one does have some unique properties.
Here is what the localhost file looks like:

Example 24-2.1 ocal host

1]$TTL 3600

2@ IN SOA strider.diverge.org. root.diverge.org. (
3] 1 ; Serial

4] 8H ; Refresh

5] 2H ; Retry

6] 1w ; Expire

71 1D) ; Minimum TTL
8] IN NS localhost.

9] localhost. IN A 127.0.0.1

10] IN AAAA izl

Line by line:

Line 1:

This is the Time To Live for lookups, which defines how long other DNS servers will cache that
value before discarding it. This value is generally the same in all the files.
Line 2:

This line is generally the same in all zone files except root.cache. It defines a so-called "Start Of
Authority" (SOA) header, which contains some basic information about a zone. Of specific interest
on this line are "strider.diverge.org." and "root.diverge.org." (note the trailing dots!). Obviously one
is the name of this server and the other is the contact for this DNS server, in most cases root seems a
little ambiguous, it is preferred that a regular email account be used for the contact information,
with the "@" replaced by a "." (for example, mine would be "jrf.diverge.org.").

Line 3:

This line is the serial number identifying the "version" of the zone’s data set (file). The serial
number should be incremented each time there is a change to the file, the usual forat is to either start
with a value of "1" and increase it for every change, or use a value of "YYYYMMDDNN" to encode
year (YYYY), month (MM), day (DD) and change within one day (NN) in the serial number.

Line 4:

This is the refresh rate of the server, in this file it is set to once every 8 hours.

Line 5:
The retry rate.

Line 6:
Lookup expiry.

267

Chapter 24 The Domain Name System

Line 7:

The minimum Time To Live.

Line 8:

This is the Nameserver line, which uses a "NS" ressource record to show that "localhost" is the only
DNS server handing out data for this zone (which is "@", which indicates the zone name used in the
named . conf file, i.e. "diverge.org") is, well, "localhost".

Line 9:

This is the localhost entry, which uses an "A" ressource record to indicate that the name "localhost"
should be resolved into the IP-address 127.0.0.1 for IPv4 queries (which specifically ask for the "A"
record).

Line 10:

This line is the IPv6 entry, which returns ::1 when someone asks for an IPv6-address (by
specifically asking for the AAAA record) of "localhost.".

24.2.3 |/ et ¢/ namedb/ zone. 127. 0.0

This is the reverse lookup file (or zone) to resolve the special IP address 127.0.0.1 back to "localhost":

1] $TTL 3600

2] @ IN SOA strider.diverge.org. root.diverge.org. (
3] 1 ; Serial

4] 8H ; Refresh

5] 2H ; Retry

6] 1w ; Expire

71 1D) ; Minimum TTL

8] IN NS localhost.

9] 1.0.0 IN PTR localhost.

In this file, all of the lines are the same as the localhost zonefile with exception of line 9, this is the
reverse lookup (PTR) record. The zone used here is "@" again, which got set to the value given in
named.conf, i.e. "127.in-addr.arpa". This is a special "domain" which is used to do reverse-lookup of IP
addresses back into hostnames. For it to work, the four bytes of the IPv4 address are reserved, and the
domain "in-addr.arpa" attached, so to resolve the IP address "127.0.0.1", the PTR record of
"1.0.0.127.in-addr.arpa" is queried, which is what is defined in that line.

24.2.4 | et c/ nanedb/ di ver ge. org

This zone file is populated by records for all of our hosts. Here is what it looks like:

1] $TTL 3600

2] @ IN SOA strider.diverge.org. root.diverge.org. (
3] 1 ; serial

4] 8H ; refresh

5] 2H ; retry

6] 1w ; expire

268

Chapter 24 The Domain Name System

71 1D) ; minimum seconds

8] IN NS strider.diverge.org.

9] IN MX 10 strider.diverge.org. ; primary mail server
10] IN MX 20 samwise.diverge.org. ; secondary mail server
11] strider IN A 192.168.1.1
12] samwise IN A 192.168.1.2
13| www IN CNAME samwise.diverge.org.
14| worm IN A 192.168.1.3

There is a lot of new stuff here, so lets just look over each line that is new here:

Line 9
This line shows our mail exchanger (MX), in this case it is "strider". The number that precedes
"strider.diverge.org." is the priority number, the lower the number their higher the priority. The way
we are setup here is if "strider" cannot handle the mail, then "samwise" will.

Line 11

CNAME stands for canonical name, or an alias for an existing hostname, which must have an A
record. So we have aliased the following:

www.diverge.org to samwise.diverge.org

The rest of the records are simply mappings of IP address to a full name (A records).

24.2.5 /et c/ namedb/ 1. 168. 192

This zone file is the reverse file for all of the host records, to map their IP numbers we use on our private
network back into hostnames. The format is similar to that of the "localhost" version with the obvious
exception being the addresses are different via the different zone given in the named . conf file, i.e.
"0.168.192.in-addr.arpa" here:

1]$TTL 3600

2@ IN SOA strider.diverge.org. root.diverge.org. (
3] 1 ; serial

4] 8H ; refresh

5] 2H ; retry

6] 1w ; expire

71 1D) ; minimum seconds

8] IN NS strider.diverge.org.

9|1 IN PTR strider.diverge.org.

10]2 IN PTR samwise.diverge.org.

1113 IN PTR worm.diverge.org.

24.2.6 | et ¢/ namedb/ r oot . cache

This file contains a list of root name servers for your server to query when it gets requests outside of its
own domain that it cannot answer itself. Here are first few lines of a root zone file:

269

Chapter 24 The Domain Name System

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers

; (e.g. reference this file in the "cache . <Ffile>"

; configuration file of BIND domain name servers).

; This file is made available by InterNIC
; under anonymous FTP as
file /domain/db.cache
on server FTP_INTERNIC_NET
-OR- RS.INTERNIC.NET

last update: Jan 29, 2004
; related version of root zone: 2004012900

; Formerly NS_INTERNIC._NET

- 3600000 IN NS A_ROOT-SERVERS.NET.
A_ROOT-SERVERS.NET. 3600000 A 198.41.0.4

; formerly NS1.1SI.EDU

- 3600000 NS B.ROOT-SERVERS .NET.
B.ROOT-SERVERS .NET. 3600000 A 192.228.79.201

; formerly C_PSI_NET

. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS_NET. 3600000 A 192.33.4.12

This file can be obtained from ISC at http://www.isc.org/ and usually comes with a distribution of BIND.
A root.cache file is included in the NetBSD operating system’s “etc" set.

This section has described the most important files and settings for a DNS server. Please see the BIND
documentation in Zusr/src/dist/bind/doc/bog and named.conf(5) for more information.

24.3 Using DNS

In this section we will look at how to get DNS going and setup "strider" to use its own DNS services.

Setting up named to start automatically is quite simple. In Zetc/rc.conf simply set named=yes.
Additional options can be specified in named_flags, for example, | like to use -g nogroup -u
nobody, S0 a hon-root account runs the "named" process.

In addition to being able to startup "named" at boot time, it can also be controlled with the ndc
command. In a nutshell the ndc command can stop, start or restart the named server process. It can also
do a great many other things. Before use, it has to be setup to communicate with the "named" process,

270

Chapter 24 The Domain Name System

see the ndc(8) and named.conf(5) man pages for more details on setting up communication channels
between "ndc" and the "named" process.

Next we want to point "strider" to itself for lookups. We have two simple steps, first, decide on our
resolution order. On a network this small, it is likely that each host has a copy of the hosts table, so we
can get away with using Zetc/hosts first, and then DNS. However, on larger networks it is much easier
to use DNS. Either way, the file where order of name services used for resolution is determined is
/etc/nsswitch.conf (see Example 22-2). Here is part of a typical nsswitch.conf:

group_compat: nis

hosts: files dns
netgroup: files [notfound=return] nis

The line we are interested in is the "hosts" line. "files" means the system uses the /etc/hosts file first
to determine ip to name translation, and if it can’t find an entry, it will try DNS.

The next file to look at is /etc/resolv.conf, which is used to configure DNS lookups ("resolution™)
on the client side. The format is pretty self explanatory but we will go over it anyway:

domain diverge.org
search diverge.org
nameserver 192.168.1.1

In a nutshell this file is telling the resolver that this machine belongs to the "diverge.org"” domain, which
means that lookups that contain only a hostname without a "." gets this domain appended to build a
FQDN. If that lookup doesn’t succeed, the domains in the "search" line are tried next. Finally, the
"nameserver" line gives the IP addresses of one or more DNS servers that should be used to resolve DNS

queries.

To test our nameserver we can use several commands, for example:

host sam
sam.diverge.org has address 192.168.1.2

As can be seen, the domain was appended automatically here, using the value from
/etc/resolv._conf. Here is another example, the output of running host www.yahoo.com:

$ host www. yahoo. com

www.yahoo.com is an alias for www.yahoo.akadns.net.
www.yahoo.akadns.net has address 68.142.226.38

www . yahoo.akadns._net has address 68.142.226.39
www.yahoo.akadns.net has address 68.142.226.46

www . yahoo.akadns._net has address 68.142.226.50
www.yahoo.akadns.net has address 68.142.226.51

www . yahoo.akadns._net has address 68.142.226.54
www.yahoo.akadns.net has address 68.142.226.55
www.yahoo.akadns.net has address 68.142.226.32

Other commands for debugging DNS besides host(1) are nslookup(8) and dig(1). Note that ping(8) is not
useful for debugging DNS, as it will use whatever is configured in Zetc/nsswitch.conf to do the
name-lookup.

271

Chapter 24 The Domain Name System

At this point the server is configured properly. The procedure for setting up the client hosts are are easier,
you only need to setup Zetc/nsswitch.confand Zetc/resolv.conf to the same values as on the
server.

24.4 Setting up a caching only name server

A caching only name server has no local zones; all the queries it receives are forwarded to the root
servers and the replies are accumulated in the local cache. The next time the query is performed the
answer will be faster because the data is already in the server’s cache. Since this type of server doesn’t
handle local zones, to resolve the names of the local hosts it will still be necessary to use the already
known Zetc/hosts file.

Since NetBSD supplies defaults for all the files needed by a caching only server, it only needs to be
enabled and started and is immediately ready for use! To enable named, put named=yes into
/etc/rc.conf, and tell the system to use it adding the following line to the Zetc/resolv.conf file:

cat /etc/resolv. conf
nameserver 127.0.0.1

Now we can start named:

sh /etc/rc.d/ naned restart

24.4.1 Testing the server

Now that the server is running we can test it using the nslookup(8) program:

$ nsl ookup
Default server: localhost
Address: 127.0.0.1

>

Let’s try to resolve a host name, for example "www.NetBSD.org":

> www. Net BSD. or g
Server: localhost
Address: 127.0.0.1

Name: www.NetBSD.org
Address: 204.152.190.12

If you repeat the query a second time, the result is slightly different:

> www. Net BSD. or g
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:

Name: www.NetBSD.org
Address: 204.152.190.12

272

Chapter 24 The Domain Name System

As you’ve probably noticed, the address is the same, but the message “Non-authoritative answer” has

appeared. This message indicates that the answer is not coming from an authoritative server for the

domain NetBSD.org but from the cache of our own server.
The results of this first test confirm that the server is working correctly.

We can also try the host(1) and dig(1) commands, which give the following result.

$ host wwww. Net BSD. or g

www.NetBSD.org has address 204.152.190.12
$

$ dig www. Net BSD. or g

; <<>> DiG 8.3 <<>> www.NetBSD.org

;; res options: init recurs defnam dnsrch

;; got answer:

;; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 19409

;; Flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL:

;5 QUERY SECTION:
i www.NetBSD.org, type = A, class = IN

5> ANSWER SECTION:
www .NetBSD.org. 23h32m54s IN A 204.152.190.12

5> AUTHORITY SECTION:

NetBSD.org. 23h32m54s IN NS uucp-gw-1.pa.dec.com.
NetBSD.org- 23h32m54s IN NS uucp-gw-2.pa.dec.com.
NetBSD.org.- 23h32m54s IN NS ns._NetBSD.org.
NetBSD.org.- 23h32m54s IN NS adnsl.berkeley.edu.
NetBSD.org. 23h32m54s IN NS adns2.berkeley.edu.

;; Total query time: 14 msec

;; FROM: miyu to SERVER: 127.0.0.1
; WHEN: Thu Nov 25 22:59:36 2004

;3 MSG SIZE sent: 32 rcvd: 175

As you can see dig(1) gives quite a bit of output, the expected answer can be found in the "ANSWER

SECTION". The other data given may be of interest when debugging DNS problems.

273

Chapter 25
Malil and news

This chapter explains how to set up NetBSD to use mail and news. Only a simple but very common setup
is described: the configuration of a host connected to the Internet with a modem through a provider. You
can think of this chapter as the continuation of Chapter 22, assuming a similar network configuration.
Even this “simple” setup proves to be difficult if you don’t know where to start or if you’ve only read
introductory or technical documentation; in fact you will notice that some details are really challenging
(for example, mapping your internal network names to “real” names requires a good knowledge of
sendmail). A general description of mail and news configuration is beyond the scope of this guide; please
read a good Unix Administration book (some very good ones are listed on the NetBSD site). The
problem is in fact very complex because of the myriad of possible configurations and connections and
because it’s not enough to configure a single program - you need to correctly match the configuration of
several cooperating components.

This chapter also briefly describes the configuration (but not the usage) of two popular applications, mutt
for mail and tin for news. The usage is not described because they are easy to use and well documented.
Obviously, both mutt and tin are not mandatory choices: many other similar applications exist but | think
that they are a good starting point because they are widely used, simple, work well and don’t use too
much disk space and memory. Both are console mode programs; if you prefer graphics applications there
are also many choices for X.

In short, the programs required for the configuration described in this chapter are:

+ sendmail

+ fetchmail

« m4

< mutt

. tin

Of these, only sendmail and m4 are installed with the base system; you can install the other programs
from the NetBSD package collection, pkgsrc - see Part VI in The NetBSD & pkgsrc Guide.

Before continuing, remember that none of the programs presented in this chapter is mandatory: there are
other applications performing similar tasks and many users prefer them. You’ll find different opinions
reading the mailing lists. You can also use different strategies for sending and receiving mail: the one
explained here is only a starting point; once you understand how it works you’ll probably want to modify
it to suit your needs or to adopt a different method altogether.

At the opposite extreme of the example presented here, there is the usage of an application like Mozilla,
which does everything and frees you from the need of configuring many components: with Mozilla you
can browse the Internet, send and receive mail and read news. Besides, the setup is very simple. There is
a price to pay, though: Mozilla is a “closed” program that will not cooperate easily with other standard
Unix utilities.

274

Chapter 25 Mail and news

Another possibility is to use emacs to read mail and news. Emacs needs no introduction to Unix users
but, in case you don’t know, it is an extensible editor (although calling emacs an editor is somewhat
reductive) which becomes a complete work environment, and can be used to read mail, news and to
perform many operations. For many people emacs is the only environment that they need and they use it
for all their work. The configuration of emacs for mail and news is described in the emacs manual.

In the rest of this chapter we will deal with a host connected to the Internet through a PPP connection via
serial modem to a provider.

- the local host’s name is “ape” and the internal network is “insetti.net”, which means that the FQDN
(Fully Qualified Domain Name) is “ape.insetti.net”.

« the user’s login name on ape is “carlo”.

« the provider’s name is BigNet.

« the provider’s mail server is “mail.bignet.it”.

« the provider’s news server is “news.bignet.it”.

- the user’s (“carlo”) account at the provider is “alan” with the password “pZY90”.

First some basic terminology:

MUA (mail user agent)
a program to read and write mail. For example: mutt, elm and pine but also the simple mail
application installed with the base system.

MTA (mail transfer agent)

a program that transfers mail between two host but also locally (on the same host). The MTA
decides the path that the mail will follow to get to the destination. On BSD systems (but not only)
the standard MTA is sendmail, other examples are postfix, gmail, exim and Microsoft Exchange.

MDA (mail delivery agent)

a program, usually used by the MTA, that delivers the mail; for example, it physically puts the
messages in the recipient’s mailbox. For example, sendmail uses one or more MDA to deliver mail,
and procmail is another well-known MDA.

Figure 25-1 depicts the mail system that we want to set up. Between the local network (or the single
host) and the provider there is a modem PPP connection. The “bubbles” with the thick border (sendmail,
fetchmail, mutt) are the programs launched manually by the user; the remaining bubbles are the programs
that are launched automatically. The circled numbers refere to the logical steps of the mail cycle:

1. Instep (1) mail is downloaded from the provider’s POP server using fetchmail, which hands
messages off to sendmail to put the messages in the user’s mailbox.

2. Instep (2) the user launches mutt (or another MUA) to read mail, reply and write new messages.
3. Instep (3) the user “sends” the mail from within mutt. Messages are accumulated in the spool area.

4. Instep (4) the user calls sendmail to transfer the messages to the provider’s SMTP server, that will
deliver them to the final destination (possibly through other mail servers). The provider’s SMTP
server acts as a relay for our mail.

275

Chapter 25 Mail and news

The connection with the provider must be up only during steps (1) and (4); for the remaining steps it is
not needed.

Figure 25-1. Structure of the mail system

POP server SMTP server |

fetchmail
I
| (sendmai |) |
| I
| mai | box: /var/ mail spool : /var/spool / nqueue |
| Y
I
I
| sendmai | |
I
| I
I
mut t |

25.1 sendmail

When an MTA must deliver a local message, it is delivered directly. If the message is intended for a
different domain, the MTA must find out the address of the mail server for that domain. Sendmail uses
the DNS service (described in Chapter 24) to find a mail exchanger handling mail for the given domain,
and delivers the message to that mail server then.

The most used MTA in the world is probably sendmail. Sendmail is controlled by a set of configuration
files and databases, of which Zetc/mail/sendmai I .cf is the most important. In general, if you are
not an expert it is better not to modify the Zetc/mai l/sendmai I . cFfile directly; instead, use a set of
predefined macros and the m4 preprocessor, which greatly (well, almost) simplify the configuration.

Note: Prior to version 1.5 of NetBSD, the mail configuration files were in / et ¢ instead of / et c/ mai | .

276

Chapter 25 Mail and news

Even using the macros, the configuration of sendmail is not for the faint of heart, and the next sections
only describe an example which can be modified to suit different needs and different configurations. If
you connect to the Internet with a modem, the example configuration file will probably fit all your needs:
just replace the fictitious data with yours.

The first problem to be solved is that the local network we are dealing with is an internal network, i.e. not
directly accessible from the Internet. This means that the names used internally have no meaning on the
Internet; in short, “ape.insetti.net” cannot be reached by an external host: no one will be able to reply to a
mail sent with this return address (many mail systems will even reject the message as spam prevention as
it comes from an unknown host). The true address, the one visible from everybody, is assigned by the
provider and, therefore, it is necessary to convert the local address “carlo@ape.insetti.net” to the real
address “alan@bignet.it”. Sendmail, if correctly configured, will take care of this when it transfers the
messages.

You’ll probably also want to configure sendmail in order to send the e-mails to the provider’s mail server,
using it as a relay. In the configuration described in this chapter, sendmail does not directly contact the
recipient’s mail server (as previously described) but relays all its mail to the provider’s mail server.

Note: The provider's mail server acts as a relay, which means that it delivers mail which is not
destined to its own domain, to another mail server. It acts as an intermediary between two servers.

Since the connection with the provider is not always active, it is not necessary to start sendmail as a
daemon in Zetc/rc.conf: you can disable it with the line “sendmai 1=NO”. As a consequence it will
be necessary to launch sendmail manually when you want to transfer mail to the provider. Local mail is
delivered correctly even if sendmail is not active as a daemon.

Let’s start configuring sendmail.

25.1.1 Configuration with genericstable

This type of configuration uses the file Zetc/mail/genericstable which contains the mapping used
by sendmail to rewrite the internal hostnames.

The first step is therefore to write the genericstable file. For example:

carlo: alan@bignet.it
root: alan@bignet.it
news: alan@bignet.it

These entries will map the mail sent from the users given on the left side into the globally valid email
addresses given on the right, making it appear as if the mail was really sent from that address.

For the sake of efficiency, genericstable must be transformed into a binary file with the following
command:

[usr/sbin/sendmail -bi -oA/etc/mail/genericstable

Now it’s time to create the prototype configuration file which we’ll use to create the sendmail
configuration file.

277

Chapter 25 Mail and news

cd /usr/share/sendmail/cf
The new sendmail configuration file, which we’ll call mycf._mc, contains:

divert(-1)dnl

include(“../m4/cf.m4”)dnl

VERSIONID(“mycf.mc created by carlo@ape.insetti.net May 18 2001”)dnl
OSTYPE(bsd4.4)dnl

dnl # Settings for masquerading. Addresses of the following types
dnl # are rewritten

dnl # carlo@ape. insetti.net

dnl # carlo@ape

GENERICS_DOMAIN(ape. insetti.net ape)dnl

FEATURE(genericstable)dnl

FEATURE(masquerade_envelope)dnl

define(“SMART_HOST”, “mail .bignet.it”)dnl

FEATURE(redirect)dnl
FEATURE(nocanonify)dnl

dnl # The following feature is useful if sendmail is called by

dnl # fetchmail (which is usually the case). If sendmail cannot

dnl # resolve the name of the sender, the mail will not be delivered.
dnl # For example:

dnl # MAIL FROM:<www-owner@NetBSD.org> SIZE=2718

dnl # 501 <www-owner@NetBSD.org>... Sender domain must exist
FEATURE(“accept_unresolvable_domains”)dnl

dnl # accept_unqualified_senders is useful with some MUA, which send
dnl # mail as, for example:

dnl # MAIL FROM:<carlo>

FEATURE(“accept_unqualified_senders’)dnl

dnl # Mail for “smtp” mailer is marked “expensive’ (“e’ flag):

dnl # instead of connecting with the relay, sendmail puts it in
dnl # a queue for delayed processing.

dnl # Sendmail starts complaining about undelivered messages after
dnl # 16 hours.

define(“SMTP_MAILER_FLAGS”, “e”)dnl

define(“confCON_EXPENSIVE~”, “True”)dnl

define(“confTO_QUEUEWARN~, “16h”)dnl

dnl # For european users
define(“confDEF_CHAR_SET”, “1S0-8859-17)dnl

dnl # Enable the following three lines to use procmail as a local
dnl # delivery agent. The third line is optional, only the first
dnl # two are required.

dnl # define(“PROCMAIL_MAILER_PATH”, /usr/pkg/bin/procmail)dnl
dnl # FEATURE(local_procmail)dnl

dnl # MAILER(procmail)dnl

278

Chapter 25 Mail and news

dnl # The following two mailers must always be defined
MAILER(local)dnl
MAILER(smtp)dnl

Note: In the previous example, everything after a “dnl” is considered a comment and will be
discarded by the m4 preprocessor.

This configuration tells sendmail to rewrite the addresses of type “ape.insetti.net” using the real names
found in the Zetc/mai l/genericstable file. It also says that mail should be sent to the
“mail.bignet.it” server. The meaning of the options is described in detail in the file
/usr/share/sendmai | /README.

In order to create your own version of the example configuration file, you must change only two lines,
substituting your real data:

GENERICS_DOMAIN(ape. insetti.net ape)dnl
define(“SMART_HOST”, “mail_bignet._it’)dnl

Finally, the new configuration file must be generated, after having saved the previous version:

cp /etc/mail/sendmail.cf /etc/nail/sendnail.cf.bak
ml nycf.nc > /etc/ mail/sendmail . cf

Note that there is afile netbsd-proto.mc in the Zusr/share/sendmai l/cf directory which is used
to create the default /etc/mail/sendmai I . cf shipped with NetBSD. With the make command it can
be rebuilt, if needed.

Now everything is ready to start sending mail.

25.1.2 Testing the confi guration

Sendmail is finally configured and ready to work, but before sending real mail it is better to do some
simple tests. First let’s try sending a local e-mail with the following command:

$ sendmail -v carlo
Subj ect: test

Hello world
carlo... Connecting to local...
carlo... Sent

Please follow exactly the example above: leave a blank line after Subject: and end the message with a
line containing only one dot. Now you should be able to read the message with your mail client and
verify that the From: field has been correctly rewritten.

From: alan@bignet.it

279

Next you can verify the address rewriting rules directly, using sendmail in address test mode with the

Chapter 25 Mail and news

-bt option. This mode shows the parsing performed by sendmail for an address and how it gets rewritten
according to the rules in the configuration file. It is also possible to perform other tests and view some

information.

$ sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

>

You can display the help with the “?” command.

First, let’s verify that the generictable map file works correctly:

/ map generics carl

(o]

map_lookup: generics (carlo) returns alan@bignet.it

Everything’s ok here; sendmail found the local name and its real counterpart in the map.

Now we can test the rewriting of the envelope’s sender address with the following commands:

/tryflags ES

/try snip carlo@pe.insetti.net

The result should be similar to the following:

Trying envelope sender address carlo@ape.insetti.net for mailer smtp

rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
rewrite: ruleset
Rcode = 0, addr
>

As you can see, the local address has been rewritten to the real address, which will appear in your

3
96
96

w

1
1
11
51
51
61
61
94
93
3
96
96
3
93
94
11
4
4

input:
input:
returns:
returns:
input:
returns:
input:
input:
returns:
input:
returns:
input:
input:
input:
input:
returns:
returns:
returns:
returns:
returns:
input:
returns:

carlo
carlo
carlo
carlo
carlo
carlo
carlo
carlo
carlo
carlo
carlo
carlo
carlo
alan
alan
alan
alan
alan
alan
alan
alan
alan

alan@bignet.it

e-mails when they leave your system.

@@ N NANANANNNSD

@

NNNNNNNANNNANNANNNA

SRS ESEONONOESOEOESOEONONS)

ape . insetti .

ape
ape
ape
ape
ape
ape
ape
ape
ape
ape
ape
ape .
gnet .

bignet
bignet
bignet
bignet
bignet

[SEONONSOEONSOES Ny

ighet .

bignet .

bignet .

insetti
insetti
insetti
insetti
insetti
insetti
insetti
insetti
insetti
insetti
insetti
insetti
it

(e B B B B B
V VVVVVYV

net

net
net
net
net
net
net
net
net
net
net
net
net

VVVVVVYVYVYVYVYV

280

Chapter 25 Mail and news

You can achieve a similar result with the following command:
/try sntp carlo
We can also verify the rewriting of the header’s sender with the following commands:

/tryflags HS
/try snip carlo@pe.insetti.net

25.1.3 Using an alternative MTA

Starting from version 1.4 of NetBSD sendmail is not called directly:

$ I's -1 /[usr/sbin/sendnail
Irwxr-xr-x 1 root wheel 21 Nov 1 01:14 /usr/sbin/sendmail@ -> /usr/sbin/mailwrapper

The purpose of mailwrapper is to allow the usage of an alternative MTA instead of sendmail (for
example, postfix). If you plan to use a different mailer | suggest that you read the mailwrapper(8) and the
mailer.conf(5) manpages, which are very clear.

25.2 fetchmail

If someone sends me mail, it is received and stored by the provider, and not automatically transfered to
the local hosts; therefore it is necessary to download it. Fetchmail is a very popular program that
downloads mail from a remote mail server (using e.g. the Post Office Protocol, POP) and forwards it to
the local system for delivery (usually using sendmail). It is powerful yet easy to use and configure: after
installation, the file ~/ . fetchmai I rc must be created and the program is ready to run

(~/ - fetchmai I rc contains a password so appropriate permissions on the file are required).

This is an example . fetchmailrc:

poll mail_bignet.it

protocol POP3

username alan there with password pzZY9o is carlo here
flush

mda *"/usr/sbin/sendmail -oem %T"

The last line (“mda ...”) is used only if sendmail is not active as daemon on the system. Please note that
the POP-mail server indicated in this file (mail.bignet.it) is only used to retrieve mails, and that it is not
necessary the same as the mail relay used by sendmail to send out mails.

After setting up the . fetchmai I rc file, the following command can be used to download and deliver
mail to the local system:

$ fetchmail

The messages can now be read with mutt.

281

Chapter 25 Mail and news

25.3 Reading and writing mail with mutt

Mutt is one of the most popular mail programs: it is “lightweight”, easy to use and has lots of features.
The man page mutt is very bare bones; the real documentation is in /usr/pkg/share/doc/mutt/,in
particular manual . txt.

Mutt’s configuration is defined by the ~/ .muttrc file. The easiest way to create it is to copy mutt’s
example muttrc file (usually Zusr/pkg/share/examples/mutt/sample.muttrc)to the home
directory and modify it. The following example shows how to achieve some results:

« Save a copy of sent mail.

- Define a directory and two files for incoming and outgoing mail saved by mutt (in this example the
directory is ~/Mai I and the files are incoming and outgoing).

- Define some colors.

- Define an alias.

set copy=yes

set edit_headers

set folder="~/Mail"

unset force_name

set mbox=""~/Mail/incoming"
set record="~/Mail/outgoing"
unset save_name

bind pager <up> previous-page
bind pager <down> next-page

color normal white black
color hdrdefault blue black
color indicator white blue
color markers red black
color quoted cyan black
color status white blue
color error red white

color underline yellow black

mono quoted standout

mono hdrdefault underline

mono indicator underline

mono status bold

alias pippo Pippo Verdi <pippo.verdi@pluto.net>
To start mutt:

$ nutt

Please note that mutt supports color, but this depends on the terminal settings. Under X you can use
"xterm-color", for example:

$ env TERM=xtermcol or nutt

282

Chapter 25 Mail and news

25.4 Strategy for receiving mail

This section describes a simple method for receiving and reading mail. The connection to the provider is
activated only for the time required to dowload the messages; mail is then read offline.

1. Activate the connection to the provider.
2. Run fetchmail.
3. Deactivate the connection.

4. Read mail with mutt.

25.5 Strategy for sending mail

When mail has been written and “sent” with mutt, the messages must be transferred to the provider with
sendmail. Mail is sent from mutt with the y command, but this does not really send it; the messages are
enqueued in the spool area; if sendmail is not active as a daemon it is necessary to start it manually or the
messages will remain on the hard disk. The necessary steps are:

1. Write mail with mutt, send it and exit mutt. You can check if and what messages are in the sendmail
mail queue using the mailg(1) program.

2. Activate the connection with the provider.

3. If your provider requires you to do "SMTP-after-POP", i.e. it first wants to make sure to know who
you are before you are allowed to send mail (and no spam), you need to run fetchmail again first.

4. Write the command /usr/sbin/sendmail -q -v to transfer the queued messages to the provider.

5. Deactivate the connection.

25.6 Advanced mail tools

When you start using mail, you won’t probably have very sophisticated requirements and the already
described standard configuration will satisfy all your needs. But for many users the number of daily
messages will increase with time and a more rational organization of the mail storage will become
necessary, for example subdividing mail in different mail boxes organized by topic. If, for example, you
subscribe to a mailing list, you will likely receive many messages every day and you will want to keep
them separate from the rest of your mail. You will soon find that you are spending too much time every
day repeating the same manual operations to organize your mail boxes.

Why repeat the same operations manually when you can have a program perform them automatically for
you? There are humerous tools that you can add to your mail system to increase its flexibility and
automatically process your messages. Amongst the most known and used there are:

« procmail, an advanced mail delivery agent and general purpose mail filter for local mail, which
automatically processes incoming mail using user defined rulesets. It integrates smoothly with
sendmail.

+ spamassassin or spamprobe, to help fight spam.

283

Chapter 25 Mail and news

- metamail, a tool to process attachments.
« formail, a mail formatter.

In the remaining part of this section a sample configuration for procmail will be presented for a very
common case: delivering automatically to a user defined mailbox all the messages coming from a
mailing list. The configuration of sendmail will be modified in order to call procmail directly (procmail
will be the local mailer used by sendmail). and a custom configuration file for procmail will be created.

First, procmail must be installed using the package system (mai l/procmail) or pkg_add.

Next, the configuration of sendmail must be changed, in order to use procmail as local mailer.
Uncomment the following three lines from the mycf.mc sendmail M4 prototype file and recreate the
sendmail configuration file as described above:

define(“PROCMAIL_MAILER_PATH”, /usr/pkg/bin/procmail)dnl
FEATURE(local_procmail)dnl
MAILER(procmai l)dnl

The first line defines the path of the procmail program (you can see where procmail is installed with the
command which procmail). The second line tells sendmail to use procmail for local mail delivery and
the third adds procmail to the list of sendmail’s mailers. The third line adds procmail to the list of
sendmail’s mailers (this line is optional).

The last step is the creation of the procmail configuration file, containing the recipes for mail delivery.

Let’s say that, for example, you subscribed to a mailing list on roses whose address is
“roses@flowers.org” and that every message from the list contains the following line in the header:

Delivered-To: roses@flowers.org

Assuming you want to automatically sort all mails going over that list into the local mail folder
"roses_list", the procmail configuration file (. procmai I'rc) looks like this:

PATH=/bin:/usr/bin:/usr/pkg/bin
MAILDIR=$HOME/Mail
LOGFILE=$MAILDIR/from

:0
* ~Delivered-To: roses@flowers.org
roses_list

The previous file contains only one rule, beginning with the line containing “:0”. The following line
identifies all messages containing the string “Delivered-To: roses@flowers.org” and the last line says that
the selected messages must go to the roses_list mailbox (which you should have created in
$MAILDIR). The remaining messages will be delivered to the default mailbox. Note that SMAILDIR is
the same directory that you have configured with mutt:

set folder="~/Mail"

Of course the mailing list is only an example; procmail is a very versatile tool which can be used to filter
mail based on many criteria. As usual, refer to the man pages for more details: procmail(1),
procmailrc(5), and procmailex(5) (this last one contains many examples of configuration files).

You can check that procmail is used as local mailer by sendmail if you run the latter in test mode:

284

Chapter 25 Mail and news

$ /usr/sbin/sendmail -bt

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

>

The following command displays the list of mailers known to sendmail:
> =M
You should find a line like the following one:

mailer 3 (local): P=/usr/pkg/bin/procmail S=EnvFromL/HdrFromL ...

25.7 News with tin

The word news indicates the set of messages posted to the USENET newsgroups, a service available on
the Internet. Each newsgroup contains articles related to a specific topic. Reading a newsgroup is
different than reading a mailing list: when you subscribe to a mailing list you receive the articles by mail
and you read them with a standard mail program like mutt, which you use also to send replies. News,
instead, are read directly from a news server with a dedicated program called newsreader like, for
example, tin. With tin you can subscribe to the newsgroups that you’re interested in and follow the
threads. A thread is a sequence of articles which all derive from an article that we could call “original”.
In short, a message is sent to the group, someone answers, other people answer to those who answered in
the first place and so on, creating a tree like structure of messages and replies: without a newsreader it is
impossible to understand the correct sequence of messages.

After the installation of tin (from the package collection as usual) the only thing left to do is to write the
name of the NNTP server in the file /usr/pkg/etc/nntp/server, which you may need to create first.
For example:

news.bignet.it

Once this has been done, the program can be started with the command tin. On the screen something
similar to the following example will be displayed:

$tin

Connecting to news.bignet.it...

news.bignet.it InterNetNews NNRP server INN 1.7.2 08-Dec-1997 ready (posting ok).
Reading groups from active file...

Checking for new groups...

Reading attributes file...

Reading newsgroups Ffile...

Creating newsrc file. ..

Autosubscribing groups...

Reading newsrc file...

Be patient when you connect for the first time, because tin downloads an immense list of newsgroups to
which you can subscribe and this takes several minutes. When the donwload is finished, the program’s
main screen is displayed; usually no groups are displayed; to see the list of groups press y. To subscribe
to a group, move on the group’s name and press y.

285

Chapter 25 Mail and news

Once that you have subscribed to some newsgroups you can start tin more quickly with the command tin
-Q. The search for new groups is disabled (-q), only active groups are searched (-n) and newsgroup
description are not loaded (-d): it will not be possible to use the y (yank) command in tin. When tin is
started with this option it can’t tell if a newsgroup is moderated or not.

Note that if you are connecting from an internal network (like in our example), when you send ("post") a
message the address at the beginning of the message will be wrong (because it is the internal address). To
solve the problem, use the option “mail_address” in the tin configuration file (~/.tin/tinrc) or set the
REPLYTO environment variable.

286

Chapter 26
Miscellaneous networking topics

26.1 Bridge

A bridge can be used to combine different physical networks into one logical network, i.e. connect them
at layer 2 of the ISO-OSI model, not at layer 3, which is what a router would do. The NetBSD “bridge”
driver provides bridge functionality on NetBSD systems.

26.1.1 Bridge example

In this example two physical networks are going to be combined in one logical network, 192.168.1.0,
using a NetBSD bridge. The NetBSD machine which is going to act as bridge has two interfaces, ne0
and nel, which are both connected to one physical network.

The first step is to make sure support for the “bridge” is compiled in the running kernel. Support is
included in the GENERIC kernel.

When the system is ready the bridge can be created, this can be done using the brconfig(8) command.
First of a bridge interface has to be created. With the following ifconfig command the “bridge0” interface
will be created:

$ ifconfig bridgeO create

Please make sure that at this point both the ne0 and nel interfaces are up. The next step is to add the ne0
and nel interfaces to the bridge.

$ brconfig bridge0 add ne0 add nel up

This configuration can be automatically set up by creating an /etc/ifconfig. interface file, in this
case /etc/ifconfig.bridge0, with the following contents:

create
Ibrconfig $int add ne0 add nel up

After setting up the bridge the bridge configuration can be displayed using the brconfig -a command.
Remember that if you want to give the bridge machine an IP address you can only allocate an IP address
to one of the interfaces which are part of the bridge.

26.2 Network File System (NFS)

Now that the network is working it is possible to share files and directories over the network using the
Network File System (NFS). From the point of view of file sharing, the computer which gives access to

287

Chapter 26 Miscellaneous networking topics

its files and directories is called the server, and the computer using these files and directories is the
client. A computer can be client and server at the same time.

« A kernel must be compiled with the appropriate options for the client and the server (the options are
easy to find in the kernel configuration file. See Section 22.1 for more information on NFS related
kernel options.

« The server must enable the rpcbind, mountd lockd statd and nfs_server daemons in
/etc/rc.conf:

rpcbind=yes
mountd=yes
nfs_server=yes
lockd=yes
statd=yes

« The client must enable the rpcbind, lockd statd and nfs_client daemons in Zetc/rc.conf:

rpcbind=yes
nfs_client=yes
lockd=yes
statd=yes

« The server must list the exported directories in /etc/exports and then run the command kill -HUP
‘cat /var/run/mountd.pid (hup mountd may work too!).

A client host can access a remote directory through NFS if:

« The server host exports the directory to the client. The list of filesystems a NFS server exports can be
checked with the showmount -e command, see showmount(8):

showrpunt -e 192.168.1.2
Exports list on 192.168.1.2:
/home hostl host2 host3

« The client host mounts the remote directory with the command mount 192.168.1.2:/home /home

The mount command has a rich set of options for remote directories which are not very intuitive (to say
the least).

26.2.1 NFS setup example

The scenario described here is the following: five client machines (clil, ..., cli5) share some directories
on a server (buzz.toys.org). Some of the directories exported by the server are reserved for a specific
client, the other directories are common for all client machines. All the clients boot from the server and
must mount the directories.

The directories exported from the server are:

/export/cli?/root

the five root directories for the five client machines. Each client has its own root directory.

/export/cli?/swap

Five swap directories for the five swap machines.

288

Chapter 26 Miscellaneous networking topics

/export/common/usr

/usr directory; common for all client hosts.

/usr/src
Common Zusr/src directory for all client machines.

The following file systems exist on the server
/dev/rala on /
/dev/raOf on /usr

/dev/rala on /usr/src
/dev/ra2a on /export

Each client needs the following file systems

buzz:/export/cli?/root on /
buzz:/export/common/usr on /usr
buzz:/usr/src on /usr/src

The server configuration is the following:

/etc/exports

/usr/src -network 192.168.1.0 -mask 255.255.255.0

/export -alldirs -maproot=root -network 192.168.1.0 -mask 255.255.255.0

On the client machines Zetc/fstab contains:

buzz:/export/clix/root / nfs rw
buzz:/export/common/usr /usr nfs ro,nodev,nosuid
buzz:/usr/src /usr/src nfs rw,nodev,nosuid

Each client machine has its number substituted to the “X” character in the first line of the previous
example.

26.3 Setting up NFS automounting for / net with amd(8)

26.3.1 Introduction

The problem with NFS (and other) mounts is, that you usually have to be root to make them, which can
be rather inconvenient for users. Using amd(8) you can set up a certain directory (Commonly /net),
under which one can make any NFS-mount as a normal user, as long as the filesystem about to be
accessed is actually exported by the NFS server.

To check if a certain server exports a filesystem, and which ones, use the showmount-command with the
-e (export) switch:

$ showmount -e warchive. wustl . edu

Exports list on wuarchive.wustl.edu:
/export/home onc.wustl.edu
/export/local onc.wustl _edu

289

Chapter 26 Miscellaneous networking topics

/export/adm/log onc.wustl.edu
/usr onc.wustl.edu
/ onc.wustl.edu
/archive Everyone

If you then want to mount a directory to access anything below it (for example
/archive/systems/unix/NetBSD), just change into that directory:

$ cd /net/warchive.wst! . edu/ archive/ systens/ uni x/ Net BSD

The filesystem will be mounted (by amd), and you can a access any files just as if the directory was
mounted by the superuser of your system.

26.3.2 Actual setup

You can set up such a /net directory with the following steps (including basic amd configuration):

1. in/etc/rc.cont, set the following variable:

amd=yes
2. mkdir /amd
3. mkdir /net

4. Taking /usr/share/examples/amd/amd.conf, put the following into Zetc/amd.conf:

[/net]
map_name = /etc/amd/net
map_type = file

5. Taking Zusr/share/examples/amd/net as example, put the following into Zetc/amd/net:

/defaults type:=host;rhost:=${key}; fs:=${autodir}/${rhost}/root
* host==${key};type:=link;fs:=/ \
host!=${key};opts:=ro,soft, intr,nodev,nosuid,noconn

6. Reboot, or (re)start amd by hand:

sh /etc/rc.d/amd restart

26.4 IPv6 Connectivity & Transition via 6to4

This section will concentrate on how to get network connectivity for IPv6 and - as that is rarely available
directly - talk at length about the alternatives to native IPv6 connectivity as a transitional method until
native IPv6 peers are available.

Finding an ISP that offers IPv6 natively needs quite some luck. What you need next is a router that will
be able to handle the traffic. To date, not all router manufacturers offer IPv6 or hardware accelerated
IPv6 features, and gateway NAT boxes only rarely support IPv6 and also block IPv6 tunnels. An
alternative approach involves configuring a standard PC running NetBSD to act as a router. The base
NetBSD system contains a complete IPv6 routing solution, and for special routing needs software like
Zebra can provide additional routing protocols. This solution is rather common for sites that want IPv6

290

Chapter 26 Miscellaneous networking topics

connectivity today. The drawbacks are that you need an ISP that supports IPv6 and that you may need a
dedicated uplink only for IPv6.

IPv6 to-the-door may be rare, but you can still get IPv6 connectivity by using tunnels. Instead of talking
IPv6 on the wire, the IPv6 packets are encapsulated in IPv4 packets, as shown in Figure 26-1. Using the
existing IPv4 infrastructure, the encapsulated packets are sent to a IPv6-capable uplink that will then
remove the encapsulation, and forward the IPv6 packets.

Figure 26-1. A frequently used method for transition is tunneling IPv6 in IPv4 packets

local v6 gate v6
encapsulation de—encapsulation
T
\v4(v)
local v4 gate v4

[

When using tunnels, there are two possibilities. One is to use a so-called “configured” tunnel, the other is
called an “automatic” tunnel. A “configured” tunnel is one that required preparation from both ends of
the tunnel, usually connected with some kind of registration to exchange setup information. An example
for such a configured tunnel is the IPv6-over-1Pv4 encapsulation described in RFC1933, and that’s
implemented e.g. by the gif(4) device found in NetBSD.

An “automatic” tunnel consists of a public server that has some kind of IPv6 connectivity, e.g. via
6Bone. That server has made its connectivity data public, and also runs a tunneling protocol that does not
require an explicit registration of the sites using it as uplink. A well-used example of such a protocol is
the 6to4 mechanism described in RFC3056, and that is implemented in the stf(4) device found in
NetBSD’s. Another mechanism that does not require registration of IPv6-information is the 6over4
mechanism, which implements transporting of IPv6 over a multicast-enabled IPv4 network, instead of
e.g. ethernet or FDDI. 6over4 is documented in RFC2529. It’s main drawback is that you do need
existing multicast infrastructure. If you don’t have that, setting it up is about as much effort as setting up
a configured IPv6 tunnel directly, so it’s usually not worth bothering in that case.

26.4.1 Getting 6to4 IPv6 up & running

6to4 is an easy way to get IPv6 connectivity for hosts that only have an IPv4 uplink, especially if you
have the background given in Section 21.7. It can be used with static as well as dynamically assigned
IPv4 addresses, e.g. as found in modem dialup scenarios today. When using dynamic IPv4 addresses, a
change of IP addresses will be a problem for incoming traffic, i.e. you can’t run persistent servers.

Example configurations given in this section is for NetBSD 1.5.2.

26.4.2 Obtaining IPv6 Address Space for 6to4

The 6to4 IPv6 setup on your side doesn’t consist of a single IPv6 address; Instead, you get a whole /48
network! The IPv6 addresses are derived from your (single) IPv4 address. The address prefix “2002:” is
reserved for 6to4 based addresses (i.e. IPv6 addresses derived from IPv4 addresses). The next 32 bits are
your IPv4 address. This results in a /48 network that you can use for your very own purpose. It leaves 16
bits space for 2° IPv6 subnets, which can take up to 2% nodes each. Figure 26-2 illustrates the building
of your IPv6 address (range) from your IPv4 address.

291

Chapter 26 Miscellaneous networking topics

Thanks to the 6to4 prefix and your worldwide unique IPv4 address, this address block is unique, and it’s
mapped to your machine carrying the IPv4 address in question.

Figure 26-2. 6to4 derives an IPv6 from an IPv4 address

Your |Pv4 address: 62.157.9.98
Decimal: 62 157 9 98
Hex: 3e 9c\1 79 62
Your IPv6 address: 2002:3e90:0962:0001::1
6to4 80 hit
prefix address space

26.4.3 How to get connected

In contrast to the configured “IPv6-over-1Pv4 tunnel” setup, you do not have to register at a
6bone-gateway, which would only then forward your IPv6 traffic encapsulated in IPv4. Instead, as your
IPv6 address is derived from your IPv4 address, inbound traffic can be sent through the nearest 6to4
relay router. De-encapsulation of the packet is done via a 6to4-capable network interface, which then
forwards the resulting IPv6 packet according to your routing setup (in case you have more than one
machine connected on your 6to4 assigned network).

To transmit IPv6 packets, the 6to4 router will encapsulate them inside IPv4 packets; a system performing
these functions is called a 6to4 border router. These packets have a default route to the 6to4 relay anycast
prefix. This anycast prefix will route the tunnel to a 6to4 relay router. Figure 26-3 illustrates this.

Figure 26-3. Request and reply can be routed via different gateways in 6to4

other6to4gate IPV6_ Enab I ed
Internet
upstream
myhost - my6todgate (6 Bone -)

yetanother6to4gate

26.4.4 Security Considerations

In contrast to the “configured tunnel” setup, you usually can’t setup packet filters to block 6to4-packets
from unauthorized sources, as this is exactly how (and why) 6to4 works at all. As such, malicious users
can send packets with invalid/hazardous IPv6 payload. If you don’t already filter on your border

292

Chapter 26 Miscellaneous networking topics

gateways anyways, packets with the following characteristics should not be allowed as valid 6to4
packets, and some firewalling seems to be justified for them:

- unspecified IPv4 source/destination address: 0.0.0.0/8

- loopback address in outer (v4) source/destination: 127.0.0.0/8

« IPv4 multicast in source/destination: 224.0.0.0/4

« limited broadcasts: 255.0.0.0/8

« subnet broadcast address as source/destination: depends on your 1Pv4 setup

The NetBSD stf(4) manual page documents some common configuration mistakes intercepted by default
by the KAME stack as well as some further advice on filtering, but keep in mind that because of the
requirement of these filters, 6to4 is not perfectly secure. Still, if forged 6to4 packets become a problem,
you can use IPsec authentication to ensure the IPv6 packets are not modified.

26.4.5 Data Needed for 6to4 Setup

In order to setup and configure IPv6 over 6to4, a few bits of configuration data must be known in
advance. These are:

« Your local IPv4 address. It can be determined using either the ’ifconfig -a’ or "netstat -i’ commands
on most Unix systems. If you use a NATing gateway or something, be sure to use the official,
outside-visible address, not your private (10/8 or 192.168/16) one.

We will use 62.224.57.114 as the local IPv4 address in our example.
« Your local IPv6 address, as derived from the IPv4 address. See Figure 26-2 on how to do that.

For our example, this is 2002:3ee0:3972:0001::1 (62.224.57.114 == 0x3ee03972, 0001::1 arbitrarily
chosen).

« The 6to4 IPv6 relay anycast address. which is 2002:c058:6301::, or the IPv6 address of a specific 6to4
relay router you want to use. The IPv6 address will do, as it also contains the IPv4 address in the usual
6to4 translation.

26.4.6 Kernel Preparation

To process 6t04 packets, the operating system kernel needs to know about them. For that a driver has to
be compiled in that knows about 6to4, and how to handle it.

For a NetBSD kernel, put the following into your kernel config file to prepare it for using IPv6 and 6to4,
e.g. on NetBSD use:

options INET6 # 1Pv6
pseudo-device stf # 6to4 IPv6 over IPv4 encapsulation

Note that the stf(4) device is not enabled by default. Rebuild your kernel, then reboot your system to use
the new kernel. Please consult Chapter 29 for further information on configuring, building and installing
a new kernel!

293

Chapter 26 Miscellaneous networking topics

26.4.7 6t04 Setup

This section describes the commands to setup 6to4. In short, the steps performed here are:

1. Configure interface
2. Set default route
3. Setup Router Advertisement, if wanted

The first step in setting up 6to4 is assigning an IPv6 address to the 6to4 interface. This is achieved with
the ifconfig(8) command. Assuming the example configuration above, the command for NetBSD is:

ifconfig stfO inet6 2002: 3ee0: 3972:1::1 prefixlen 16 alias

After configuring the 6to4 device with these commands, routing needs to be setup, to forward all
tunneled IPv6 traffic to the 6to4 relay router. The best way to do this is by setting a default route, the
command to do so is, for NetBSD:

route add -inet6 default 2002:c058: 6301::

Note that NetBSD’s stf(4) device determines the IPv4 address of the 6to4 uplink from the routing table.
Using this feature, it is easy to setup your own 6to4 (uplink) gateway if you have an IPv6 uplink, e.g. via
6Bone.

After these commands, you are connected to the IPv6-enabled world - Congratulations! Assuming name
resolution is still done via IPv4, you can now ping an IPv6-site like www.kame.net or
www6.NetBSD.org:

/sbin/ping6 ww. kane. net

As a final step in setting up IPv6 via 6to4, you will want to setup Router Advertisement if you have
several hosts on your network. While it is possible to setup 6to4 on each node, doing so will result in
very expensive routing from one node to the other - packets will be sent to the remote 6to4 gateway,
which will then route the packets back to the neighbor node. Instead, setting up 6to4 on one machine and
talking native IPv6 on-wire is the preferred method of handling things.

The first step to do so is to assign an IPv6-address to your ethernet. In the following example we will
assume subnet “2” of the IPv6-net is used for the local ethernet and the MAC address of the ethernet
interface is 12:34:56:78:9a:bc, i.e. your local gateway’s ethernet interface’s IP address will be
2002:3ee0:3972:2:1234:56ff:fe78:9abc. Assign this address to your ethernet interface, e.g.

ifconfig ne0 inet6 alias 2002: 3ee0: 3972: 2: 1234: 56f f: f e78: 9abc
Here, “ne0” is an example for your ethernet card interface. This will most likely be different for your
setup, depending on what kind of card is used.

Next thing that needs to be ensured for setting up the router is that it will actually forward packets from
the local 6to4 device to the ethernet device and back. To enable IPv6 packet forwarding, set
“ipémode=router” in NetBSD’s Zetc/rc.conf, which will result in the “net.inet6.ip6.forwarding”
sysctl being set to “1”:

sysctl -w net.inet6.ip6.forwardi ng=1

294

Chapter 26 Miscellaneous networking topics

Figure 26-4. Enabling packet forwarding is needed for a 6to4 router

6to4 interface
IPv6
. router O forwarding
ethernet interface

To setup router advertisement on BSD, the file /etc/rtadvd.conf needs to be checked. It allows
configuration of many things, but usually the default config of not containing any data is ok. With that
default, IPv6 addresses found on all of the router’s network interfaces will be advertised.

After checking the router advertisement configuration is correct and 1Pv6 forwarding is turned on, the
daemon handling it can be started. Under NetBSD, it is called *rtadvd’. Start it up either manually (for
testing it the first time) or via the system’s startup scripts, and see all your local nodes automagically
configure the advertised subnet address in addition to their already-existing link local address.

rtadvd

26.4.8 Quickstart using pkgsrc/net/hféto4

So far, we have described how 6to4 works and how to set it up manually. For an automated way to make
everything happen e.g. when going online, the hf6to4’ package is convenient. It will determine your
IPv6 address from the IPv4 address you got assigned by your provider, then set things up that you are
connected.

Steps to setup the pkgsrc/net/hf6to4 package are:

1. Install the package either by compiling it from pkgsrc, or by pkg_add’ing the 6to4-1.2 package.

cd /usr/pkgsrc/net/hf6tod
make install

2. Make sure you have the stf(4) pseudo-device in your kernel, see above.

3. Configure the "hf6to4’ package. First, copy /usr/pkg/share/examples/hf6to4/hf6to4._conf
to /usr/pkg/etc/hf6to4.conf, then adjust the variables. Note that the file is in /bin/sh syntax.

cd /usr/pkg/etc
cp ../share/ exanpl es/ hf 6t 04/ hf 6t 04. conf hf 6t 04. conf
vi hf 6t o4. conf

Please see the hf6to4(8) manpage for an explanation of all the variables you can set in
hf6to4.conf. If you have dialup IP via PPP, and don’t want to run Router Advertizing for other
IPv6 machines on your home or office network, you don’t need to configure anything. If you want to
setup Router Advertising, you need to set the in_if to the internal (ethernet) interface, e.g.

$in_if="rtk0"; # Inside (ethernet) interface
4. Now dial up, then start the 6to4 command manually:

[usr/pkg/sbin/hf6tod4 start

295

Chapter 26 Miscellaneous networking topics

5. After that, you should be connected, use ping6(8): to see if everything works:

ping6 www. Net BSD. org

PING6(56=40+8+8 bytes) 2002:d954:110b:1::1 --> 2001:4F8:4:7:2e0:81FfF:Ffe52:9a6b

16 bytes from 2001:4f8:4:7:2e0:81FfF:fe52:9a6b, icmp_seq=0 hlim=60 time=250.234 ms
16 bytes from 2001:4f8:4:7:2e0:81FfF:fe52:9a6b, icmp_seq=1 hlim=60 time=255.652 ms
16 bytes from 2001:4f8:4:7:2e0:81FfF:fe52:9a6b, icmp_seq=2 hlim=60 time=251.237 ms
~C

--— www.NetBSD.org ping6 statistics ---

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/std-dev = 250.234/252.374/255.652/2.354 ms

traceroute6 www. Net BSD. org
traceroute6 to www.NetBSD.org (2001:4f8:4:7:2e0:81Ff:fe52:9a6b)
from 2002:d954:110b:1::1, 64 hops max, 12 byte packets

1 2002:c25f:6¢cbf:1::1 66.31 ms 66.382 ms 69.062 ms

2 nr-erll._6win.dfn.de 76.134 ms * 76.87 ms

3 nr-fral.6win.dfn.de 76.371 ms 80.709 ms 79.482 ms

4 dfn.de6.de.bnet.org 92.763 ms 90.863 ms 94.322 ms

5 de.nl6.nl.6net.org 116.115 ms 93.463 ms 96.331 ms

6 nl.uk6.uk.6net.org 103.347 ms 99.334 ms 100.803 ms

7 ukl.uk6l.uk.6net.org 99.481 ms 100.421 ms 100.119 ms

8 2001:798:28:300::2 89.711 ms 90.435 ms 90.035 ms

9 ge-1-0-0-2.r20.londen03.uk.bb.verio.net 179.671 ms 185.141 ms 185.86 ms
10 p16-0-0-0.r81.nycmnyOl.us.bb.verio.net 177.067 ms 179.086 ms 178.05 ms
11 p16-1-1-3.r20.nycmnyOl.us.bb.verio.net 178.04 ms 179.727 ms 184.165 ms
12 pl16-0-1-1.r20.mIpsca0l.us.bb.verio.net 249.856 ms 247.476 ms 249.012 ms
13 p64-0-0-0.r21.snjscal4.us.bb.verio.net 239.691 ms 241.404 ms 240.998 ms
14 p64-0-0-0.r21.plalcal0l.us.bb.verio.net 247.541 ms 246.661 ms 246.359 ms
15 xe-0-2-0.r20.plalcaOl.us.bb.verio.net 240.987 ms 239.056 ms 241.251 ms
16 ge-6-1.a0l.snfccal5.us.ra.verio.net 240.868 ms 241.29 ms 242.337 ms

17 fa-5-2.a0l.snfccal5.us.ce.verio.net 249.477 ms 250.4 ms 256.035 ms

18 2001:4f8:4:7:2e0:81ffF:feb2:9a6b 268.164 ms 252.97 ms 252.366 ms

Please note that traceroute6 shows the v6 hops only, any underlying tunnels are invisible and thus
not displayed.

6. If this works, you can put the following lines into your Zetc/ppp/ip-up script to run the
command each time you go online:

logger -p user.info -t ip-up Configuring 6to4 IPv6
/usr/pkg/sbin/hf6to4 stop
/usr/pkg/sbin/hf6to4 start

7. If you want to route IPv6 for your LAN, you can instruct 6to4.pl to setup Router Advertising for
you too:

[usr/pkg/sbin/hf6tod4 rtadvd-start
You can put that command into Zetc/ppp/ip-up as well to make it permanent.

8. If you have changed Zetc/ppp/ip-up to setup 6to4 automatically, you will most likely want to
change /etc/ppp/ip-down too, to shut it down when you go offline. Here’s what to put into
/etc/ppp/ip-down:

logger -p user.info -t ip-down Shutting down 6to4 IPv6
/usr/pkg/sbin/hf6to4 rtadvd-stop

296

Chapter 26 Miscellaneous networking topics

/usr/pkg/sbin/hf6to4 stop

26.4.9 Known 6to4 Relay Routers

It is normally not necessary to pick a specific 6to4 relay router, but if necessary, you may find a list of
known working routers at http://www.kfu.com/~nsayer/6to4/. In tests, only 6to4.kfu.com and
6to4.ipv6.microsoft.com were found working. Cisco has one that requires registration, see
http://www.cisco.com/ipv6/.

There’s also an experimental 6to4 server located in Germany, 6to4.ipv6.fh-regensburg.de. This server
runs under NetBSD 1.6 and was setup using the configuration steps described above. The whole
configuration of the machine can be seen at http://www.feyrer.de/IPv6/netstart.local.

26.4.10 Tunneling 6to4 through an IPFilter firewall

The 6to4 protocol encapsulates IPv6 packets in IPv4, and gives them their own IP type, which most
firewalls block as unknown, as their payload type is directly "TCP", "UDP" or "ICMP". Usually, you
want to setup your 6to4 gateway on the same machine that is directly connected to the (IPv4) internet,
and which usually runs the firewall. For the case that you want to run your 6to4 gateway behind a
firewall, you need to drill a hole into the firewall, to let 6to4 packets through. Here is how to do this!

The example assumes that you use the "ppp0" interface on your firewall to connect to the Internet.

Put the following lines into Zetc/ipf.conf to allow your IPfilter firewall let all 6to4 packets pass
(lines broken with \ due to space restrictions; please put them lines continued that way all in one line):

Handle traffic by different rulesets
block in quick on pppO all head 1
block out quick on pppO all head 2

Incoming packets:
allow some IPv4:
pass in log quick on pppO proto tcp from any to any \

port = www Flags S keep state keep frags group 1

pass 1in quick on pppO proto tcp from any to any \
port = ssh keep state group 1

pass 1in quick on pppO proto tcp from any to any \
port = mail keep state group 1

pass in log quick on pppO proto tcp from any to any \

port = ftp keep state group 1
pass in log quick on pppO proto tcp from any to any \
port = ftp-data keep state group 1

pass in log quick on pppO proto icmp from any to any group 1
allow all 1PV6:

pass in quick on ppp0O proto ipv6 from any to any group 1
pass in log quick on pppO proto ipv6-route from any to any group 1
pass in log quick on pppO proto ipv6-frag from any to any group 1
pass in log quick on pppO proto ipv6-icmp from any to any group 1
pass in log quick on pppO proto ipv6-nonxt from any to any group 1
pass in log quick on pppO proto ipv6-opts from any to any group 1

block rest:

297

Chapter 26 Miscellaneous networking topics
blockin log quick on pppO all group 1

Outgoing packets:
allow usual stuff:

pass out quick on pppO proto tcp from any to any flags S \
keep state keep frags group 2

pass out quick on pppO proto udp from any to any \
keep state keep frags group 2

pass out quick on ppp0 proto icmp from any to any \
keep state group 2

allow all 1PV6:

pass out quick on pppO proto ipv6 from any to any group

pass out log quick on pppO proto ipv6-route from any to any group
pass out log quick on pppO proto ipv6-frag from any to any group
pass out log quick on pppO proto ipv6-icmp from any to any group
pass out log quick on pppO proto ipv6-nonxt from any to any group
pass out log quick on pppO proto ipv6-opts from any to any group
block rest:

block out log quick on pppO all group 2

NNNDNDNN

Now any host on your network can send (the "out" rules") and receive (the "in" rules) v4-encapsulated
IPv6 packets, allowing setup of any of them as a 6to4 gateway. Of course you only want to do this on one
host and use native IPv6 between your hosts, and you may also want to enforce this with more restrictive
rulesets, please see ipf.conf(5) for more information on IPFilter rules.

After your firewall lets pass encapsulated IPv6 packets, you may want to set up your 6to4 gateway to
monitor the IPv6 traffic, or even restrict it. To do so, you need to setup IPfilter on your 6to4 gateway as
well. For basic monitoring, enable "ipfilter=yes" in Zetc/rc.conf and put the following into
/etc/ipf6.conf:

pass in log quick on stfO0 from any to any
pass out log quick on stf0 from any to any

This logs all (IPv6) traffic going in and out of your "stf0" tunneling interface. You can add filter rules as
well if needed.

If you are more interested in traffic stats than a general overview of your network traffic, using MRTG in
conjunction with the "net-snmp" package is recommended instead of analyzing IPfilter log files.

26.4.11 Conclusion & Further Reading

Compared to where IPv4 is today, IPv6 is still in its early steps. It is working, there are all sort of
services and clients available, only the userbase is missing. It is hoped the information provided here
helps people better understand what IPv6 is, and to start playing with it.

A few links should be mentioned here for interested parties:

« An example script to setup 6to4 on BSD based machines is available at
http://www.NetBSD.org/packages/net/hf6tod/. The script determines your IPv6 address and sets up
6to4 and (if wanted) router advertising. It was designed to work in dialup setups with changing IPv4
addresses.

298

Chapter 26 Miscellaneous networking topics

Given that there isn’t a standard for IPv6 in Linux land today, there are different setup instructions for
most distributions. The setup of IPv6 on Debian GNU/Linux can be found at
http://people.debian.org/~csmall/ipv6/setup.html.

The BSD Unix implementations have their own IPv6 documentation each, interesting URLS are
http://www.NetBSD.org/Documentation/network/ipv6/ for NetBSD,
http://www.freebsd.org/doc/en_US.1SO8859-1/books/handbook/network-ipv6.html for FreeBSD.

Projects working on implementing IPv6 protocol stacks for free Unix like operating systems are
KAME for BSD and USAGI for Linux. Their web sites can be found at http://www.kame.net/ and
http://www.linux-ipv6.org/. A list of host and router implementations can be found at
http://playground.sun.com/pub/ipng/html/ipng-implementations.html.

Besides the official RFC archive at ftp://ftp.isi.edu/in-notes, information on IPv6 can be found at
several web sites. First and foremost, the 6Bone’s web page at http://www.6bone.net/ must be
mentioned. 6Bone was started as the testbed for IPv6, and is now an important part of the
IPv6-connected world. Other web pages that contain IPv6-related contents include
http://www.ipv6.org/, http://playground.sun.com/pub/ipng/html/ and http://www.ipv6forum.com/.
Most of these sites carry further links - be sure to have a look!

299

V. Building the system

Chapter 27
ODbtaining the sources

To read the NetBSD sources from your local disk or to build the system or parts of it, you need to
download the NetBSD sources. This chapter explains how to get the NetBSD source using a number of
different ways, although the prefered one is to get the tarballs and then update via cvs(1).

27.1 Preparing directories

Kernel and userland sources are usually placed in Zusr/src. This directory is not present by default in
the NetBSD installation and you will need to create it first. As it is in a system directory, you will need
root access to create the directory and make sure your normal user account can write to it. For
demonstration purposes, it is assumed that your non-root login is “carlo”:

% su

Password: *****

nkdir /usr/src

chown carlo /usr/src

If you want to use pkgsrc (which is most likely), you can prepare /usr/pkgsrc at the same time:

nkdir /usr/pkgsrc
chown carlo /usr/pkgsrc

Also, if you want X11R6 sources, you can prepare /usr/xsrc:

nkdir /usr/xsrc
chown carlo /usr/xsrc

Please note that for the subsequent steps, root access is neither needed nor recommended, so this
preparation step should be done first. All CVS operations can (and should) be done as normal user and
you don’t need root privileges any more:

exit
%

27.2 Terminology

Before starting to fetch or download the required files, you may want to know the definitions of
“Formal releases”, “Maintenance branches” and other related terms. That information is available
under the NetBSD release glossary and graphs (http://www.NetBSD.org/Releases/release-map.html).

301

Chapter 27 Obtaining the sources

27.3 Downloading tarballs

It’s sometimes faster to download a tarball and then continue updating with cvs(1). You can download
tarballs (see tar(1)) from ftp.NetBSD.org (or any other mirror) for a number of releases or branches.

The only drawback is that the tarballs are updated less often. Normally, every three days.

Also, please note that these tarballs include the CVS directories, so you can download them and then
update your source tree using cvs(1), as explained in the CVS section.

27.3.1 Downloading a NetBSD release

The tarball files for a specific release are available under
/pub/NetBSD/NetBSD-RELEASE- NUMBER/source/sets/ on ftp.NetBSD.org (or a mirror), where
RELEASE- NUMBER is the release you want to fetch (for example, 2.0.2).

To fetch a NetBSD release using tarballs (make sure you have enough hard disk space under /tmp),
simply do:

% cd /tnp

% ftp -i ftp://ftp. Net BSD. or g/ pub/ Net BSD/ Net BSD- 2. 0. 2/ sour ce/ set s/

Trying 2001:418:4:7:2e0:81fFF:fe21:6563. ..

Connected to ftp.NetBSD.org.

220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20040809) ready.

331 Guest login ok, type your name as password.

[---1

250 CWD command successful.

250 CWD command successful.

250 CWD command successful.

ftp> nget *.tgz

local: gnusrc.tgz remote: gnusrc.tgz

229 Entering Extended Passive Mode (]]]158302])

150 Opening BINARY mode data connection for “gnusrc.tgz” (79233899 bytes).

[---1

ftp> quit

221-
Data traffic for this session was 232797304 bytes in 5 files.
Total traffic for this session was 232803039 bytes in 6 transfers.

221 Thank you for using the FTP service on ftp.NetBSD.org.

You should now have 5 files:

%ls *.tgz
ghusrc.tgz sharesrc.tgz src.tgz syssrc.tgz Xsrc.tgz

You now must extract them all to /:
% foreach file (*.tgz)

? tar -xzf $file -C/
? end

302

Chapter 27 Obtaining the sources

27.3.2 Downloading snapshots from a NetBSD stable branch

% ftp -i ftp://ftp. Net BSD. or g/ pub/ Net BSD/ Net BSD-r el ease-2-0/tar _fil es/src/

Trying 2001:418:4:7:2e0:81fFF:fe21:6563. ..

Connected to ftp.NetBSD.org.

220 ftp.NetBSD.org FTP server (NetBSD-ftpd 20040809) ready.

331 Guest login ok, type your name as password.

[---1

250 CWD command successful.

250 CWD command successful.

250 CWD command successful.

250 CWD command successful.

ftp> nget *.tar.gz

local: bin.tar.gz remote: bin.tar.gz

229 Entering Extended Passive Mode (]]]56011])

150 Opening BINARY mode data connection for ’bin.tar.gz” (914202 bytes).

L---1

ftp> quit

221-
Data traffic for this session was 149221420 bytes in 22 files.
Total traffic for this session was 149231539 bytes in 23 transfers.

221 Thank you for using the FTP service on ftp.NetBSD.org.

You should now have 22 files:

%ls *.tar.gz

bin.tar.gz
config.tar.gz
contrib.tar.gz
crypto.tar.gz
dist.tar.gz
distrib.tar.gz

doc.tar.gz
etc.tar.gz
games.tar.gz
gnu.tar.gz
include.tar.gz
lib.tar.gz

You now must extract them all to Zusr:

% foreach file (*.tar.gz)
? tar -xzf $file -C /usr

? end

libexec.tar.gz
regress.tar.gz
rescue.tar.gz
sbin.tar.gz
share.tar.gz
sys.tar.gz

tools.tar.gz
top-level.tar.gz
usr._bin.tar.gz
usr.sbin.tar.gz

27.3.3 Downloading the NetBSD-current development branch

To download the NetBSD-current tarballs, located under
/pub/NetBSD/NetBSD-current/tar_files/src, just follow the same steps as in the previous
section, but now on a different directory.

You may also want to fetch the X11R6 source, available under:
/pub/NetBSD/NetBSD-current/tar_files/xsrc.

303

Chapter 27 Obtaining the sources

27.3.4 Downloading a pkgsrc-200xQy stable branch

Pkgsrc (“package source”) is the NetBSD packages collection which can be used to easily install and
deinstall software on your NetBSD system. See Part VI in The NetBSD & pkgsrc Guide for more
information.

You should follow the stable branch, unless you’re developing new package or adding a new feature.

To download a pkgsrc stable tarball, run:

% cd /tnp
% ftp ftp://ftp. Net BSD. or g/ pub/ pkgsrc/ 200xQy/ pkgsrc-200xQy. tar. gz

Where <pkgsr c- 200xQy> is the stable branch to be downloaded, for example, “pkgsrc-2004Q1” or
“pkgsrc-2005Q2”.

Then, extract it with:
% tar -xzf pkgsrc-200xQy.tar.gz -C /usr

This will create the directory pkgsrc in your Zusr (if not already created) and all the package source
will be stored under Zusr/pkgsrec.

27.3.5 Downloading the pkgsrc-current development branch

To download pkgsrc-current, run:
% ftp ftp://ftp. Net BSD. or g/ pub/ pkgsrc/current/pkgsrc.tar. gz
Then extract it with:

% tar -xzf pkgsrc.tar.gz -C /usr

27.4 Fetching by CVS

CVS (Concurrent Versions System) can be used to fetch the NetBSD source tree or to keep the NetBSD
source tree up to date with respect to changes made to the NetBSD sources. There are three trees
maintained for which you can use CVS to obtain them or keep them up to date:

The list of currently maintained branches is available under src/doc/BRANCHES (see the “Status” entry
on “Release branches” section).

CVS also supports several connection methods. If you want to use the “external” method (only available
with ssh(1)) you should do:

% setenv CVS_RSH ssh
% set env CVSROOT : ext : anoncvs@noncvs. Net BSD. or g: / cvsr oot

Otherwise, if you want to use the “pserver” method:

% unset env CVS_RSH
% set env CVSROOT : pserver: anoncvs@noncvs. Net BSD. or g: / cvsr oot

304

Chapter 27 Obtaining the sources

We’ll also use the -P option in the examples below since it’s used to prune empty directories.

27.4.1 Getting CVS

The CVS program (http://www.CVShome.org/) is part of NetBSD. If you have an old release which
didn’t come with CVS, you can install it either by using pkg_add, or building from pkgsrc.

To install via pkg_add, just do:
% pkg_add ftp://ftp. Net BSD. or g/ pub/ Net BSD/ packages/ Gs Ver/arch/ Al l / cvs
where OS Ver and ar ch can be obtained by running.

% sysct| kern.osrel ease hw. machi ne_arch

Otherwise, if you want to build cvs(1) from pkgsrc, (assuming you already
fetched a stable pkgsrc branch or pkgsrc-current) you would do:

% cd /usr/ pkgsrc/devel / cvs
% nmeke install

27.4.2 Fetching a NetBSD release

A release is a set of particular versions of source files, and once released does not change over time.

To get the NetBSD (kernel and userland) sources from a specific release, run the following command
after the preparations done above:

% cd /usr
% cvs checkout -r <BRANCH> -P src

Where <BRANCH> is the release branch to be checked out, for example, “netbsd-2-0-RELEASE”,
“nethsd-2-1-RELEASE” or “nethsd-3-0-RELEASE”. If you want to fetch a different patchlevel, you
would use “netbsd-2-0-1-RELEASE” or “netbsd-2-0-2-RELEASE”.

For example, in order to fetch “netbsd-2-0-RELEASE” you would use:
% cvs checkout -r netbsd-2-0-RELEASE -P src
To fetch the X11R6 source, just “checkout” the “xsrc” module. For example:

% cvs checkout -r netbsd-2-0-RELEASE -P xsrc

27.4.3 Fetching a NetBSD stable branch

NetBSD stable branches are also called “Maintenance branches”. Please consult the Section 27.2.
If you want to follow a stable branch, just pass the branch name to the cvs(1) -r option.

For example, if you want to fetch the most recent version of “netbsd-2", you just need to use that tag:

% cd /usr

305

Chapter 27 Obtaining the sources

% cvs checkout -r netbsd-2 -P src
And for the “xsrc” module:
% cvs checkout -r netbsd-2 -P xsrc

If you have checked out sources from a stable branch in Zusr/src and want to update them to get the
latest security-fixes and bug-fixes, run:

% cd /usr/src
% cvs update -Pd

The same applies to the “xsrc” module, but in that case you’ll have to change your working directory to
/usr/xsrc first.

27.4.4 Fetching the NetBSD-current development branch

To obtain the NetBSD-current source just omit “~r BRANCH” and replace it by “-A":

% cd /usr
% cvs checkout -A -P src

The “xsrc” is also available:

% cd /usr
% cvs checkout -A -P xsrc

To update your NetBSD-current source tree, add the -A flag:

% cd /usr/src
% cvs update -A -Pd

27.4.5 Fetching a pkgsrc-200xQy stable branch

Pkgsrc (“package source”) is the NetBSD packages collection which can be used to easily install and
deinstall software on your NetBSD system. See Part VI in The NetBSD & pkgsrc Guide for more
information.

Stable pkgsrc branches are created every quarter, hence the naming “<year>-Q<quarter>". You should
follow the stable branch, unless you’re developing new package or adding a new feature.

To know the pkgsrc branches for the current year, run:

% cd /usr/pkgsrc

% cvs | og Makefile | grep pkgsrc-‘date +%" Q :
pkgsrc-2005Q2: 1.73.0.2
pkgsrc-2005Q1: 1.67.0.2

Given this example, you should choose “pkgsrc-2005Q2” since older branches are no longer maintained.

To fetch a specific pkgsrc stable branch from scratch into Zusr/pkgsrc, run:

306

Chapter 27 Obtaining the sources

% cd /usr
% cvs checkout -r <pkgsrc-200xQy> -P pkgsrc

Where <pkgsr c- 200xQy> is the stable branch to be checked out, for example, “pkgsrc-2004Q1” or
“pkgsrc-2005Q2”.

This will create the directory pkgsrc in your Zusr (if not already created by preparation steps above)
and all the package source will be stored under Zusr/pkgsrc.

To update pkgsrc just do:

% cd /usr/pkgsrc
% cvs update -Pd

27.4.6 Fetching the pkgsrc-current development branch

To obtain pkgsrc-current, run:

% cd /usr
% cvs checkout -A -P pkgsrc

To update pkgsrc-current just replace -r. . with -A:

% cd /usr/pkgsrc
% cvs update -A -Pd

27.4.7 Saving some cvs(1) options

If you find yourself typing some options to cvs over and over again, you can as well put them into a file
-cvsrc in your home directory. The following example is taken from my $HOME/ _cvsrg, it is useful
for just typing cvs update on a directory with a branch checked out to update it (adding -A would revert
the branch to the -current branch, which is not what | usually want!), I prefer unified diffs, transfers
should do some compression and “cvs update” should be mostly quiet:

Example 27-1. . cvsrc

#update -dPA

update -dP
rdiff -u
diff -u
cvs -q

27.5 Sources on CD (ISO)

If you prefer to download (and maybe burn) a CD-ROM image with the NetBSD source, just fetch
sourcecd. iso from ftp.NetBSD.org or any other mirror.

307

Chapter 27 Obtaining the sources
The sourcecd. iso file is located under /pub/NetBSD/iso/RELEASE, where RELEASE is a NetBSD
release available under 1ISO9660 format (for example, 1.6.2, 2.0 or 2.0.2)

The next step is to burn the ISO image or mount it with the help of vnconfig(8). Please see Chapter 13 as
it explains in detail how to do it.

Assuming you have mounted the CD under /mnt, /mnt/source/sets should have everything you
need to extract:

% |s / mt/sourcelsets
BSDSUM MD5 gnusrc.tgz src.tgz xsrc.tgz
CKSUM SYSVSUM sharesrc.tgz syssrc.tgz

All tarballs should be extracted to the root file system (/). The following command will do it:

% foreach file (*.tgz)
? tar -xzf $file -C/
? end

After that, you should have Zusr/src and Zusr/xsrc populated with the NetBSD sources.

308

Chapter 28
Crosscompiling NetBSD with
bui | d. sh

When targeting a product for an embedded platform, it’s not feasible to have all the development tools
available on that same platform. Instead, some method of crosscompiling is usually used today. NetBSD
1.6 and forward comes with a framework to build both the operating system’s kernel and the whole
userland for either the same platform that the compiler runs on, or for a different platform, using
crosscompiling. Crosscompiling requires assembler, linker, compiler etc. to be available and built for the
target platform. The new build scheme will take care of creating these tools for a given platform, and
make them available ready to use to do development work.

In this chapter, we will show how to use bui Id-sh to first create a crosscompiling toolchain, including
cross-compiler, cross-assembler, cross-linker and so on. While native kernel builds are covered in
Chapter 29, these tools are then used to manually configure and crosscompile a kernel for a different
platform, and then show how to use bui Id.sh as a convenient alternative. After that works, the whole
NetBSD userland will be compiled and packed up in the format of a NetBSD release. In the examples,
we will use the Sun UltraSPARC ("sparc64™) 64-bit platform as target platform, any other platform
supported by NetBSD can be targetted as well specifying its name (see Zusr/src/sys/arch).

Before starting, take note that it is assumed that the NetBSD sources from the "netbsd-2-0" branch are
available in Zusr/src as described in Chapter 27.

A more detailed description of the bui Id.sh framework can be found in Luke Mewburn and Matthew
Green’s paper (http://www.mewburn.net/luke/papers/build.sh.pdf) and their presentation
(http:/lwww.mewburn.net/luke/talks/bsdcon-2003/index.html) from BSDCon 2003 as well as in
/usr/src/BUILDING.

28.1 Building the crosscompiler

The first step to do cross-development is to get all the necessary tools available. In NetBSD terminology,
this is called the "toolchain®, and it includes BSD-compatible make(1), C/C++ compilers, linker,
assembler, config(8), as well as a fair number of tools that are only required when crosscompiling a full
NetBSD release, which we won’t cover here.

The command to create the crosscompiler is quite simple, using NetBSD’s new src/bui Id. sh script.
Please note that all the commands here can be run as normal (non-root) user:

% cd /usr/src
% ./build.sh -msparc64 tools

If the tools have been built previously and they only need updated, then the update option "-u" can be
used to only rebuild tools that have changed:

309

Chapter 28 Crosscompiling NetBSD with bui | d. sh
% ./build.sh -u -msparc64 tools

When the tools are built, information about them and several environment variables is printed out:

===> build.sh started: Thu Dec 2 22:18:11 CET 2004
===> build.sh ended: Thu Dec 2 22:28:22 CET 2004
===> Summary of results:
build.sh command: ./build.sh -m sparc64 tools
build.sh started: Thu Dec 2 22:18:11 CET 2004
No nonexistent/bin/nbmake, needs building.
Bootstrapping nbmake
MACHINE: Sparc64
MACHINE_ARCH: sparc64
TOOLDIR path: /usr/src/tooldir _NetBSD-2.0-i1386
DESTDIR path: /usr/src/destdir.sparc64
RELEASEDIR path: /usr/src/releasedir
Created /usr/src/tooldir._NetBSD-2.0-i386/bin/nbmake
makewrapper: /usr/src/tooldir _NetBSD-2.0-i1386/bin/nbmake-sparc64
Updated /Zusr/src/tooldir.NetBSD-2.0-i386/bin/nbmake-sparc64
Tools built to Zusr/src/tooldir_NetBSD-2.0-i386
build.sh started: Thu Dec 2 22:18:11 CET 2004
build.sh ended: Thu Dec 2 22:28:22 CET 2004
=_-==> _

During the build, object directories are used consistently, i.e. special directories are kept that keep the
platform-specific object files and compile results. In our example, they will be kept in directories named
"obj.sparc64" as we build for UltraSPARC as target platform.

The toolchain itself is part of this, but as it’s hosted and compiled for a i386 system, it will get placed in
its own directory indicating where to cross-build from. Here’s where our crosscompiler tools are located:

% pwd

/usr/src

%ls -d tooldir.*
tooldir.NetBSD-2.0-1386

So the general rule of thumb is for a given "host" and "target" system combination, the crosscompiler
will be placed in the "src/tooldir.host" directory by default. A full list of all tools created for
crosscompiling the whole NetBSD operating system includes:

% |'s tooldir.NetBSD 2.0-i386/bin/

nbasnl_compile nbmakefs nbzic

nbcap_mkdb nbmakeinfo sparc64--netbsd-addr2li
nbcat nbmakewhatis sparc64--netbsd-ar
nbcksum nbmenuc sparc64--netbsd-as
nbcompile_et nbmkcsmapper sparc64--netbsd-c++
nbconfig nbmkdep sparc64--netbsd-c++filt
nbcrunchgen nbmkesdb sparc64--netbhsd-cpp
nbctags nbmklocale sparc64--netbsd-dbsym
nbdb nbmknod sparc64--netbhsd-g++
nbegn nbmktemp sparc64--netbsd-g77
nbfgen nbmsgc sparc64--netbhsd-gcc

310

Chapter 28 Crosscompiling NetBSD with bui | d. sh

nbfile nbmtree sparc64--netbsd-gcc-3.3
nbgencat nbnroff sparc64--netbsd-gccbug
nbgroff nbpax sparc64--netbsd-gcov
nbhexdump nbpic sparc64--netbsd-1d
nbhost-mkdep nbpwd_mkdb sparc64--netbsd-lint
nbindxbib nbrefer sparc64--netbsd-mdsetim
nbinfo nbrpcgen sparc64--netbsd-nm
nbinfokey nbsoelim sparc64--netbsd-objcopy
nbinstall nbstat sparc64--netbsd-objdump
nbinstall-info nbsunlabel sparc64--netbsd-ranlib
nbinstal lboot nbtbl sparc64--netbsd-readel f
nblex nbtexi2dvi sparc64--netbsd-size
nblorder nbtexindex sparc64--netbsd-strings
nbm4 nbtsort sparc64--netbsd-strip
nbmake nbuudecode

nbmake-sparc64 nbyacc

As you can see, most of the tools that are available native on NetBSD are present with some program
prefix to identify the target platform for tools that are specific to a certain target platform.

One important tool that should be pointed out here is "nbmake-sparc64"”. This is a shell wrapper for a
BSD compatible make(1) command that’s setup to use all the right commands from the crosscompiler
toolchain. Using this wrapper instead of /usr/bin/make allows crosscompiling programs that were written
using the NetBSD Makefile infrastructure (see src/share/mk). We will use this make(1) wrapper in a
second to cross compile the kernel!

28.2 Configuring the kernel manually

Now that we have a working crosscompiler available, the "usual” steps for building a kernel are needed -
create a kernel config file, run config(8), then build. As the config(8) program used to create header files
and Makefile for a kernel build is platform specific, we need to use the "nbconfig" program that’s part of
our new toolchain. That aside, the procedure is just as like compiling a "native" NetBSD kernel.
Commands involved here are:

% cd /usr/src/sys/arch/ sparc64/ conf

% cp GENERI C MYKERNEL

% vi MYKERNEL

% / usr/src/tool dir.Net BSD- 2. 0-i 386/ bi n/ nbconfi g MYKERNEL

That’s all. This command has created a directory . ./compi le/MYKERNEL with a number of header files
defining information about devices to compile into the kernel, a Makefile that is setup to build all the
needed files for the kernel, and link them together.

28.3 Crosscompiling the kernel manually

We have all the files and tools available to crosscompile our UltraSPARC-based kernel from our
Intel-based host system, so let’s get to it! After changing in the directory created in the previous step, we
need to use the crosscompiler toolchain’s nbmake-sparc64 shell wrapper, which just calls make(1)
with all the necessary settings for crosscompiling for a sparc64 platform:

311

Chapter 28 Crosscompiling NetBSD with bui | d. sh
% cd ../ conpil e/ MYKERNEL/
% /usr/src/tool dir.Net BSD- 2. 0-i 386/ bi n/ nbmake- spar c64 depend
% / usr/src/tool dir.Net BSD- 2. 0-i 386/ bi n/ nbmake- spar c64

This will churn away a bit, then spit out a kernel:

text data bss dec hex filename

5016899 163728 628752 5809379 58a4e3 netbsd
%Ils -1 netbsd

-rwxr-xr-x 1 feyrer 666 5874663 Dec 2 23:17 netbsd
% file netbsd
netbsd: ELF 64-bit MSB executable, SPARC V9, version 1 (SYSV), statically linked, not sti

Now the kernel in the file netbsd can either be transferred to a UltraSPARC machine (via NFS, FTP,
scp, etc.) and booted from a possible harddisk, or directly from our cross-development machine using
NFS.

After configuring and crosscompiling the kernel, the next logical step is to crosscompile the whole
system, and bring it into a distribution-ready format. Before doing so, an alternative approach to
crosscompiling a kernel will be shown in the next section, using the bui Id.sh script to do configuration
and crosscompilation of the kernel in one step.

28.4 Crosscompiling the kernel with bui | d. sh

A cross compiled kernel can be done manually as described in the previous sections, or by the easier
method of using bui Id.sh, which will be shown here.

Preparation of the kernel config file is the same as described above:

% cd /usr/src/sys/arch/ sparc64/ conf
% cp GENERI C MYKERNEL
% vi MYKERNEL

Then edit MYKERNEL and once finished, all that needs to be done is to use bui 1d.sh to build the kernel
(it will also configure it, running the steps shown above):

% cd /usr/src
% ./build.sh -u -m sparc64 ker nel =MYKERNEL

Notice that update ("-u") was specified, the tools are already built, there is no reason to rebuild all of the
tools. Once the kernel is built, bui Id - sh will print out the location of it along with other information:

===> Summary of results:
build.sh command: ./build.sh -u -m sparc64 kernel=MYKERNEL
build.sh started: Thu Dec 2 23:30:02 CET 2004
No nonexistent/bin/nbmake, needs building.
Bootstrapping nbmake

MACHINE: sparc64
MACHINE_ARCH: Sparc64
TOOLDIR path: /usr/src/tooldir _NetBSD-2.0-i1386

312

Chapter 28 Crosscompiling NetBSD with bui | d. sh

DESTDIR path: /usr/src/destdir.sparc64

RELEASEDIR path: /usr/src/releasedir

Created /usr/src/tooldir_NetBSD-2.0-i386/bin/nbmake

makewrapper: /usr/src/tooldir_NetBSD-2.0-i1386/bin/nbmake-sparc64
Updated /Zusr/src/tooldir.NetBSD-2.0-i1386/bin/nbmake-sparc64

Building kernel without building new tools

Building kernel: MyKERNEL

Build directory: /usr/src/sys/arch/sparc64/compile/obj.sparc64/GENERIC
Kernels built from MyKERNEL:
/usr/src/sys/arch/sparc64/compile/obj . sparc64/MKERNEL/netbsd
build.sh started: Thu Dec 2 23:30:02 CET 2004

build.sh ended: Thu Dec 2 23:38:22 CET 2004

=_—==> _

The path to the kernel built is of interest here:
/usr/src/sys/arch/sparc64/compile/obj . sparc64/MKERNEL/netbsd, it can be used the
same way as described above.

28.5 Crosscompiling the userland

By now it is probably becoming clear that the toolchain actually works in stages. First the crosscompiler
is built, then a kernel. Since bui Id. sh will attempt to rebuild the tools at every invocation, using
“update” saves time. It is probably also clear that outside of a few options, the bui Id.sh semantics are
basically build.sh command. So, it stands to reason that building the whole userland and/or a release is
a matter of using the right commands.

It should be no surprise that building and creating a release would look like the following:

% ./build.sh -U -u -msparc64 build
% ./build.sh -U -u -msparc64 rel ease

These commands will compile the full NetBSD userland and put it into a destination directory, and then
build a release from it in a release directory. The “-U” switch is added here for an “unprivileged” build,
i.e. one that’s running as normal user and not as root. As no further switches to bui Id.sh were given
nor any environment variables were set, the defaults of DESTDIR=/usr/src/destdir.sparc64 and
RELEASEDIR=/usr/src/releasedir are used, as shown in the bui Id.sh-output above.

28.6 Crosscompiling the X Window System

The NetBSD project has its own copy of the X Window System’s source which is currently based on
XFree86 version 4, and which contains changes to make X going on as many of the platforms supported
by NetBSD as possible. Due to this, it is desirable to use the X Window System version available from
and for NetBSD, which can also be crosscompiled much like the kernel and base system. To do so, the
"xsrc" sources must be checked out from CVS into Zusr/xsrc just as "src" and "pkgsrc" were as
described in Chapter 27.

After this, X can be crosscompiled for the target platform by adding the "-x" switch to build.sh, e.g.
when creating a full release:

313

Chapter 28 Crosscompiling NetBSD with bui | d. sh

% ./build.sh -U -x -u -msparc64 rel ease

The -U flag for doing unprivileged (non-root) builds and the -u flag for not removing old files before
building as well as the -m ar ch option to define the target architecture have already been introduced, and
the -x option to also (cross)compile "xsrc" is another option.

28.7 Changing build behaviour

Similar to the old, manual building method, the new toolchain has a lot of variables that can be used to
direct things like where certain files go, what (if any) tools are used and so on. A look in src/BUILDING
covers most of them. In this section some examples of changing default settings are given, each
following its own ways.

28.7.1 Changing the Destination Directory

Many people like to track NetBSD-current and perform cross compiles of architectures that they use.
The logic for this is simple, sometimes a new feature or device becomes available and someone may
wish to use it. By keeping track of changes and building every now and again, one can be assured that
these architectures can build their own release.

It is reasonable to assume that if one is tracking and building for more than one architecture, they might
want to keep the builds in a different location than the default. There are two ways to go about this, either
use a script to set the new DESTDIR, or simply do so interactively. In any case, it can be set the same
way as any other variable (depending on your shell of course).

For bash, the Bourne or Korn shell, this is:
% export DESTDI R=/usr/buil ds/ sparc64
For tcsh and the C shell, the command is:

% set env DESTDI R /usr/ bui |l ds/ sparc64

Simple enough. When the build is run, the binaries and files will be sent to Zusr/bui lds.

28.7.2 Static Builds

The NetBSD toolchain builds and links against shared libraries by default. Many users still prefer to be
able to link statically. Sometimes a small system can be created without having shared libraries, which is
a good example of doing a full static build. If a particular build machine will always need one
environment variable set in a particular way, then it is easiest to simply add the changed setting to
/etc/mk.conf.

To make sure a build box always builds statically, simply add the following line to Zetc/mk.conf:

LDSTATIC=-static

314

Chapter 28 Crosscompiling NetBSD with bui | d. sh

28.7.3 Using bui | d. sh options

Besides variables in environment and /etc/mk . conT, the build process can be influenced by a number
of switches to the bui Id . sh script itself, as we have already seen when forcing unprivileged (non-root)
builds, selecting the target architecture or preventing deletion of old files before the build. All these
options can be listed by running build.sh -h:

% cd /usr/src

% build.sh -h

Usage: build.sh [-EnorUux] [-a arch] [-B buildid] [-D dest] [-j njob]
[-M obj] [-m mach] [-N noisy] [-0 obj] [-R release] [-T tools]
[-V var=[value]] [-w wrapper] [-X x11src] [-Z var]
operation [...]

Build operations (all imply "obj" and "tools"):

build Run "‘make build".
distribution Run "make distribution™ (includes DESTDIR/etc/ files).
release Run "make release" (includes kernels & distrib media).

Other operations:

help Show this message and exit.
makewrapper Create nbmake-${MACHINE} wrapper and nbmake.
Always performed.

obj Run "make obj". [Default unless -0 is used]

tools Build and install tools.

install=idir Run "make installworld” to “idir’ to install all sets
except “etc’. Useful after "distribution” or "release"

kernel=conf Build kernel with config file “conf’
releasekernel=conf Install kernel built by kernel=conf to RELEASEDIR.
sets Create binary sets in RELEASEDIR/MACHINE/binary/sets.
DESTDIR should be populated beforehand.

sourcesets Create source sets in RELEASEDIR/source/sets.

params Display various make(l) parameters.

Options:

-a arch Set MACHINE_ARCH to arch. [Default: deduced from MACHINE]

-B buildld Set BUILDID to buildld.

-D dest Set DESTDIR to dest. [Default: destdir.MACHINE]

-E Set "expert"” mode; disables various safety checks.

Should not be used without expert knowledge of the build system.

-Jj njob Run up to njob jobs in parallel; see make(l) -j.

-M obj Set obj root directory to obj; sets MAKEOBJDIRPREFIX.

Unsets MAKEOBJDIR.
-m mach Set MACHINE to mach; not required if NetBSD native.
-N noisy Set the noisyness (MAKEVERBOSE) level of the build:
0 Quiet

1 Operations are described, commands are suppressed
2 Full output
[Default: 2]

-n Show commands that would be executed, but do not execute them.

-0 obj Set obj root directory to obj; sets a MAKEOBJDIR pattern.
Unsets MAKEOBJDIRPREFIX.

-0 Set MKOBJDIRS=no; do not create objdirs at start of build.

315

Chapter 28 Crosscompiling NetBSD with bui | d. sh

-R release Set RELEASEDIR to release. [Default: releasedir]

-r Remove contents of TOOLDIR and DESTDIR before building.

-T tools Set TOOLDIR to tools. |If unset, and TOOLDIR is not set in
the environment, nbmake will be (re)built unconditionally.

-U Set MKUNPRIVED=yes; build without requiring root privileges,
install from an UNPRIVED build with proper file permissions.
-u Set MKUPDATE=yes; do not run "make clean” first.

Without this, everything is rebuilt, including the tools.
-V v=[val] Set variable “v’ to “val’.
-w wrapper Create nbmake script as wrapper.
[Default: ${TOOLDIR}/bin/nbmake-${MACHINE}]
-X x11src Set X11SRCDIR to xllsrc. [Default: /usr/xsrc]
-X Set MKX1l=yes; build X11R6 from X11SRCDIR
-Z Vv Unset (‘'zap'™) variable “v’.

As can be seen, a number of switches can be set to change the standard build behaviour. A number of
them has already been introduced, others can be set as appropriate.

28.7.4 make(1) variables used during build

Several variables control the behaviour of NetBSD builds. Unless otherwise specified, these variables
may be set in either the process environment or in the make(1) configuration file specified by MAKECONF.
For a definitive list of these options, see BUILDING in the toplevel source directory.

BUILDID

Identifier for the build. The identifier will be appended to object directory names, and can be
consulted in the make(1) configuration file in order to set additional build parameters, such as
compiler flags.

DESTDIR

Directory to contain the built NetBSD system. If set, special options are passed to the compilation
tools to prevent their default use of the host system’s Zusr/include, Zusr/lib, and so forth. This
pathname should not end with a slash (/) character (For installation into the system’s root directory,
set DESTDIR to an empty string). The directory must reside on a filesystem which supports long
filenames and hard links.

Defaults to an empty string if USETOOLS is “yes”; unset otherwise. Note: bui Id.sh will provide a
default (destdir. MACHINE in the top-level .OBJDIR) unless run in “expert” mode.

MAKEVERBOSE

The verbosity of build messages. Supported values:

0 No descriptive
messages are
shown.

1 Descriptive
messages are
shown.

316

Chapter 28 Crosscompiling NetBSD with bui | d. sh

2 Descriptive
messages are
shown (prefixed

with a '#’) and
command
output is not
suppressed.
Default: 2
MKCATPAGES

Can be set to “yes” or “no”. Indicates whether preformatted plaintext manual pages will be created
during a build.

Default: “yes”

MKCRYPTO

Can be set to “yes” or “no”. Indicates whether cryptographic code will be included in a build;
provided for the benefit of countries that do not allow strong cryptography. Will not affect the
standard low-security password encryption system, crypt(3).

Default: “yes”

MKDOC

Can be set to “yes” or “no”. Indicates whether system documentation destined for
DESTDIR/usr/share/doc will be installed during a build.

Default: “yes”

MKHOSTOBJ

Can be set to “yes” or “no”. If set to “yes”, then for programs intended to be run on the compile
host, the name, release and architecture of the host operating system will be suffixed to the name of
the object directory created by “make obj”. This allows for multiple host stystems to compile
NetBSD for a single target. If set to “no”, then programs built to be run on the compile host will use
the same object directory names as programs built to be run on the target.

Default; “no”

MKINFO

Can be set to “yes” or “no”. Indicates whether GNU info files, used for the documentation of most
of the compilation tools, will be created and installed during a build.

Default: “yes”

MKLINT

Can be set to “yes” or “no”. Indicates whether lint(1) will be run against portions of the NetBSD
source code during the build, and whether lint libraries will be installed into
DESTDIR/usr/libdata/lint

Default: “yes”

317

Chapter 28 Crosscompiling NetBSD with bui | d

MKMAN
Can be set to “yes” or “no”. Indicates whether manual pages will be installed during a build.

Default: “yes”

MKNLS

Can be set to “yes” or “no”. Indicates whether Native Language System locale zone files will be
compiled and installed during a build.

Default: “yes”

MKOBJ

Can be set to “yes” or “no”. Indicates whether object directories will be created when running
“make obj”. If set to “no”, then all built files will be located inside the regular source tree.

Default: “yes”

MKPIC

Can be set to “yes” or “no”. Indicates whether shared objects and libraries will be created and
installed during a build. If set to “no”, the entire build will be statically linked.

Default: Platform dependent. As of this writing, all platforms except sh3 default to “yes”

MKPICINSTALL

Can be set to “yes” or “no”. Indicates whether the ar(1) format libraries (1ib*_pic.a), used to
generate shared libraries, are installed during a build.

Default: “yes”

MKPROFILE

Can be set to “yes” or “no”. Indicates whether profiled libraries (1ib*_p.a) will be built and
installed during a build.

Default: “yes”; however, some platforms turn off MKPROFILE by default at times due to toolchai
problems with profiled code.

MKSHARE

.sh

n

Can be set to “yes” or “no”. Indicates whether files destined to reside in DESTDIR/usr/share will

be built and installed during a build. If set to “no”, then all of MKCATPAGES, MKDOC, MK INFO,
MKMAN and MKNLS will be set to “no” unconditionally.

Default: “yes”

MKTTINTERP

Can be set to “yes” or “no”. For X builds, decides if the TrueType bytecode interpreter is turned
See freetype.org (http://freetype.org/patents.html) for details.

Default; “no”

on.

318

Chapter 28 Crosscompiling NetBSD with bui | d. sh

MKUNPRIVED

Can be set to “yes” or “no”. Indicates whether an unprivileged install will occur. The user, group,
permissions and file flags will not be set on the installed items; instead the information will be
appended to a file called METALOG in DESTDIR. The contents of METALOG are used during the
generation of the distribution tar files to ensure that the appropriate file ownership is stored.

Default: “no”

MKUPDATE

Can be set to “yes” or “no”. Indicates whether all install operations intended to write to DESTDIR
will compare file timestamps before installing, and skip the install phase if the destination files are
up-to-date. This also has implications on full builds (See below).

Default: “no”

MKX11

Can be set to “yes” or “no”. Indicates whether X11R6 is built from X11SRCDIR.

Default: “yes”

TOOLDIR

Directory to hold the host tools, once built. This directory should be unique to a given host system
and NetBSD source tree. (However, multiple targets may share the same TOOLDIR; the
target-dependent files have unique names). If unset, a default based on the uname(1) information of
the host platform will be created in the .OBJDIR of src.

Default; Unset.

USETOOLS

Indicates whether the tools specified by TOOLDIR should be used as part of a build in progress.
Must be set to “yes” if cross-compiling.

yes Use the tools
from TOOLDIR.

no Do not use the
tools from
TOOLNAME, but
refuse to build
native
compilation tool
components that
are
version-specific
for that tool.

319

never

Do not use the
tools from
TOOLNAME,
even when
building native
tool
components.
This is similar
to the traditional
NetBSD build
method, but
does not verify
that the
compilation
tools in use are
up-to-date
enough in order
to build the tree
succesfully.
This may cause
build or runtime
problems when
building the
whole NetBSD
source tree.

Chapter 28 Crosscompiling NetBSD with bui | d. sh

Default: “yes” if building all or part of a whole NetBSD source tree (detected automatically); “no”
otherwise (to preserve traditional semantics of the bsd.*_mk make(1) include files).

X11SRCDIR

Directory containing the X11R6 source. The main X11R6 source is found in
X11SRCDIR/xfree/xc.

Default: “usr/xsrc”

The following variables only affect the top level Makefi e and do not affect manually building subtrees
of the NetBSD source code.

INSTALLWORLDDIR

Location for the “make installworld” target to install to.

Default: “/”

MKOBJDIRS

Can be set to “yes” or “no”. Indicates whether object directories will be created automatically (via a

“make obj” pass) at the start of a build.

Default; “no”

320

Chapter 28 Crosscompiling NetBSD with bui | d. sh

MKUPDATE
Can be set to “yes” or “no”. If set, then addition to the effects described for MKUPDATE=yes above,
this implies the effect of NOCLEANDIR (i.e., “make cleandir” is avoided).

Default: “no”

NOCLEANDIR

If set, avoids the “make cleandir” phase of a full build. This has the effect of allowing only changed
files in a source tree to recompiled. This can speed up builds when updating only a few files in the
tree.

Default: Unset

NODISTRIBDIRS

If set, avoids the “make distrib-dirs” of a full build. This skips running mtree(8) on DESTDIR, useful
on systems where building as an unprivileged user, or where it is known that the system wide mtree

files have not changed.

Default: Unset

NOINCLUDES

If set, avoids the “make includes” phase of a full build. This has the effect of preventing make(1)
from thinking that some programs are out-of-date simply because system include files have
changed. However, this option should not be trusted when updating the entire NetBSD source tree
arbitrarily; it is suggested to use MKUPDATE=yes in that case.

Default; Unset

RELEASEDIR

If set, specifies the directory to which a release(7) layout will be written at the end of a “make
release”.

Default; Unset

321

Chapter 29
Compiling the kernel

Most NetBSD users will sooner or later want to recompile their kernel, or compile a customized kernel.
This might be for several reasons:

-« you can install bug-fixes, security updates, or new functionality by rebuilding the kernel from updated
sources.

« by removing unused device drivers and kernel sub-systems from your configuration, you can
dramatically reduce kernel size and, therefore, memory usage.

« by enabling optimisations more specific to your hardware, or tuning the system to match your specific
sizing and workload, you can improve performance.

« you can access additional features by enabling kernel options or sub-systems, some of which are
experimental or disabled by default.

« you can solve problems of detection/conflicts of peripherals.
«+ you can customize some options (for example keyboard layout, BIOS clock offset, ...)

« you can get a deeper knowledge of the system.

29.1 Requirements and procedure

To recompile the kernel you must have installed the compiler set (comp.tgz).

The basic steps to an updated or customised kernel then are:

1. Install or update the kernel sources
2. Create or modify the kernel configuration file
3. Building the kernel from the configuration file, either manually or using build.sh

4, Install the kernel

29.2 Installing the kernel sources

You can get the kernel sources from AnonCVS (see Chapter 27), or from the syssrc.tgz
tarball that is located in the source/sets/ directory of the release that you are using.

If you chose to use AnonCVS to fetch the entire source tree, be patient, the operation can last many
minutes, because the repository contains thousands of files.

322

Chapter 29 Compiling the kernel

If you have a source tarball, you can extract it as root:

cd /
tar zxf /[path/to/syssrc.tgz

Even if you used the tarball from the release, you may wish to use AnonCVS to update the sources with
changes that have been applied since the release. This might be especially relevant if you are updating
the kernel to include the fix for a specific bug, including a vulnerability described in a NetBSD Security
Advisory. You might want to get the latest sources on the relevant release or critical updates branch for
your version, or Security Advisories will usually contain information on the dates or revisions of the files
containing the specific fixes concerned. See Section 27.4 for more details on the CVS commands used to
update sources from these branches.

Once you have the sources available, you can create a custom kernel: this is not as difficult as you might
think. In fact, a new kernel can be created in a few steps which will be described in the following
sections.

29.3 Creating the kernel configuration file

The directories described in this section are i386 specific. Users of other architectures must substitute the
appropriate directories, see the subdirectories of src/sys/arch for a list.

The kernel configuration file defines the type, the number and the characteristics of the devices supported
by the kernel as well as several kernel configuration options. For the i386 port, kernel configuration files
are located in the Zusr/src/sys/arch/i386/conf directory.

Please note that the names of the kernel configuration files are historically in all uppercase, so they are
easy to distinguish from other files in that directory:

$ cd /usr/src/sys/arch/i386/conf/

$1s

CARDBUS GENERIC_PS2TINY NET4501

CVS GENERIC_TINY SWINGER

DELPHI GENERIC_VERIEXEC SWINGER .MP
DISKLESS INSTALL VIRTUALPC
GENERIC INSTALL .MP files.i1386
GENERIC.FAST_IPSEC INSTALL_LAPTOP kern.ldscript
GENERIC.MP INSTALL_PS2 kern._ldscript.4MB
GENERIC .MPDEBUG INSTALL_SMALL largepages.inc
GENERIC. local INSTALL_TINY majors. 1386
GENERIC_DIAGNOSTIC 10PENER std. 1386
GENERIC_ISDN LAMB

GENERIC_LAPTOP Makefile.i386

The easiest way to create a new file is to copy an existing one and modify it. Usually the best choice on
most platforms is the GENERIC configuration, as it contains most drivers and options. In the
configuration file there are comments describing the options; a more detailed description is found in the
options(4) man page. So, the usual procedure is:

$ cp GENERI C MYKERNEL
$ vi MYKERNEL

323

Chapter 29 Compiling the kernel

The modification of a kernel configuration file basically involves three operations:

1. support for hardware devices is included/excluded in the kernel (for example, SCSI support can be
removed if it is not needed.)

2. support for kernel features is enabled/disabled (for example, enable NFS client support, enable
Linux compatibility, ...)

3. tuning kernel parameters.

Lines beginning with “#” are comments; lines are disabled by commenting them and enabled by
removing the comment character. It is better to comment lines instead of deleting them; it is always
possible uncomment them later.

The output of the dmesg(8) command can be used to determine which lines can be disabled. For each
line of the type:

XXX at YYY

both XXX and YYY must be active in the kernel configuration file. You’ll probably have to experiment a
bit before achieving a minimal configuration but on a desktop system without SCSI and PCMCIA you
can halve the kernel size.

You should also examine the options in the configuration file and disable the ones that you don’t need.
Each option has a short comment describing it, which is normally sufficient to understand what the
option does. Many options have a longer and more detailed description in the options(4) man page.
While you are at it you should set correctly the options for local time on the CMOS clock. For example:

options RTC_OFFSET=-60

The adjustkernel Perl script, which is available through pkgsrc, analyzes the output of dmesg(8) and
automatically generates a minimal configuration file. The installation of packages is described
extensively in in the Part VI in The NetBSD & pkgsrc Guide, but installing adjustkernel basically boils
down to:

$ cd /usr/pkgsrc/sysutils/adjustkernel
$ meke install

You can now run the script with:

$ cd /usr/src/sys/arch/i386/conf
$ adj ustkernel GENERI C > MYKERNEL

This script usually works very well, saving a lot of manual editing. But be aware that the script only
configures the available devices: you must still configure the other options manually.

29.4 Building the kernel manually

Based on your kernel configuration file, either one of the standard configurations or your customised
configuration, a new kernel must be built.

324

Chapter 29 Compiling the kernel

These steps can either be performed manually, or using the build.sh command that was introduced in
section Chapter 28. This section will give instructions on how to build a native kernel using manual
steps, the following section Section 29.5 describes how to use build.sh to do the same.

« Configure the kernel
« Generate dependencies

« Compile the kernel

29.4.1 Configuring the kernel manually

When you’ve finished modifying the kernel configuration file (which we’ll call MYKERNEL), you should
issue the following command:

$ config MYKERNEL

If MYKERNEL contains no errors, the config(8) program will create the necessary files for the compilation
of the kernel, otherwise it will be necessary to correct the errors before running config(8) again.

29.4.2 Generating dependencies and recompiling manually

Dependencies generation and kernel compilation is performed by the following commands:

$ cd ../conpil e/ MYKERNEL
$ make depend
$ make

It can happen that the compilation stops with errors; there can be a variety of reasons but the most
common cause is an error in the configuration file which didn’t get caught by config(8). Sometimes the
failure is caused by a hardware problem (often faulty RAM chips): the compilation puts a higher stress
on the system than most applications do. Another typical error is the following: option B, active, requires
option A which is not active. A full compilation of the kernel can last from some minutes to several
hours, depending on the hardware.

The result of a successful make command is the netbsd file in the compile directory, ready to be
installed.

29.5 Building the kernel using bui | d. sh

After creating and possibly editing the kernel config file, the manual steps of configuring the kernel,
generating dependencies and recompiling can also be done using the src/bui Id.sh script, all in one

go:

$ cd /usr/src
$./build.sh kernel =MYKERNEL

325

Chapter 29 Compiling the kernel

This will perform the same steps as above, with one small difference: before compiling, all old object
files will be removed, to start with a fresh build. This is usually overkill, and it’s fine to keep the old file
and only rebuild the ones whose dependencies have changed. To do this, add the -u option to build.sh:

$ cd /usr/src
$./build.sh -u kernel =MYKERNEL

At the end of its job, bui Id.sh will print out the location where the new compiled kernel can be found.
It can then be installed.

29.6 Installing the new kernel

Whichever method was used to produce the new kernel file, it must now be installed. The new kernel file
should be copied to the root directory, after saving the previous version.

nmv /netbsd /netbsd. ol d
nv netbsd /

Customization can considerably reduce the kernel’s size. In the following example netbsd.old is the
install kernel and netbsd is the new kernel.

-rwxr-xr-x 3 root wheel 3523098 Dec 10 00:13 /netbsd
-rwxr-xr-x 3 root wheel 7566271 Dec 10 00:13 /netbsd.old

The new kernel is activated after rebooting:

shutdown -r now

29.7 If something went wrong

When the computer is restarted it can happen that the new kernel doesn’t work as expected or even
doesn’t boot at all. Don’t worry: if this happens, just reboot with the previously saved kernel and remove
the new one (it is better to reboot “single user”):

+ Reboot the machine
« Press the space bar at the boot prompt during the 5 seconds countdown
boot :
« Type
> boot netbsd.old -s
« Now issue the following commands to restore the previous version of the kernel:

fsck /

mount /

nv netbsd. ol d netbsd
reboot

326

Chapter 29 Compiling the kernel
This will give you back the working system you started with, and you can revise your custom kernel

config file to resolve the problem. In general, it’s wise to start with a GENERIC kernel first, and then
make gradual changes.

327

Chapter 30
Console drivers

In NetBSD versions before 1.4 the user could choose between two different drivers for screen and
keyboard, pccons (specific for i386) and pcvt. In NetBSD 1.4 the new wscons multiplatform driver
appeared, which has substituted the previous drivers, of which pccons is still supported as it uses less
system ressources and is used for install floppies due to that.

30.1 wscons

Wscons is NetBSD’s standard console driver. It offers virtual terminals on i386, support for international
keyboards, mouse handling, etc. The capabilities of wscons can vary depending on the port, the i386
version is very feature rich.

30.1.1 Virtual consoles

The number of pre-allocated virtual console is controlled by the following option
options WSDISPLAY_DEFAULTSCREENS=4

Other consoles can be added by enabling the relevant lines in the /etc/wscons. conT file: the comment
mark (#) must be removed from the lines beginning with “screen x”. In the following example a fifth
console is added to the four pre-allocated ones:

screens to create

idx screen emul
#screen 0O - vt100
screen 1 - vt100
screen 2 - vt100
screen 3 - vt100
screen 4 - -
#screen 4 80x25bf vt100
#screen 5 80x50 vt100

The rc.wscons script transforms each of the non commented lines in a call to the wsconscfg command:
the columns become the parameters of the call. The idx column becomes the index parameter, the
screen column becomes the -t type parameter (which defines the type of screen: rows and columns,
number of colors, ...) and the emul column becomes the -e emul parameter, which defines the
emulation. For example:

screen 3 - vtl100
becomes a call to:

wsconscfg -e vtl100 3

328

Chapter 30 Console drivers

Please note that it is possible to have a (harmless) conflict between the consoles pre-allocated by the
kernel and the consoles allocated at boot time through /etc/wscons. conf. If during boot the system
tries to allocate an already allocated screen, the following message will be displayed:

wsconscfg: WSDISPLAYI10O_ADDSCREEN: Device busy

The soulution is to comment out the offending lines in /etc/wscons.conf.

The virtual console must also be active in /etc/ttys, so that NetBSD runs the getty(8) program to ask
for login. For example:

console "/usr/libexec/getty Pc" pc3 off secure
ttyEO "/usr/libexec/getty Pc" vt220 on secure
ttyEl "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 off secure

When starting up the X server, it will look for a virtual console with no getty(8) program running, e.g.
one console should left as "off" in Zetc/ttys. The line

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

of Zetc/ttys is used by the X server for this purpose. To use a screen different from number 4, a
parameter of the form vtn must be passed to the X server, where n is the number of the function key used
to activate the screen for X.

For example, “screen 7” could be enabled in Zetc/wscons.conf and X could be started with “vt8”. If
you use xdm you must edit /usr/X11R6/1ib/X11/xdm/Xserver. For example:

:0 local /usr/X11R6/bin/X +kb dpms -bpp 16 dpms vt8

For xdm3d the path is different: Zusr/X11R6/share/xdm3d/Xservers

30.1.2 50 lines text mode with wscons

A text mode with 50 lines can be used starting with version 1.4.1 of NetBSD. This mode is activated in
the /etc/wscons.conf. The following line must be uncommented:

font ibm - 8 ibm Zusr/share/pcvt/fonts/vt2201.808

Then the following lines must be modified:

#screen 80x50 vt100
screen 80x50 vt100
screen 80x50 vt100
screen 80x50 vt100

screen 80x50 vt100
screen 80x50 vt100

0
1
2
3
screen 4 80x50 vt100
5
6
screen 7 80x50 vt100

329

Chapter 30 Console drivers

This configuration enables eight screens, which can be accessed with the key combination Ctrl-Alt-Fn
(where n varies from 1 to 8); the corresponding devices are ttyEOQ..ttyE7. To enable them and get a login

prompt, Zetc/ttys must be modified:

ttyEO "/usr/libexec/getty Pc" vt220 on secure
ttyEl "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 on secure
ttyE4 "/usr/libexec/getty Pc" vt220 on secure
ttyE5 "/usr/libexec/getty Pc" vt220 on secure
ttyE6 "/usr/libexec/getty Pc" vt220 on secure
ttyE7 "/usr/libexec/getty Pc" vt220 on secure

It is not possible to modify the 80x25 setting of screen 0, probably to guarantee that even in case of
problems there is always a working screen.

30.1.3 Keyboard mappings

Wscons also allows setting the keymap to map the keys on various national keyboards to the right
characters. E.g. to set the keymap for an italian keymap, run:

wsconsctl -k -w encoding=it
encoding -> it

This setting will last until the next reboot. To make it permanent, add a “encoding”line to
/etc/wscons.conf: it will be executed automatically the next time you reboot.

cp /etc/wscons. conf /etc/wscons.conf.orig
echo encoding it >>/etc/wscons. conf

Please be careful and type two “>" characters. If you type only one “>", you will overwrite the file
instead of adding a line. But that’s why we always make backup files before touching critical files!

A full list of keyboard mappings can be found in Zusr/src/sys/dev/wscons/wsksymdef . h:

+ be - Belgian

+ de - German

+ dk - Danish

+ €es - Spanish

« fr- French

+ hu - Hungarian
« it - Italian

« jp - Japanese

+ no - Norwegian
« pl - Polish

+ pt - Portuguese

330

Chapter 30 Console drivers

+ ru - Russian

« sf - Swiss French
+ sg - Swiss German
+ Sv - Swedish

+ ua- Ukrainian

+ uk - UK-English

+ Us - US-English

30.1.4 Cut&paste on the console with wsmoused

It is possible to use the mouse on the wscons console to mark (cut) text with one mouse button, and
insert (paste) it again with another button. To enable cut&paste in wscons, you first need to build support
for it into the kernel, which is disabled by default. To so so, enable the following option:

options WSDISPLAY_CHARFUNCS # mouse console support
Beware that this option won’t work in conjunction with the VGA_RASTERCONSOLE option. See
Chapter 29 for more information on building the kernel.

After the kernel is built, enable "wsmoused" in Zetc/rc.conT, and start it:

echo wsnoused=yes >>/etc/rc.conf
sh /etc/rc.d/ wsnoused start

After that you can use the mouse to mark text with the left mouse button, and paste it with the right one.
To tune the behaviour of wsmoused(8) see its manpage, which also describes the format of the
wsmoused.conf(5) config file, an example of which can be found in
/usr/share/examples/wsmoused.

30.1.5 Enable scrollback on the console

You can enable scrolling back on wscons consoles by compiling the WSDISPLAY_SCROLLSUPPORT
option into your kernel. Make sure you don’t have option VGA_RASTERCONSOLE enabled at the same
time though! See Chapter 29 for instructions on building a kernel.

When you have a kernel with options WSD1SPLAY_SCROLLSUPPORT running, you can scroll up on the
console by pressing LEFT SHIFT plus PAGE UP/DOWN. Please note that this may not work on your
system console (ttyEQ)!

30.2 pccons

This console driver doesn’t offer virtual consoles and utility programs for configuration but takes up very
little space. Due to this, it can be found on the 386 install floppy.

To enable it, put the following line in your kernel config file:

331

Chapter 30 Console drivers
pcO at isa? port 0x60 irq 1 # pccons generic PC console driver

You can also set one of several options to compile in a non-english keymap:

Keyboard layout configuration for pccons

#options FRENCH_KBD
#options FINNISH_KBD
#options GERMAN_KBD
#options NORWEG1AN_KBD

Remove the comment character in front of one of this to enable the corresponding keymap, then follow
the instructions in Chapter 29 to rebuild your kernel.

In general, you shouldn’t need pccons though, and wscons should fit all your needs.

332

VI. The pkgsrc user’s guide

Chapter 31
Where to get pkgsrc

There are three ways to get pkgsrc. Either as a tar file, via SUP, or via CVS. All three ways are described
here.

31.1 As tar file

To get pkgsrc going, you need to get the pkgsrc.tar.gz file from ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-current/tar_files/pkgsrc.tar.gz) and unpack it into
/usr/pkgsrc.

31.2 Via SUP

As an alternative to the tar file, you can get pkgsrc via the Software Update Protocol, SUP. To do so,
make sure your supfile has a line

release=pkgsrc

in it, see the examples in Zusr/share/examples/supfiles, and that the Zusr/pkgsrc directory
exists. Then, simply run sup -v/ pat h/ t o/ your/ supfil e.

31.3 Via CVS

To get pkgsrc via CVS, make sure you have “cvs” installed. To do an initial (full) checkout of pkgsrc, do
the following steps:

% set env. CVSROOT anoncvs@noncvs. Net BSD. or g: / cvsr oot
% setenv CVS_RSH ssh

% cd /usr

% cvs checkout -P pkgsrc

This will create the pkgsrc directory in your Zusr, and all the package source will be stored under
/usr/pkgsrc. To update pkgsrc after the initial checkout, make sure you have CVS_RSH set as above,
then do:

% cd /usr/pkgsrc
% cvs -q update -dP

Please also note that it is possible to have multiple copies of the pkgsrc hierarchy in use at any one time -
all work is done relatively within the pkgsrc tree.

334

Chapter 32
Using pkgsrc on systems other
than NetBSD

32.1 Bootstrapping pkgsrc

For operating systems other than NetBSD, we provide a bootstrap kit to build the required tools to use
pkgsrc on your platform. Besides support for native NetBSD, pkgsrc and the bootstrap kit have support
for the following operating systems:

+ Darwin (Mac OS X)

+ DragonFlyBSD

+ FreeBSD

« Interix (Windows 2000, XP, 2003)

« IRIX

« Linux

+ OpenBSD

+ Solaris

« Tru64 (Digital UNIX/OSF1)

Support for other platforms is under development.

Installing the bootstrap kit should be as simple as:

env CVS_RSH=ssh cvs -d anoncvs@noncvs. Net BSD. org: / cvsroot checkout pkgsrc
cd pkgsrc/bootstrap
./bootstrap

See Chapter 31 for other ways to get pkgsrc before bootstrapping. The given bootstrap command will
use the defaults of Zusr/pkg for the prefix where programs will be installed in, and /var/db/pkg for
the package database directory where pkgsrc will do its internal bookkeeping. However, these can also
be set using command-line arguments.

Binary packages for the pkgsrc tools and an initial set of packages is available for supported platforms.
An up-to-date list of these can be found on www.pkgsrc.org (http://www.pkgsrc.org/).

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

335

Chapter 32 Using pkgsrc on systems other than NetBSD

32.2 Platform-specific notes

Here are some platform-specific notes you should be aware of.

32.2.1 Darwin (Mac OS X)

Darwin 5.x and 6.x are supported. There are two methods of using pkgsrc on Mac OS X, by using a
disk image, or a UFS partition.

Before you start, you will need to download and install the Mac OS X Developer Tools from Apple’s
Developer Connection. See http://developer.apple.com/macosx/ for details. Also, make sure you install
X11 for Mac OS X and the X11 SDK from http://www.apple.com/macosx/x11/download/ if you intend
to build packages that use the X11 Window System.

If you already have a UFS partition, or have a spare partition that you can format as UFS, it is
recommended to use that instead of the disk image. 1t’Il be somewhat faster and will mount
automatically at boot time, where you must manually mount a disk image.

Note: You cannot use a HFS+ file system for pkgsrc, because pkgsrc currently requires the file
system to be case-sensitive, and HFS+ is not.

32.2.1.1 Using a disk image

Create the disk image:

cd pkgsrc/bootstrap

./ ufsdiskimage create ~/ Docunents/NetBSD 512 # megabytes - season to taste
./ uf sdi ski mage nount ~/ Docunent s/ Net BSD

sudo chown ‘id -u‘':‘id -g* /Vol unmes/ Net BSD

That’s it!

32.2.1.2 Using a UFS partition

By default, Zusr will be on your root file system, normally HFS+. It is possible to use the default prefix
of /usr/pkg by symlinking Zusr/pkg to a directory on a UFS file system. Obviously, another symlink
is required if you want to place the package database directory outside the prefix. e.g.

./bootstrap --pkgdbdir /usr/pkg/pkgdb --pkgsrcdir /Volunes/ufs/pkgsrc

If you created your partitions at the time of installing Mac OS X and formatted the target partition as
UFS, it should automatically mount on /volumes/<volume name> when the machine boots. If you are
(re)formatting a partition as UFS, you need to ensure that the partition map correctly reflects
“Apple_UFS” and not “Apple_HFS”.

The problem is that none of the disk tools will let you touch a disk that is booted from. You can unmount
the partition, but even if you newfs it, the partition type will be incorrect and the automounter won’t
mount it. It can be mounted manually, but it won’t appear in Finder.

336

Chapter 32 Using pkgsrc on systems other than NetBSD

You’ll need to boot off of the OS X Installation (User) CD. When the Installation program starts, go up
to the menu and select Disk Utility. Now, you will be able to select the partition you want to be UFS, and
Format it Apple UFS. Quit the Disk Utility, quit the installer which will reboot your machine. The new
UFS file system will appear in Finder.

Be aware that the permissions on the new file system will be writable by root only.

This note is as of 10.2 (Jaguar) and applies to earlier versions. Hopefully Apple will fix Disk Utility in
10.3 (Panther).

32.2.2 FreeBSD

FreeBSD 4.7 and 5.0 have been tested and are supported, other versions may work.

Care should be taken so that the tools that this kit installs do not conflict with the FreeBSD userland
tools. There are several steps:

1. FreeBSD stores its ports pkg database in /var/db/pkg. It is therefore recommended that you
choose a different location (e.g. Zusr/pkgdb) by using the --pkgdbdir option to the bootstrap script.

2. If you do not intend to use the FreeBSD ports tools, it’s probably a good idea to move them out of
the way to avoid confusion, e.g.

cd /usr/sbin

mv/ pkg_add pkg_add.orig

nv pkg_create pkg_create.orig
m/ pkg_del ete pkg_delete.orig
nv pkg_info pkg_info.orig

H* OH OH R H

3. An example /etc/mk . conT file will be placed in Zetc/mk.conf.example file when you use the
bootstrap script.

32.2.3 Interix

Interix is a POSIX-compatible subsystem for the Windows NT kernel, providing a Unix-like
environment with a tighter kernel integration than available with Cygwin. It is part of the Windows
Services for Unix package, available for free for any licensed copy of Windows 2000, XP (not including
XP Home), or 2003. SFU can be downloaded from http://www.microsoft.com/windows/sfu/.

Services for Unix 3.5, current as of this writing, has been tested. 3.0 or 3.1 may work, but are not
officially supported. (The main difference in 3.0/3.1 is lack of pthreads.)

32.2.3.1 When installing Interix/SFU

At an absolute minimum, the following packages must be installed from the Windows Services for Unix
3.5 distribution in order to use pkgsrc:

« Utilities -> Base Utilities
« Interix GNU Components -> (all)

« Remote Connectivity

337

Chapter 32 Using pkgsrc on systems other than NetBSD

« Interix SDK

When using pkgsrc on Interix, DO NOT install the Utilities subcomponent "UNIX Perl". That is Perl 5.6
without shared module support, installed to /usr/local, and will only cause confusion. Instead, install Perl
5.8 from pkgsrc (or from a binary package).

The Remote Connectivity subcomponent "Windows Remote Shell Service" does not need to be installed,
but Remote Connectivity itself should be installed in order to have a working inetd.

Finally, during installation you may be asked whether to enable setuid behavior for Interix programs, and
whether to make pathnames default to case-sensitive. Setuid should be enabled, and case-sensitivity
MUST be enabled. (Without case-sensitivity, a large number of packages including perl will not build.)

32.2.3.2 What to do if Interix/SFU is already installed

If SFU is already installed and you wish to alter these settings to work with pkgsrc, note the following
things.

« To uninstall UNIX Perl, use Add/Remove Programs, select Microsoft Windows Services for UNIX,
then click Change. In the installer, choose Add or Remove, then uncheck Utilities->UNIX Perl.

- To enable case-sensitivity for the file system, run REGEDIT.EXE, and change the following registry
key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\kernel
Set the DWORD value "obcaseinsensitive™ to 0; then reboot.

« To enable setuid binaries (optional), run REGEDIT.EXE, and change the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UNIX
Set the DWORD value "EnableSetuidBinaries" to 1; then reboot.

32.2.3.3 Important notes for using pkgsrc

The package imanager (either the pkgsrc "su™ user, or the user running "pkg_add") must be a member of
the local Administrators group. Such a user must also be used to run the bootstrap. This is slightly
relaxed from the normal pkgsrc requirement of "root".

The package manager should use a umask of 002. "make install" will automatically complain if this is
not the case. This ensures that directories written in /var/db/pkg are Administrators-group writeable.

The popular Interix binary packages from http://www.interopsystems.com/ use an older version of
pkgsrc’s pkg_* tools. Ideally, these should NOT be used in conjunction with pkgsrc. If you choose to use
them at the same time as the pkgsrc packages, ensure that you use the proper pkg_* tools for each type of
binary package.

The TERM setting used for DOS-type console windows (including those invoked by the csh and ksh
startup shortcuts) is "interix". Most systems don’t have a termcap/terminfo entry for it, but the following
.termcap entry provides adequate emulation in most cases:

interix:kKP=\E[S:KkN=\E[T:kH=\E[U:dc@:DC@: tc=pcansi :

338

Chapter 32 Using pkgsrc on systems other than NetBSD

32.2.4 IRIX

You will need a working C compiler, either gcc or SGI’s MIPS and MIPSpro compiler (cc/c89). Please
set the CC environment variable according to your preference. If you do not have a license for the
MIPSpro compiler suite, you can download a gcc tardist file from http://freeware.sgi.com/.

Please note that you will need IRIX 6.5.17 or higher, as this is the earliest version of IRIX providing
support for if_indextoname(3), if_nametoindex(3), etc.

At this point in time, pkgsrc only supports one ABI at a time. That is, you can not switch between the old
32-bit ABI, the new 32-bit ABI and the 64-bit ABI. If you start out using "abi=n32", that’s what all your
packages will be built with.

Therefore, please make sure that you have no conflicting CFLAGS in your environment or the
/etc/mk . conf. Particularly, make sure that you do not try to link n32 object files with lib64 or vice
versa. Check your Zetc/compiler.defaults!

If you have the actual pkgsrc tree mounted via NFS from a different host, please make sure to set
WRKOBJDIR to a local directory, as it appears that IRIX linker occasionally runs into issues when trying
to link over a network-mounted file system.

The bootstrapping process should set all the right options for programs such as imake(1), but you may
want to set some options depending on your local setup. Please see pkgsrc/mk/defaults/mk.conf
and, of course, your compiler’s man pages for details.

If you are using SGI’s MIPSPro compiler, please set

PKGSRC_COMPILER=mipspro

in /etc/mk . cont. Otherwise, pkgsrc will assume you are using gcc and may end up passing invalid
flags to the compiler. Note that bootstrap should create an appropriate mk . conf.example by default.

If you have both the MIPSPro compiler chain installed as well as gcc, but want to make sure that
MIPRPro is used, please set your PATH to not include the location of gcc (often Zusr/freeware/bin),
and (important) pass the *--preserve-path’ flag.

32.2.5 Linux

Some versions of Linux (for example Debian GNU/Linux) need either libtermcap or libcurses
(libncurses). Installing the distributions libncurses-dev package (or equivalent) should fix the problem.

pkgsrc supports both gcc (GNU Compiler Collection) and icc (Intel C++ Compiler). gcc is the default.
icc 8.0 and 8.1 on 386 have been tested.

To bootstrap using icc, assuming the default icc installation directory:

env CC=/opt/intel_cc_80/bin/icc LDFLAGS=-static-libcxa \
ac_cv___attribute__=yes ./bootstrap

Note: icc 8.1 needs the ‘-i-static’ argument instead of -static-libcxa.

339

Chapter 32 Using pkgsrc on systems other than NetBSD

icc supports __attribute__, but the GNU configure test uses a nested function, which icc does not
support. #undef’ing __ attribute__ has the unfortunate side-effect of breaking many of the Linux header
files, which cannot be compiled properly without __ attribute__. The test must be overridden so that
__attribute__is assumed supported by the compiler.

After bootstrapping, you should set PKGSRC_COMPILER in Zetc/mk.conf:

PKGSRC_COMPILER=1iccC

The default installation directory for icc is Zopt/intel_cc_80, which is also the pkgsrc default. If you
have installed it into a different directory, set ICCBASE in /etc/mk.conf:

ICCBASE=/opt/icc

pkgsrc uses the static linking method of the runtime libraries provided by icc, so binaries can be run on
other systems which do not have the shared libraries installed.

Libtool, however, extracts a list of libraries from the 1d(1) command run when linking a C++ shared
library and records it, throwing away the -Bstatic and -Bdynamic options interspersed between the
libraries. This means that libtool-linked C++ shared libraries will have a runtime dependency on the icc
libraries until this is fixed in libtool.

32.2.6 OpenBSD
OpenBSD 3.0 and 3.2 are tested and supported.

Care should be taken so that the tools that this kit installs do not conflict with the OpenBSD userland
tools. There are several steps:

1. OpenBSD stores its ports pkg database in /var/db/pkg. It is therefore recommended that you
choose a different location (e.g. Zusr/pkgdb) by using the --pkgdbdir option to the bootstrap script.

2. If you do not intend to use the OpenBSD ports tools, it’s probably a good idea to move them out of
the way to avoid confusion, e.g.

cd /usr/shbin

mv/ pkg_add pkg_add.orig

nv pkg_create pkg_create.orig
mv/ pkg_del ete pkg_delete.orig
nv pkg_info pkg_info.orig

H* OH O R R

3. An example Zetc/mk. conf file will be placed in Zetc/mk.conf.example file when you use the
bootstrap script. OpenBSD’s make program uses Zetc/mk.conf as well. You can work around this
by enclosing all the pkgsrc-specific parts of the file with:

-ifdef BSD_PKG_MK

pkgsrc stuff, e.g. insert defaults/mk.conf or similar here
.else

OpenBSD stuff

.endif

340

Chapter 32 Using pkgsrc on systems other than NetBSD

32.2.7 Solaris

Solaris 2.6 through 9 are supported on both x86 and sparc. You will need a working C compiler. Both
gcc 2.95.3 and Sun WorkShop 5 have been tested.

The following packages are required on Solaris 8 for the bootstrap process and to build packages.

« SUNWSsprot
+ SUNWarc
« SUNWbDtool
» SUNWtoo
« SUNWIibm

Please note the use of GNU binutils on Solaris is not supported.

32.2.7.1 If you are using gcc
It makes life much simpler if you only use the same gcc consistently for building all packages.

It is recommended that an external gcc be used only for bootstrapping, then either build gcc from
lang/gcc or install a binary gcc package, then remove gcc used during bootstrapping.

Binary packages of gcc can be found through
http://www.sun.com/bigadmin/common/freewareSearch.html.

32.2.7.2 If you are using Sun WorkShop
You will need at least the following packages installed (from WorkShop 5.0)

« SPROcc - Sun WorkShop Compiler C 5.0

« SPROcpl - Sun WorkShop Compiler C++ 5.0

« SPROild - Sun WorkShop Incremental Linker

« SPROIlang - Sun WorkShop Compilers common components

You should set CC, CXX and optionally, CPP in Zetc/mk.conf, e.g.:

CC= cc
CXX= cC
CPP= /usr/ccs/lib/cpp

You may also want to build 64-bit binaries, e.g.:

CFLAGS= -xtarget=ultra -xarch=v9

Whichever compiler you use, please ensure the compiler tools and your $prefix are in your PATH. This
includes Zusr/ccs/{bin, lib}and e.g. Zusr/pkg/{bin,sbin}.

341

Chapter 33
Using pkgsrc

33.1 Working with binary packages

This section describes how to find, retrieve and install a precompiled binary package that someone else
already prepared for your type of machine.

33.1.1 Where to get binary packages

Precompiled packages are stored on ftp.NetBSD.org and its mirrors in the directory
/pub/NetBSD/packages/<OSVERSI0N>/<ARCH>/ for anonymous FTP access. OSVERSION is the
NetBSD version (uname -r), ARCH is the architecture (uname -p). In that directory, there is a
subdirectory for each category plus a subdirectory A1l which includes the actual binaries in . tgz files.
The category subdirectories use symbolic links to those files (this is the same directory layout as in
/usr/pkgsrc/packages).

This same directory layout applies for CD-ROM distributions, only that the directory may be rooted
somewhere else, probably somewhere below /cdrom. Please consult your CD-ROMs documentation for
the exact location.

33.1.2 How to use binary packages
If you have the files on a CD-ROM or downloaded them to your hard disk, you can install them with the
following command (be sure to su to root first):

pkg_add /pat h/to/ package. t gz

If you have FTP access and you don’t want to download the packages via FTP prior to installation, you
can do this automatically by giving pkg_add an FTP URL:

pkg_add ftp://ftp. Net BSD. or g/ pub/ Net BSD/ packages/ <OSVERSI ON>/ <ARCH>/ Al | / package. t gz

Note that any prerequisite packages needed to run the package in question will be installed, too,
assuming they are present where you install from.

To save some typing, you can set the PKG_PATH environment variable to a semicolon-separated list of
paths (including remote URLS); trailing slashes are not allowed.

Additionally to the A1l directory there exists a vulnerable directory to which binary packages with
known vulnerabilities are moved, since removing them could cause missing dependencies. To use these
packages, add the vulnerable directory to your PKG_PATH. However, you should run
security/audit-packages regularly, especially after installing new packages, and verify that the
vulnerabilities are acceptable for your configuration. An example PKG_PATH would be:

342

Chapter 33 Using pkgsrc
ftp://ftp_NetBSD.org/pub/NetBSD/packages/<OSVERSION>/<ARCH>/All ; ftp://ftp_NetBSD.org/pub.
Please note that semicolon (’;”) is a shell meta-character, so you’ll probably have to quote it.

After you’ve installed packages, be sure to have Zusr/pkg/bin and Zusr/pkg/sbin in your PATH so
you can actually start the just installed program.

33.1.3 A word of warning

Please pay very careful attention to the warnings expressed in the pkg_add(1) manual page about the
inherent dangers of installing binary packages which you did not create yourself, and the security holes
that can be introduced onto your system by indiscriminate adding of such files.

33.2 Building packages from source

This assumes that the package is already in pkgsrc. If it is not, see
Part VII in The NetBSD & pkgsrc Guide for instructions how to create your own packages.

33.2.1 Requirements

To build packages from source on a NetBSD system the “comp” and the “text” distribution sets must be
installed. If you want to build X11-related packages the “xbase” and “xcomp” distribution sets are
required, too.

33.2.2 Fetching distfiles

The first step for building a package is downloading the distfiles (i.e. the unmodified source). If they have
not yet been downloaded, pkgsrc will fetch them automatically.

You can overwrite some of the major distribution sites to fit to sites that are close to your own. Have a
look at pkgsrc/mk/defaults/mk.conf to find some examples — in particular, look for the
MASTER_SORT, MASTER_SORT_REGEX and INET_COUNTRY definitions. This may save some of your
bandwidth and time.

You can change these settings either in your shell’s environment, or, if you want to keep the settings, by
editing the Zetc/mk. conf file, and adding the definitions there.

If you don’t have a permanent Internet connection and you want to know which files to download, make
fetch-list will tell you what you’ll need. Put these distfiles into Zusr/pkgsrc/distfiles.

33.2.3 How to build and install

Assuming that the distfile has been fetched (see previous section), become root and change into the
relevant directory and run make.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

343

Chapter 33 Using pkgsrc

For example, type

% cd misc/figlet
% make

at the shell prompt to build the various components of the package, and

make install

to install the various components into the correct places on your system. Installing the package on your
system requires you to be root. However, pkgsrc has a just-in-time-su feature, which allows you to only
become root for the actual installation step

Taking the figlet utility as an example, we can install it on our system by building as shown in
Appendix C.

The program is installed under the default root of the packages tree - /usr/pkg. Should this not
conform to your tastes, set the LOCALBASE variable in your environment, and it will use that value as the
root of your packages tree. So, to use Zusr/local, set LOCALBASE=/usr/local in your environment.
Please note that you should use a directory which is dedicated to packages and not shared with other
programs (i.e., do not try and use LOCALBASE=/usr). Also, you should not try to add any of your own
files or directories (such as src/, obj/, or pkgsrc/) below the LOCALBASE tree. This is to prevent
possible conflicts between programs and other files installed by the package system and whatever else
may have been installed there.

Some packages look in Zetc/mk.conT to alter some configuration options at build time. Have a look at
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Environment
variables such as LOCALBASE can be set in Zetc/mk . conf to save having to remember to set them each
time you want to use pkgsrc.

Occasionally, people want to “look under the covers” to see what is going on when a package is building
or being installed. This may be for debugging purposes, or out of simple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge amount of
information will be displayed. For example,

make patch PKG DEBUG LEVEL=2
will show all the commands that are invoked, up to and including the “patch” stage.

2. If you want to know the value of a certain make(1) definition, then the VARNAME definition should be
used, in conjunction with the show-var target. e.g. to show the expansion of the make(1) variable
LOCALBASE:

% make show var VARNAME=LOCALBASE
/usr/pkg
%

If you want to install a binary package that you’ve either created yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a remote FTP server, you can use the "bin-install”
target. This target will install a binary package - if available - via pkg_add(1), else do a make package.

344

Chapter 33 Using pkgsrc

The list of remote FTP sites searched is kept in the variable BINPKG_SITES, which defaults to
ftp.NetBSD.org. Any flags that should be added to pkg_add(1) can be put into BIN_INSTALL_FLAGS.
See pkgsrc/mk/defaults/mk.conf for more details.

A final word of warning: If you set up a system that has a non-standard setting for LOCALBASE, be sure
to set that before any packages are installed, as you can not use several directories for the same purpose.
Doing so will result in pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with the default LOCALBASE of
/usr/pkg, and that you should not install any if you use a non-standard LOCALBASE.

33.2.4 Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may be overridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER:

This is a list of values specifying the chain of compilers to invoke when building packages. Valid
values are:

« distcc: distributed C/C++ (chainable)

« ccache: compiler cache (chainable)

+ gcc: GNU C/C++ Compiler

- mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)

« mipspro: Silicon Graphics, Inc. MIPSpro (032)

« sunpro: Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

The default is “gcc”. You can use ccache and/or distcc with an appropriate PKGSRC_COMPILER
setting, e.g. “ccache gcc”. This variable should always be terminated with a value for a real
compiler.

GCC_REQD:

This specifies the minimum version of GCC to use when building packages. If the system GCC
doesn’t satisfy this requirement, then pkgsrc will build and install one of the GCC packages to use
instead.

345

Chapter 34
Configuring pkgsrc

34.1 General configuration

In this section, you can find some variables that apply to all pkgsrc packages. The preferred method of
setting these variables is by setting them in /etc/mk.conf.

« LOCALBASE: Where packages will be installed. The default is Zusr/pkg. Do not mix binary packages
with different LOCALBASES!

« CROSSBASE: Where “cross” category packages will be installed. The default is
${LOCALBASE}/cross.

« X11BASE: Where X11 is installed on the system. The default is Zusr/X11R6.

« DISTDIR: Where to store the downloaded copies of the original source distributions used for building
pkgsrc packages. The default is ${PKGSRCDIR}/distfiles.

+ MASTER_SITE_OVERRIDE: If set, override the packages’ MASTER_SITES with this value.

« MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch files if not found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults are
ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/${DIST_SUBDIR}/ and
ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/${DIST_SUBDIR}/.

« BINPKG_SITES: List of sites carrying binary pkgs.

34.2 Variables affecting the build process
XXX

« PACKAGES: The top level directory for the binary packages. The default is
${PKGSRCDIR}/packages.

« WRKOBJDIR: The top level directory where, if defined, the separate working directories will get
created, and symbolically linked to from ${WRKDIR} (see below). This is useful for building packages
on several architectures, then ${PKGSRCDIR} can be NFS-mounted while ${WRKOBJDIR} is local to
every architecture. (It should be noted that PKGSRCD IR should not be set by the user — it is an internal
definition which refers to the root of the pkgsrc tree. It is possible to have many pkgsrc tree instances.)

« LOCALPATCHES: Directory for local patches that aren’t part of pkgsrc. See Section 37.3 for more
information. r el and ar ch are replaced with OS release (“2.0”, etc.) and architecture (“mipsel”, etc.).

346

Chapter 34 Configuring pkgsrc

« PKGMAKECONF: Location of the mk .conf file used by a package’s BSD-style Makefile. If this is not
set, MAKECONF is set to /dev/nul I to avoid picking up settings used by builds in Zusr/src.

34.3 Developer/advanced settings
XXX

« PKG_DEVELOPER: Run some sanity checks that package developers want:

- make sure patches apply with zero fuzz

- run check-shlibs to see that all binaries will find their shared libs.

« PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst making and installing
the package. The default value for this is 0, which will not display the commands as they are executed
(normal, default, quiet operation); the value 1 will display all shell commands before their invocation,
and the value 2 will display both the shell commands before their invocation, and their actual
execution progress with set -x will be displayed.

34.4 Selecting Build Options

Some packages have build time options, usually to select between different dependencies, enable
optional support for big dependencies or enable experimental features.

To see which options, if any, a package supports, and which options are mutually exclusive, run make
show-options, for example:

The following options are supported by this package:

ssl Enable SSL support.

Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.

mozilla Use mozilla as gecko rendering engine.

At most one of the following database options may be selected:
mysql Enable support for MySQL database.

pgsql Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

The following variables can be defined in /etc/mk . conf to select which options to enable for a
package: PKG_DEFAULT_OPTIONS, which can be used to select or disable options for all packages that
support them, and PKG_OPTIONS . pkgbase, which can be used to select or disable options specifically
for package pkgbase. Options listed in these variables are selected, options preceded by “-” are disabled.

347

Chapter 34 Configuring pkgsrc

The following settings are consulted in the order given, and the last setting that selects or disables an
option is used:

1. the default options as suggested by the package maintainer

2. the options implied by the settings of legacy variables (see below)
3. PKG_DEFAULT_OPTIONS

4. PKG_OPTIONS.pkgbase

For groups of mutually exclusive options, the last option selected is used, all others are automatically
disabled. If an option of the group is explicitly disabled, the previously selected option, if any, is used. It
is an error if no option from a required group of options is selected, and building the package will fail.

Before the options framework was introduced, build options were selected by setting a variable in
/etc/mk . conf for each option. To ease transition to the options framework for the user, these legacy
variables are converted to the appropriate options setting automatically. A warning is issued to prompt
the user to update Zetc/mk.conf to use the options framework directly. Support for these legacy
variables will be removed eventually.

348

Chapter 35
Creating binary packages

35.1 Building a single binary package

Once you have built and installed a package, you can create a binary package which can be installed on
another system with pkg_add(1). This saves having to build the same package on a group of hosts and
wasting CPU time. It also provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc, and run make package:

cd msc/figlet
make package

This will build and install your package (if not already done), and then build a binary package from what
was installed. You can then use the pkg_* tools to manipulate it. Binary packages are created by default
in /usr/pkgsrc/packages, in the form of a gzipped tar file. See Section C.2 for a continuation of the
above misc/Ffiglet example.

See Chapter 46 for information on how to submit such a binary package.

35.2 Settings for creation of binary packages

See Section 43.3.

35.3 Doing a bulk build of all packages

If you want to get a full set of precompiled binary packages, this section describes how to get them.
Beware that the bulk build will remove all currently installed packages from your system! Having an
FTP server configured either on the machine doing the bulk builds or on a nearby NFS server can help to
make the packages available to everyone. See ftpd(8) for more information. If you use a remote NFS
server’s storage, be sure to not actually compile on NFS storage, as this slows things down a lot.

35.3.1 Configuration

35.3.1.1 /etc/mk.conf

You may want to set variables in Zetc/mk.conf. Look at pkgsrc/mk/defaul ts/mk.conf for details
of the default settings. You will want to ensure that ACCEPTABLE_L ICENSES meet your local policy. As
used in this example, _ACCEPTABLE=yes accepts all licenses.

349

Chapter 35 Creating binary packages

PACKAGES?= ${ PKGSRCDIR}/packages/${MACHINE_ARCH}

WRKOBJDIR?= /usr/tmp/pkgsrc # build here instead of in pkgsrc
BSDSRCDIR= /usr/src

BSDXSRCDIR= /usr/xsrc # for xll/xservers

OBJHOSTNAME?= yes # use work.“hostname*
FAILOVER_FETCH= yes # insist on the correct checksum
PKG_DEVELOPER?= yes

_ACCEPTABLE= yes

35.3.1.2 bui | d. conf

In pkgsrc/mk/bulk, copy bui ld.conf-example to bui 1d.conf and edit it, following the
comments in that file. This is the config file that determines where log files are generated after the build,
where to mail the build report to, where your pkgsrc tree is located and the user to which user to su(8) to
do a cvs update.

35.3.1.3 pre-buil d. | ocal

It is possible to configure the bulk build to perform certain site-specific tasks at the end of the pre-build
stage. If the file pre-bui ld. local exists in Zusr/pkgsrc/mk/bulk, it will be executed (as a sh(1)
script) at the end of the usual pre-build stage. An example use of pre-bui ld. local is to have the line:

echo "I do not have enough disk space to build this pig." \
> pkgsrc/ mi sc/ openof fi ce/ $BROKENF

to prevent the system from trying to build a particular package which requires nearly 3 GB of disk space.

35.3.2 Other environmental considerations

As /usr/pkg will be completely deleted at the start of bulk builds, make sure your login shell is placed
somewhere else. Either drop it into Zusr/local/bin (and adjust your login shell in the passwd file), or
(re-)install it via pkg_add(1) from Zetc/rc. local, so you can login after a reboot (remember that your
current process won’t die if the package is removed, you just can’t start any new instances of the shell
any more). Also, if you use NetBSD earlier than 1.5, or you still want to use the pkgsrc version of ssh for
some reason, be sure to install ssh before starting it from rc. local:

(cd Zusr/pkgsrc/security/ssh ; make bulk-install)

if [-f /usr/pkg/etc/rc.d/sshd]; then
/usr/pkg/etc/rc.d/sshd

fi

Not doing so will result in you being not able to log in via ssh after the bulk build is finished or if the
machine gets rebooted or crashes. You have been warned! :)

350

Chapter 35 Creating binary packages

35.3.3 Operation

Make sure you don’t need any of the packages still installed.

Warning

During the bulk build, all packages will be removed!

Be sure to remove all other things that might interfere with builds, like some libs installed in
/usr/local, etc. then become root and type:

cd /usr/pkgsrc
sh nk/ bul k/ bui | d

If for some reason your last build didn’t complete (power failure, system panic, ...), you can continue it
by running:
sh nk/bul k/build restart

At the end of the bulk build, you will get a summary via mail, and find build logs in the directory
specified by FTP in the bui Id.conT file.

35.3.4 What it does
The bulk builds consist of three steps:

1. pre-build
The script updates your pkgsrc tree via (anon)cvs, then cleans out any broken distfiles, and removes
all packages installed.

2. the bulk build

This is basically “make bulk-package” with an optimised order in which packages will be built.
Packages that don’t require other packages will be built first, and packages with many dependencies
will be built later.

3. post-build

Generates a report that’s placed in the directory specified in the bui Id. conf file named
broken_html, a short version of that report will also be mailed to the build’s admin.

During the build, a list of broken packages will be compiled in /usr/pkgsrc/ .broken (or

.../ _broken.${MACHINE} if OBIMACHINE is set), individual build logs of broken builds can be found
in the package’s directory. These files are used by the bulk-targets to mark broken builds to not waste
time trying to rebuild them, and they can be used to debug these broken package builds later.

35.3.5 Disk space requirements
Currently, roughly the following requirements are valid for NetBSD 2.0/i386:

351

Chapter 35 Creating binary packages

+ 10 GB - distfiles (NFS ok)
« 8 GB - full set of all binaries (NFS ok)
« 5 GB - temp space for compiling (local disk recommended)

Note that all pkgs will be de-installed as soon as they are turned into a binary package, and that sources
are removed, so there is no excessively huge demand to disk space. Afterwards, if the package is needed
again, it will be installed via pkg_add(1) instead of building again, so there are no cycles wasted by
recompiling.

35.3.6 Setting up a sandbox for chrooted builds

If you don’t want all the packages nuked from a machine (rendering it useless for anything but pkg
compiling), there is the possibility of doing the package bulk build inside a chroot environment.

The first step is to set up a chroot sandbox, e.g. Zusr/sandbox. This can be done by using null mounts,
or manually.

There is a shell script called pkgsrc/mk/bulk/mksandbox which will set up the sandbox environment
using null mounts. It will also create a script called sandbox in the root of the sandbox environment,
which will allow the null mounts to be activated using the sandbox mount command and deactivated
using the sandbox umount command.

To set up a sandbox environment by hand, after extracting all the sets from a NetBSD installation or
doing a make distribution DESTDIR=/usr/sandbox in /usr/src/etc, be sure the following items
are present and properly configured:

1. Kernel
cp / netbsd /usr/sandbox
2. /dev/*
cd /usr/sandbox/dev ; sh MAKEDEV al
3. /etc/resolv.conf (for security/smtpd and mail):
cp /etc/resolv.conf /usr/sandbox/etc
4. Working(") mail config (hostname, sendmail.cf):
cp /etc/mail/sendmail.cf /usr/sandbox/etc/ mai
5. /etc/localtime (for security/smtpd):
In -sf /usr/share/zonei nf o/ UTC /usr/sandbox/etc/localtinme
6. /usr/src (system sources, for sysutils/aperture, net/ppp-mppe):

In -s ../diskl/cvs .
#1n -s cvs/src-2.0 src

7. Create /var/db/pkg (not part of default install):
nkdir /usr/sandbox/var/ db/ pkg

8. Create /usr/pkg (not part of default install):
nkdir /usr/sandbox/usr/pkg

352

Chapter 35 Creating binary packages

9. Checkout pkgsrc via cvs into Zusr/sandbox/usr/pkgsrc:

cd /usr/sandbox/ usr
cvs -d anoncvs@noncvs. Net BSD. or g: / cvsroot checkout -d -P pkgsrc

Do not mount/link this to the copy of your pkgsrc tree you do development in, as this will likely
cause problems!

10. Make /usr/sandbox/usr/pkgsrc/packagesand . . ./distfiles point somewhere
appropriate. NFS- and/or nullfs-mounts may come in handy!

11. Edit Zetc/mk.conf, see Section 35.3.1.1.

12. Adjust mk/bulk/bui ld.conf to suit your needs.

13. If you have set CVS_USER in bui Id . conf, make sure that account exists and can do a cvs
${CVS_FLAGS} update properly!

When the chroot sandbox is set up, you can start the build with the following steps:

cd /usr/sandbox/ usr/ pkgsrc
sh nk/ bul k/ do- sandbox- bui | d

This will just jump inside the sandbox and start building. At the end of the build, mail will be sent with
the results of the build. Created binary pkgs will be in Zusr/sandbox/usr/pkgsrc/packages
(wherever that points/mounts to/from).

35.3.7 Building a partial set of packages

In addition to building a complete set of all packages in pkgsrc, the pkgsrc/mk/bulk/bui Id script
may be used to build a subset of the packages contained in pkgsrc. By setting SPECIFIC_PKGS in
/etc/mk . conf, the variables

. SITE_SPECIFIC_PKGS

. HOST_SPECIFIC_PKGS
. GROUP_SPECIFIC_PKGS
. USER_SPECIFIC_PKGS

will define the set of packages which should be built. The bulk build code will also include any packages
which are needed as dependencies for the explicitly listed packages.

One use of this is to do a bulk build with SPECIFIC_PKGS in a chroot sandbox periodically to have a
complete set of the binary packages needed for your site available without the overhead of building extra
packages that are not needed.

35.3.8 Uploading results of a bulk build

This section describes how pkgsrc developers can upload binary pkgs built by bulk builds to
ftp.NetBSD.org.

If you would like to automatically create checksum files for the binary packages you intend to upload,
remember to set MKSUMS=yes in your mk/bulk/build.conf.

353

Chapter 35 Creating binary packages

If you would like to PGP sign the checksum files (highly recommended!), remember to set
SIGN_AS=username@NetBSD.org in your mk/bulk/build.conf. This will prompt you for your
GPG password to sign the files before uploading everything.

Then, make sure that you have RSYNC_DST set properly in your mk/bullk/bui Id.conffile, i.e. adjust it
to something like one of the following:

RSYNC_DST=$CVS_USER@ftp.NetBSD.org:/pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/i

Please use appropriate values for "pkgsrc-200xQy", "NetBSD-a.b.c" and "arch™ here. If your login on
ftp.NetBSD.org is different from CVS_USER, write your login directly into the variable, e.g. my local
account is "feyrer”, but for my login "hubertf", | use:

RSYNC_DST=hubertf@ftp.NetBSD.org:/pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/up

A separate upload directory is used here to allow "closing" the directory during upload. To do so, run
the following command on ftp.NetBSD.org next:

nbftp% nkdir -p -m 750 / pub/ Net BSDY packages/ pkgsr c- 200xQy/ Net BSD- a. b. ¢/ ar ch/ upl oad
Please note that /pub/NetBSD/packages is only appropriate for packages for the NetBSD operating
system. Binary packages for other operating systems should go into /pub/pkgsrc.

Before uploading the binary pkgs, ssh authentication needs to be set up. This example shows how to set
up temporary keys for the root account inside the sandbox (assuming that no keys should be present there
usually):

chroot /usr/sandbox

chroot-# rm $HOVE/ . ssh/i d- dsa*
chroot-# ssh-keygen -t dsa
chroot-# cat $HOMVE/ . ssh/id-dsa. pub

Now take the output of id-dsa.pub and append it to your ~/ .ssh/authorized_keys file on
ftp.NetBSD.org. You can remove the key after the upload is done!

Next, test if your ssh connection really works:

chroot-# ssh ftp. NetBSD.org date

Use "-1 yourNetBSDlogin" here as appropriate!

Now after all this works, you can exit the sandbox and start the upload:

chroot-# exit
cd /usr/sandbox/ usr/ pkgsrc
sh nk/ bul k/ do- sandbox- upl oad

The upload process may take quite some time. Use Is(1) or du(1) on the FTP server to monitor progress
of the upload. The upload script will take care of not uploading restricted packages and putting
vulnerable packages into the vulnerable subdirectory.

After the upload has ended, first thing is to revoke ssh access:

nbftp% vi ~/.ssh/authorized_keys
Gdd:x!

354

Chapter 35 Creating binary packages

Use whatever is needed to remove the key you’ve entered before! Last, move the uploaded packages out
of the upload directory to have them accessible to everyone:

nbftp% cd /pub/ Net BSD/ packages/ pkgsr c- 200xQy/ Net BSD- a. b. ¢/ arch
nbftp% nmv upl oad/ *

nbftp% rndir upl oad

nbftp% chmod 755

35.4 Creating a multiple CD-ROM packages collection

After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set of the resulting
binary packages to assist in installing packages on other machines. The pkgtools/cdpack package
provides a simple tool for creating the 1SO 9660 images. cdpack arranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a given package on the same CD as that package.

35.4.1 Example of cdpack

Complete documentation for cdpack is found in the cdpack(1) man page. The following short example
assumes that the binary packages are left in Zusr/pkgsrc/packages/Al I and that sufficient disk
space exists in /u2 to hold the I1SO 9660 images.

nkdir /u2/inmages
pkg_add /usr/ pkgsrc/ packages/ Al |l / cdpack
cdpack /usr/pkgsrc/packages/ Al /u2/images

If you wish to include a common set of files (COPYRIGHT, README, etc.) on each CD in the collection,
then you need to create a directory which contains these files. e.g.

nkdi r /tnp/ comon

echo "This is a READVE' > /tnp/ comron/ READVE

echo "Another file" > /tnp/ comon/ COPYlI NG

nkdi r /tnp/ comon/ bin

echo "#!/bin/sh" > /tnp/conmon/ bi n/ nyscri pt

echo "echo Hello world" >> /tnp/conmon/bin/nmyscript
chmod 755 /t np/ conmon/ bi n/ nyscri pt

H OH OH R H H B

Now create the images:
cdpack -x /tnp/common /usr/pkgsrc/packages/ All /u2/images

Each image will contain README, COPY ING, and bin/myscript in their root directories.

355

Chapter 36
Frequently Asked Questions

This section contains hints, tips & tricks on special things in pkgsrc that we didn’t find a better place for
in the previous chapters, and it contains items for both pkgsrc users and developers.

36.1 Are there any mailing lists for pkg-related discussion?

The following mailing lists may be of interest to pkgsrc users:

« pkgsrc-bugs (http://www.NetBSD.org/MailingLists/index.html#pkgsrc-bugs): A list where problem
reports related to pkgsrc are sent and discussed.

« pkagsrc-bulk (http://www.NetBSD.org/MailingLists/index.html#pkgsrc-bulk): A list where the results
of pkgsrc bulk builds are sent and discussed.

« pkgsrc-changes (http://www.NetBSD.org/MailingLists/index.html#pkgsrc-changes): A list where all
commit messages to pkgsrc are sent.

« tech-pkg (http://www.NetBSD.org/MailingLists/index.html#tech-pkg): A general discussion list for all
things related to pkgsrc.

To subscribe, do:
% echo subscribe listnane | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from http://mail-index.NetBSD.org/.

36.2 Where’s the pkgviews documentation?

Pkgviews is tightly integrated with buildlink. You can find a pkgviews User’s guide in
pkgsrc/mk/bui ldlink3/PKGVIEWS_UG.

36.3 Utilities for package management (pkgtools)

The pkgsrc/pkgtools directory pkgtools contains a number of useful utilities for both users and
developers of pkgsrc. This section attempts only to make the reader aware of the utilities and when they
might be useful, and not to duplicate the documentation that comes with each package.

Utilities used by pkgsrc (automatically installed when needed):

+ pkgtools/x11-links: Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

356

Chapter 36 Frequently Asked Questions

pkgtools/digest: Calculates various kinds of checksums (including SHA1).
pkgtools/libnbcompat: Compatibility library for pkgsrc tools.
pkgtools/mtree: Installed on non-BSD systems due to lack of native mtree.

pkgtools/pkg_install: Up-to-date replacement for Zusr/sbin/pkg_install, or for use on
operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

pkgtools/pkg_tarup: Create a binary package from an already-installed package. Used by make
replace to save the old package.

pkgtools/dfdisk: Adds extra functionality to pkgsrc, allowing it to fetch distfiles from multiple
locations. It currently supports the following methods: multiple CD-ROMs and network FTP/HTTP
connections.

pkgtools/xpkgwedge: Put X11 packages someplace else (enabled by default).

devel/cpuflags: Determine the best compiler flags to optimise code for your current CPU and
compiler.

Utilities for keeping track of installed packages, being up to date, etc:

pkgtools/pkg_chk: Reports on packages whose installed versions do not match the latest pkgsrc
entries.

pkgtools/pkgdep: Makes dependency graphs of packages, to aid in choosing a strategy for
updating.

pkgtools/pkgdepgraph: Makes graphs from the output of pkgtools/pkgdep (uses graphviz).

pkgtools/pkglint: The pkglint(1) program checks a pkgsrc entry for errors, lintpkgsrc(1) does
various checks on the complete pkgsrc system.

pkgtools/pkgsurvey: Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

pkgtools/pkgdiff: Automate making and maintaining patches for a package (includes pkgdiff,
pkgvi, mkpatches, etc.).

pkgtools/rpm2pkg, pkgtools/url2pkg: Aids in converting to pkgsrc.
pkgtools/gensolpkg: Convert pkgsrc to a Solaris package.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

pkgtools/pkg_comp: Build packages in a chrooted area.

pkgtools/libkver: Spoof kernel version for chrooted cross builds.

357

Chapter 36 Frequently Asked Questions

36.4 How to use pkgsrc as non-root

If you want to use pkgsrc as non-root user, you can set some variables to make pkgsrc work under these
conditions. At the very least, you need to set UNPRIVILEGED to “yes”; this will turn on unprivileged
mode and set multiple related variables to allow installation of packages as non-root.

In case the defaults are not enough, you may want to tune some other variables used. For example, if the
automatic user/group detection leads to incorrect values (or not the ones you would like to use), you can
change them by setting UNPRIVILEGED_USER and UNPRIVILEGED_GROUP respectively.

As regards bootstrapping, please note that the bootstrap script will ease non-root configuration when
given the “--ignore-user-check” flag, as it will choose and use multiple default directories under ~/pkg
as the installation targets. These directories can be overriden by the “--prefix” flag provided by the script,
as well as some others that allow finer tuning of the tree layout.

36.5 How to resume transfers when fetching distfiles?

By default, resuming transfers in pkgsrc is disabled, but you can enable this feature by adding the option
PKG_RESUME_TRANSFERS=YES into /etc/mk.conf. If, during a fetch step, an incomplete distfile is
found, pkgsrc will try to resume it.

You can also use a different program than the default ftp(1) by changing the FETCH_CMD variable. Don’t
forget to set FETCH_RESUME_ARGS and FETCH_OUTPUT_ARGS if you are not using default values.

For example, if you want to use wget to resume downloads, you’ll have to use something like:
FETCH_CMD=wget
FETCH_BEFORE_ARGS=--passive-ftp

FETCH_RESUME_ARGS=-c
FETCH_OUTPUT_ARGS=-0

36.6 How can | install/use XFree86 from pkgsrc?

If you want to use XFree86 from pkgsrc instead of your system’s own X11 (/usr/X11R6,
/usr/openwin, ...), you will have to add the following line into Zetc/mk.conf:

X11_TYPE=XFree86

36.7 How can | install/use X.org from pkgsrc?

If you want to use X.org from pkgsrc instead of your system’s own X11 (/usr/X11R6, /usr/openwin,
...) you will have to add the following line into /etc/mk.conf:

X11_TYPE=xorg

358

Chapter 36 Frequently Asked Questions

36.8 How to fetch files from behind a firewall

If you are sitting behind a firewall which does not allow direct connections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. This is done using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdahl.com” is one of the firewalls, and it uses
port 80 as the proxy port number. So the proxy environment variables are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

36.9 How do | tell make fetch to do passive FTP?

This depends on which utility is used to retrieve distfiles. From bsd. pkg.mk, FETCH_CMD is assigned
the first available command from the following list:

+ ${LOCALBASE}/bin/ftp
« /usr/bin/ftp

On a default NetBSD installation, this will be Zusr/bin/ftp, which automatically tries passive
connections first, and falls back to active connections if the server refuses to do passive. For the other
tools, add the following to your Zetc/mk. conf file: PASSIVE_FETCH=1.

Having that option present will prevent Zusr/bin/ftp from falling back to active transfers.

36.10 How to fetch all distfiles at once

You would like to download all the distfiles in a single batch from work or university, where you can’t
run a make fetch. There is an archive of distfiles on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/), but downloading the entire directory may not be
appropriate.

The answer here is to do a make fetch-list in Zusr/pkgsrc or one of its subdirectories, carry the
resulting list to your machine at work/school and use it there. If you don’t have a NetBSD-compatible
ftp(1) (like lukemftp) at work, don’t forget to set FETCH_CMD to something that fetches a URL:

At home:

% cd /usr/pkgsrc
% make fetch-l1ist FETCH CMD=wget DI STDIR=/tnp/distfiles >/tnp/fetch.sh
% scp /tnp/fetch.sh work:/tnp

At work:
% sh /tnp/fetch. sh

then tar up /tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to get all distfiles (even ones that aren’t for your
machine architecture), you can do so by using the above-mentioned make fetch-list approach, or fetch
the distfiles directly by running:

359

Chapter 36 Frequently Asked Questions
% make mrror-distfiles

If you even decide to ignore NO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get everything by
running:

% make fetch NO_SKI P=yes

36.11 What does “Don’t know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling the pkgtools/pkg_install package, you get the error from make that it doesn’t
know how to make /usr/share/tmac/tmac.andoc? This indicates that you don’t have installed the
“text” set (nroff, ...) from the NetBSD base distribution on your machine. It is recommended to do that to
format man pages.

In the case of the pkgtools/pkg_install package, you can get away with setting NOMAN=YES either
in the environment or in Zetc/mk. conf.

36.12 What does “Could not find bsd.own.mk” mean?

You didn’t install the compiler set, comp . tgz, when you installed your NetBSD machine. Please get and
install it, by extracting it in /:

cd /
tar --unlink -zxvpf .../conmp.tgz

comp . tgz is part of every NetBSD release. Get the one that corresponds to your release (determine via
uname -r).

36.13 Using 'sudo’ with pkgsrc

When installing packages as non-root user and using the just-in-time su(1) feature of pkgsrc, it can
become annaying to type in the root password for each required package installed. To avoid this, the sudo
package can be used, which does password caching over a limited time. To use it, install sudo (either as
binary package or from security/sudo) and then put the following into your Zetc/mk.conf:

_if exists(${LOCALBASE}/bin/sudo)
SU_CMD=${LOCALBASE}/bin/sudo /bin/sh -c
-endif

36.14 How do | change the location of configuration files?

As the system administrator, you can choose where configuration files are installed. The default settings
make all these files go into ${PREF1X}/etc or some of its subdirectories; this may be suboptimal

360

Chapter 36 Frequently Asked Questions

depending on your expectations (e.g., a read-only, NFS-exported PREF 1 X with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modify the PKG_SYSCONFBASE variable (in Zetc/mk.conf) to
point to your preferred configuration directory; some common examples include Zetc or Zetc/pkg.

Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR . ${PKG_SYSCONFVAR} variable. PKG_SYSCONFVAR’s value usually matches the
name of the package you would like to modify, that is, the contents of PKGBASE.

Note that after changing these settings, you must rebuild and reinstall any affected packages.

36.15 Automated security checks

Please be aware that there can often be bugs in third-party software, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In an effort to lessen the exposure, the NetBSD
packages team maintains a database of known-exploits to packages which have at one time been
included in pkgsrc. The database can be downloaded automatically, and a security audit of all packages
installed on a system can take place. To do this, install the security/audit-packages package. It has
two components:

1. download-vulnerability-list, an easy way to download a list of the security vulnerabilities
information. This list is kept up to date by the NetBSD security officer and the NetBSD packages
team, and is distributed from the NetBSD ftp server:

ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities

2. audit-packages, an easy way to audit the current machine, checking each vulnerability which is
known. If a vulnerable package is installed, it will be shown by output to stdout, including a
description of the type of vulnerability, and a URL containing more information.

Use of the security/audit-packages package is strongly recommended! After “audit-packages” is
installed, please read the package’s message, which you can get by running pkg_i nfo -D
audi t - package.

361

VIl. The pkgsrc developer’s guide

Chapter 37
Package components - files,
directories and contents

Whenever you’re preparing a package, there are a number of files involved which are described in the
following sections.

37.1 Makefile

Building, installation and creation of a binary package are all controlled by the package’s MakeFfi le.
The MakeFi le describes various things about a package, for example from where to get it, how to
configure, build, and install it.

A package Makefi le contains several sections that describe the package.

In the first section there are the following variables, which should appear exactly in the order given here.

« DISTNAME is the basename of the distribution file to be downloaded from the package’s website.

« PKGNAME is the name of the package, as used by pkgsrc. You only need to provide it if it differs from
DISTNAME. Usually it is the directory name together with the version number. It must match the
regular expression ~[A-Za-z0-9][A-Za-z0-9-__+]*$, that is, it starts with a letter or digit, and
contains only letters, digits, dashes, underscores, dots and plus signs.

« CATEGORIES is a list of categories which the package fits in. You can choose any of the top-level
directories of pkgsrc for it.

Currently the following values are available for CATEGORIES. If more than one is used, they need to
be separated by spaces:

archivers Cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel wm

comms fonts math pkgtools WWwW
converters games mbone print x11

« MASTER_SITES is a list of URLs where the distribution files can be downloaded. Each URL must end
with a slash.

The MASTER_SITES may make use of the following predefined sites:

${MASTER_SITE_APACHE}
${MASTER_SITE_BACKUP}
${MASTER_SITE_CYGWIN}

363

Chapter 37 Package components - files, directories and contents

${MASTER_SITE_DEBIAN}
${MASTER_SITE_FREEBSD}
${MASTER_SITE_FREEBSD_LOCAL}
${MASTER_SITE_GNOME}
${MASTER_SITE_GNU}
${MASTER_SITE_GNUSTEP}
${MASTER_SITE_IFARCHIVE}
${MASTER_SITE_MOZILLA}
${MASTER_SITE_OPENOFFICE}
${MASTER_SITE_PERL_CPAN}
${MASTER_SITE_R_CRAN}
${MASTER_SITE_SOURCEFORGE}
${MASTER_SITE_SUNSITE}
${MASTER_SITE_SUSE}
${MASTER_SITE_TEX_CTAN}
${MASTER_SITE_XCONTRIB}
${MASTER_SITE_XEMACS}

If one of these predefined sites is chosen, you may want to specify a subdirectory of that site. Since
these macros may expand to more than one actual site, you must use the following construct to specify
a subdirectory:

${MASTER_SITE_GNU:=subdirectory/name/}
${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

If the package has multiple DISTFILES or multiple PATCHFILES from different sites, set SITES_foo
to a list of URIs where file “foo” may be found. “foo” includes the suffix, e.g.:

DISTFILES= ${DISTNAME}${EXTRACT _SUFX}

DISTFILES+= foo-file.tar.gz

SITES_foo-file.tar.gz=http://www.somewhere.com/somehow/ \
http://www.somewhereelse.com/mirror/somehow/

« DISTFILES: Name(s) of archive file(s) containing distribution. The default is
${DISTNAME}${EXTRACT_SUFX}. Should only be set if you have more than one distfile.

Note that the normal default setting of DISTFILES must be made explicit if you want to add to it
(rather than replace it), as you usually would.

« EXTRACT_SUFX: Suffix of the distribution file, will be appended to DISTNAME. Defaults to . tar.gz.

The second section contains information about separately downloaded patches, if any.

« PATCHFILES: Name(s) of additional files that contain distribution patches. There is no default. pkgsrc
will look for them at PATCH_SITES. They will automatically be uncompressed before patching if the
names end with .gz or .Z.

« PATCH_SITES: Primary location(s) for distribution patch files (see PATCHFILES below) if not found
locally.

The third section contains the following variables.

364

37.2 di

Chapter 37 Package components - files, directories and contents

« MAINTAINER is the email address of the contact person for this package. The person who feels
responsible for this package, and who is most likely to look at problems or questions regarding this
package which have been reported with send-pr(1). The right person to contact before making major
changes to the package. When packaging a new program, set MAINTAINER to yourself. If you really
can’t maintain the package for future updates, set it to <tech-pkg@NetBSD.org>.

« HOMEPAGE is a URL where users can find more information about the package.

« COMMENT is a one-line description of the package (should not include the package name).

Other variables that affect the build:

« WRKSRC: The subdirectory of ${WRKD IR} to which the distribution actually unpacks. The default is
${WRKDIR}/${DISTNAME}. The value of WRKSRC should be set explicitly if the package does not
follow standard conventions and include the package’s name as a subdirectory.

Please pay attention to the following gotchas:

« Add MANCOMPRESSED if man pages are installed in compressed form by the package; see comment in
bsd.pkg.-mk.

+ Replace Zusr/l1ocal with “${PREFIX}” in all files (see patches, below).

- |If the package installs any info files, see Section 44.5.7.

stinfo

Most important, the mandatory message digest, or checksum, of all the distfiles needed for the package
to compile, confirming they match the original file distributed by the author. This ensures that the distfile
retrieved from the Internet has not been corrupted during transfer or altered by a malign force to
introduce a security hole. It is generated using the make makesum command. The digest algorithm used
was, at one stage, md5, but that was felt lacking compared to shal, and so shal is now the default
algorithm. The distfile size is also generated and stored in new distinfo files. The pkgtools/digest
utility calculates all of the digests in the distinfo file, and it provides various different algorithms. At the
current time, the algorithms provided are: md5, rmd160, shal, sha256, sha384 and sha512.

Some packages have different sets of distfiles on a per architecture basis, for example www/navigator).
These are kept in the same distinfo file and care should be taken when upgrading such a package to
ensure distfile information is not lost.

The message digest/checksum for all the official patches found in the patches/ directory (see

Section 37.3) for the package is also stored in the distinfo file. This is a message digest/checksum of
all lines in the patch file except the NetBSD RCS Id. This file is generated by invoking make
makepatchsum (or make mps if you’re in a hurry).

365

Chapter 37 Package components - files, directories and contents

37.3 patches/*

This directory contains files that are used by the patch(1) command to modify the sources as distributed
in the distribution file into a form that will compile and run perfectly on NetBSD. The files are applied
successively in alphabetic order (as returned by a shell “patches/patch-*" glob expansion), so patch-aa
is applied before patch-ab, etc.

The patch-* files should be in diff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can set PATCH_FUZZ_FACTOR=-F2). Furthermore, do not put changes for
more than one file into a single patch file, as this will make future modifications more difficult.

Similar, a file should be patched at most once, not several times by several different patches. If a file
needs several patches, they should be combined into one file.

One important thing to mention is to pay attention that no RCS IDs get stored in the patch files, as these
will cause problems when later checked into the NetBSD CVS tree. Use the pkgdiff from the
pkgtools/pkgdi ff package to avoid these problems.

For even more automation, we recommend using mkpatches from the same package to make a whole set
of patches. You just have to backup files before you edit them to filename .orig, e.g. with cp -p
filename filename.orig or, easier, by using pkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of patches with the previously existing one with
patchdiff.

When you have finished a package, remember to generate the checksums for the patch files by using the
make makepatchsum command, see Section 37.2.

When adding a patch that corrects a problem in the distfile (rather than e.g. enforcing pkgsrc’s view of
where man pages should go), send the patch as a bug report to the maintainer. This benefits non-pkgsrc
users of the package, and usually enables removing the patch in future version.

Patch files that are distributed by the author or other maintainers can be listed in $PATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc, they can be kept outside the
pkgsrc tree in the SLOCALPATCHES directory. The directory tree there is expected to have the same
“category/package” structure as pkgsrc, and patches are expected to be stored inside these dirs (also
known as $LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch for
pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All files in the
named directory are expected to be patch files, and they are applied after pkgsrc patches are applied.

37.4 Other mandatory files

DESCR

A multi-line description of the piece of software. This should include any credits where they are
due. Please bear in mind that others do not share your sense of humour (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This file governs the files that are installed on your system: all the binaries, manual pages, etc.
There are other directives which may be entered in this file, to control the creation and deletion of
directories, and the location of inserted files. See Chapter 39 for more information.

366

Chapter 37 Package components - files, directories and contents

37.5 Optional files

INSTALL

This shell script is invoked twice by pkg_add(1). First time after package extraction and before files
are moved in place, the second time after the files to install are moved in place. This can be used to
do any custom procedures not possible with @exec commands in PL1ST. See pkg_add(1) and
pkg_create(1) for more information.

DEINSTALL

This script is executed before and after any files are removed. It is this script’s responsibility to
clean up any additional messy details around the package’s installation, since all pkg_delete knows
is how to delete the files created in the original distribution. See pkg_delete(1) and pkg_create(1)
for more information.

MESSAGE

Display this file after installation of the package. Useful for things like legal notices on almost-free
software and hints for updating config files after installing modules for apache, PHP etc. Please note
that you can modify variables in it easily by using MESSAGE_SUBST in the package’s Makefi le:

MESSAGE_SUBST+= SOMEVAR="'somevalue"
replaces "${SOMEVAR}" with “somevalue” in MESSAGE.

37.6 wor k*

When you type make, the distribution files are unpacked into the directory denoted by WRKDIR. It can be
removed by running make clean. Besides the sources, this directory is also used to keep various
timestamp files. The directory gets removed completely on clean. The default is ${.CURDIR}/work or
${.CURDIR}/work . ${MACHINE_ARCH} if OBIMACHINE is set.

If a package doesn’t create a subdirectory for itself (like GNU software does, for instance), but extracts
itself in the current directory, you should set WRKSRC accordingly, e.g. editors/sam again, but the
quick answer is:

WRKSRC= ${WRKDIR}

If a package doesn’t create a subdir with the name of DISTNAME but some different name, set WRKSRC to
point to the proper name in ${WRKDIR}. See lang/tcl and x11/tk for examples, and here is another
one:

WRKSRC= ${WRKD IR}/${DISTNAME}/uniix

The name of the working directory created by pkgsrc is work by default. If the same pkgsrc tree should
be used on several different platforms, the variable OBIMACHINE can be set in /etc/mk.conf to attach the
platform to the directory name, e.g. work. 1386 or work.sparc.

367

Chapter 37 Package components - files, directories and contents

37.7filesl*
If you have any files that you wish to be placed in the package prior to configuration or building, you
could place these files here and use a “${CP}” command in the “pre-configure” target to achieve this.
Alternatively, you could simply diff the file against /dev/nul I and use the patch mechanism to manage

the creation of this file.

368

Chapter 38
Programming Iin Makefi | es

Pkgsrc consists of many Makefi le fragments, each of which forms a well-defined part of the pkgsrc
system. Using the make(1) system as a programming language for a big system like pkgsrc requires
some discipline to keep the code correct and understandable.

The basic ingredients for Makefi e programming are variables (which are actually macros) and shell
commands. Among these shell commands may even be more complex ones like awk(1) programs. To
make sure that every shell command runs as intended it is necessary to quote all variables correctly when
they are used.

This chapter describes some patterns, that appear quite often in Makefi les, including the pitfalls that
come along with them.

38.1 Makef il e variables

MakeTi le variables contain strings that can be processed using the five operators “=", “+=", “?2="“:="
and “1=", which are described in the make(1) man page.

When a variable’s value is parsed from a Makefi le, the hash character “#” and the backslash character
“\” are handled specially. If a backslash is followed by a newline, any whitespace immediately in front of
the backslash, the backslash, the newline, and any whitespace immediately behind the newline are
replaced with a single space. A backspace character and an immediately following hash character are
replaced with a single hash character. Otherwise, the backslash is passed as is. In a variable assignment,
any hash character that is not preceded by a backslash starts a comment that continues upto the end of the
logical line.

Note: Because of this parsing algorithm the only way to create a variable consisting of a single backslash
is using the “1=" operator, for example: BACKSLASH!=echo ""\\'".

So far for defining variables. The other thing you can do with variables is evaluating them. A variable is
evaluated when it is part of the right side of the “:=" or the “I=" operator, or directly before executing a
shell command which the variable is part of. In all other cases, make(1) performs lazy evaluation, that is,
variables are not evaluated until there’s no other way. The “modifiers” mentioned in the man page also
evaluate the variable.

Some of the modifiers split the string into words and then operate on the words, others operate on the
string as a whole. When a string is split into words, it is split as you would expect it from sh(1).

No rule without exception—the .for loop does not follow the shell quoting rules but splits at sequences
of whitespace.

There are several types of variables that should be handled differently. Strings and two types of lists.

« Strings can contain arbitrary characters. Nevertheless, you should restrict yourself to only using
printable characters. Examples are PREF1X and COMMENT.

369

Chapter 38 Programming in Makef i | es

- Internal lists are lists that are never exported to any shell command. Their elements are separated by
whitespace. Therefore, the elements themselves cannot have embedded whitespace. Any other
characters are allowed. Internal lists can be used in .for loops. Examples are DEPENDS and
BUILD_DEPENDS.

« External lists are lists that may be exported to a shell command. Their elements can contain any
characters, including whitespace. That’s why they cannot be used in .for loops. Examples are
DISTFILES and MASTER_SITES.

38.1.1 Naming conventions

« All variable names starting with an underscore are reserved for use by the pkgsrc infrastructure. They
shall not be used by package Makefi les.

« In .for loops you should use lowercase variable names for the iteration variables.

« All list variables should have a “plural” name, e.g. PKG_OPTIONS or DISTFILES.

38.2 Code snippets

This section presents you with some code snippets you should use in your own code. If you don’t find
anything appropriate here, you should test your code and add it here.

38.2.1 Adding things to a list

STRING= foo * bar “date*

INT_LIST= # empty

ANOTHER_INT_LIST= apache-[0-9]*:../../www/apache
EXT_LIST= # empty

ANOTHER_EXT_LIST= a=b c=d

INT_LIST+= ${STRING} # 1
INT_LIST+= ${ANOTHER_INT_LIST} # 2
EXT_LIST+= ${STRING:Q} # 3
EXT_LIST+= ${ANOTHER_EXT_LIST} # 4

When you add a string to an external list (example 3), it must be quoted. In all other cases, you must not
add a quoting level. You must not merge internal and external lists, unless you are sure that all entries are
correctly interpreted in both lists.

38.2.2 Converting an internal list into an external list

EXT_LIST= # empty
for i in ${INT_LIST}
EXT_LIST+= ${i:Qy
.endfor

370

Chapter 38 Programming in Makef i | es

This code converts the internal list INT_L1ST into the external list EXT_LIST. As the elements of an
internal list are unquoted they must be quoted here. The reason for appending **** is explained below.

38.2.3 Passing variables to a shell command

STRING= foo bar < > * “‘date“ $$HOME ~* **
EXT_LIST= string=${STRING:Q} x=second\ item
all:

echo ${STRING}
echo "${STRING}"
echo "${STRING:Q}"
echo ${STRING:Q}
echo x${STRING:Q} | sed 1s,.,, # 5

env ${EXT_LIST} /bin/sh -c “echo "$$string"; echo "$$x"”

H OHHH
A WNPR

Example 1 leads to a syntax error in the shell, as the characters are just copied.

Example 2 leads to a syntax error too, and if you leave out the last " character from ${STRING}, date(1)
will be executed. The $SHOME shell variable would be evaluated, too.

Example 3 outputs each space character preceded by a backslash (or not), depending on the
implementation of the echo(1) command.

Example 4 handles correctly every string that does not start with a dash. In that case, the result depends
on the implementation of the echo(1) command. As long as you can guarantee that your input does not
start with a dash, this form is appropriate.

Example 5 handles even the case of a leading dash correctly.

The EXT_LIST does not need to be quoted because the quoting has already been done when adding
elements to the list.

As internal lists shall not be passed to the shell, there is no example for it.

38.2.4 Quoting guideline

There are many possible sources of wrongly quoted variables. This section lists some of the commonly
known ones.

« Whenever you use the value of a list, think about what happens to leading or trailing whitespace. If the
list is a well-formed shell expression, you can apply the -M* modifier to strip leading and trailing
whitespace from each word. The :M operator first splits its argument according to the rules of the
shell, and then creates a new list consisting of all words that match the shell glob expression *, that is:
all. One class of situations where this is needed is when adding a variable like CPPFLAGS to
CONFIGURE_ARGS. If the configure script invokes other configure scripts, it strips the leading and
trailing whitespace from the variable and then passes it to the other configure scripts. But these

371

Chapter 38 Programming in Makef i | es

configure scripts expect the (child) CPPFLAGS variable to be the same as the parent CPPFLAGS. That’s
why we better pass the CPPFLAGS value properly trimmed. And here is how we do it:

CPPFLAGS= # empty

CPPFLAGS+= -Wundef -DPREFIX=\"${PREFIX:Q}\"

CPPFLAGS+= ${MY_CPPFLAGS}

CONFIGURE_ARGS+= CPPFLAGS=${CPPFLAGS:M*:Q}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS}x # properly trimmed

+ The example above contains one bug: The ${PREFI1X} is a properly quoted shell expression, but there
is the C compiler after it, which also expects a properly quoted string (this time in C syntax). The
version above is therefore only correct if ${PREFIX} does not have embedded backslashes or double
quotes. If you want to allow these, you have to add another layer of quoting to each variable that is
used as a C string literal. You cannot use the :Q operator for it, as this operator only works for the
shell.

- Whenever a variable can be empty, the -Q operator can have surprising results. Here are two
completely different cases which can be solved with the same trick.

EMPTY= # empty
empty_test:
for i in a ${EMPTY:Q} c; do \
echo "$$i""; \

done

for_test:

.for i in a:\ a:\test.txt
echo ${i:Q}
echo "foo"

.endfor

The first example will only print two of the three lines we might have expected. This is because
${EMPTY :Q} expands to the empty string, which the shell cannot see. The workaround is to write
${EMPTY :Q}""". This pattern can be often found as ${TEST} -z ${VAR:Q} oras ${TEST} -T
${FNAME : Q} (both of these are wrong).

The second example will only print three lines instead of four. The first line looks like a:\ echo
foo. This is because the backslash of the value a:\ is interpreted as a line-continuation by make(1),
which makes the second line the arguments of the echo(1) command from the first line. To avoid this,
write ${i-Q}"".

38.2.5 Workaround for a bug in BSD Make

The pkgsrc bmake program does not handle the following assignment correctly. In case _othervar_
contains a “-” character, one of the closing braces is included in ${VAR} after this code executes.

VAR:= ${VAR:N${ othervar_:C/-//}}

372

Chapter 38 Programming in Makef i | es

For a more complex code snippet and a workaround, see the package regress/make-quoting,
testcase bug1.

373

Chapter 39
PLIST Iissues

The PLIST file contains a package’s “packing list”, i.e. a list of files that belong to the package (relative
to the ${PREF1X} directory it’s been installed in) plus some additional statements - see the
pkg_create(1) man page for a full list. This chapter addresses some issues that need attention when
dealing with the PLIST file (or files, see below!).

39.1 RCSID

Be sure to add a RCS ID line as the first thing in any PLIST file you write:

@comment $NetBSD$

39.2 Semi-automatic PLI ST generation

You can use the make print-PLIST command to output a PLIST that matches any new files since the
package was extracted. See Section 43.3 for more information on this target.

39.3 Tweaking output of make print-PLIST

If you have used any of the *-dirs packages, as explained in Section 39.8, you may have noticed that
make print-PLIST outputs a set of @comments instead of real @di rrm lines. You can also do this for
specific directories and files, so that the results of that command are very close to reality. This helps a lot
during the update of packages.

The PRINT_PLIST_AWK variable takes a set of AWK patterns and actions that are used to filter the output
of print-PLIST. You can append any chunk of AWK scripting you like to it, but be careful with quoting.

For example, to get all files inside the 1ibdata/foo directory removed from the resulting PLIST:

PRINT_PLIST_AWK+= /~libdata\/foo/ { next; }

And to get all the @dirrm lines referring to a specific (shared) directory converted to @comments:

PRINT_PLIST_AWK+= /7~@dirrm share\/specific/ { print "@comment " $$0; next; }

374

Chapter 39 PLIST issues

39.4 Variable substitution in PLIST

A number of variables are substituted automatically in PLISTs when a package is installed on a system.
This includes the following variables:

${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}

Some packages like emacs and perl embed information about which architecture they were built on
into the pathnames where they install their files. To handle this case, PLIST will be preprocessed
before actually used, and the symbol “${MACHINE_ARCH}"” will be replaced by what uname -p
gives. The same is done if the string ${MACHINE_GNU_ARCH} is embedded in PLIST somewhere -
use this on packages that have GNU autoconf-created configure scripts.

Legacy note: There used to be a symbol “$ARCH’ that was replaced by the output of uname
-m, but that’s no longer supported and has been removed.

${OPSYS}, ${LOWER_OPSYS}, ${0S_VERSION}

Some packages want to embed the OS name and version into some paths. To do this, use these
variables in the PLIST:

« ${OPSYS} - output of “uname -s”
« ${LOWER_OPSYS} - lowercase common name (eg. “solaris”)

+ ${0S_VERSION} - “uname -r”

${PKGLOCALEDIR}

Packages that install locale files should list them in the PLIST as
“${PKGLOCALEDIR}/locale/de/LC_MESSAGES/...” instead of
“share/locale/de/LC_MESSAGES/...”. This properly handles the fact that different operating
systems expect locale files to be either in share or lib by default.

For a complete list of values which are replaced by default, please look in bsd. pkg.mk (and search for
PLIST_SUBST).

If you want to change other variables not listed above, you can add variables and their expansions to this
variable in the following way, similar to MESSAGE_SUBST (see Section 37.5):

PLIST_SUBST+= SOMEVAR=""somevalue"

This replaces all occurrences of “${SOMEVAR}” in the PLIST with “somevalue”.

39.5 Man page compression

Man pages should be installed in compressed form if MANZ is set (in bsd - own -mk), and uncompressed
otherwise. To handle this in the PLI1ST file, the suffix “.gz” is appended/removed automatically for man

375

Chapter 39 PLIST issues

pages according to MANZ and MANCOMPRESSED being set or not, see above for details. This modification
of the PLIST file is done on a copy of it, not PLIST itself.

39.6 Changing PLIST source with PLI ST_SRC

To use one or more files as source for the PLIST used in generating the binary package, set the variable
PLIST_SRC to the names of that file(s). The files are later concatenated using cat(1), and order of things
is important.

39.7 Platform-specific and differing PLISTs

Some packages decide to install a different set of files based on the operating system being used. These
differences can be automatically handled by using the following files:

« PLIST.common

« PLIST.${OPSYS}

« PLIST.${MACHINE_ARCH}

« PLIST.${OPSYS}-${MACHINE_ARCH}

« PLIST.common_end

39.8 Sharing directories between packages

A “shared directory” is a directory where multiple (and unrelated) packages install files. These
directories are problematic because you have to add special tricks in the PLIST to conditionally remove
them, or have some centralized package handle them.

Within pkgsrc, you’ll find both approaches. If a directory is shared by a few unrelated packages, it’s
often not worth to add an extra package to remove it. Therefore, one simply does:

@unexec ${RMDIR} %D/path/to/shared/directory 2>/dev/null || ${TRUE}

in the PLISTs of all affected packages, instead of the regular "@dirrm" line.

However, if the directory is shared across many packages, two different solutions are available:

1. If the packages have a common dependency, the directory can be removed in that. For example, see
textproc/scrol lkeeper, which removes the shared directory share/omf.

2. If the packages using the directory are not related at all (they have no common dependencies), a
*-dirs package is used.

From now on, we’ll discuss the second solution. To get an idea of the *-dirs packages available, issue:

% cd .../pkgsrc
% Is -d */*-dirs

376

Chapter 39 PLIST issues

Their use from other packages is very simple. The USE_DIRS variable takes a list of package names
(without the “-dirs” part) together with the required version number (always pick the latest one when
writing new packages).

For example, if a package installs files under share/applications, it should have the following line
init:

USE_DIRS+= xdg-1.1

After regenerating the PLIST using make print-PLIST, you should get the right (commented out) lines.

Note that even if your package is using $X11BASE, it must not depend on the *-x11-dirs packages. Just
specify the name without that part and pkgsrc (in particular, mk/dirs.mk) will take care of it.

377

Chapter 40
Buildlink methodology

Buildlink is a framework in pkgsrc that controls what headers and libraries are seen by a package’s
configure and build processes. This is implemented in a two step process:

1. Symlink headers and libraries for dependencies into BUILDL INK_DIR, which by default is a
subdirectory of WRKDIR.

2. Create wrapper scripts that are used in place of the normal compiler tools that translate
- I1${LOCALBASE}/include and -L${LOCALBASE}/ 1 ib into references to BUILDLINK_DIR. The
wrapper scripts also make native compiler on some operating systems look like GCC, so that
packages that expect GCC won’t require modifications to build with those native compilers.

This normalizes the environment in which a package is built so that the package may be built
consistently despite what other software may be installed. Please note that the normal system header and
library paths, e.g. Zusr/include, /usr/1ib, etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied software.

40.1 Converting packages to use buildlink3

The process of converting packages to use the buildlink3 framework (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripts instead of the actual toolchain. Some packages
are tricky, and the only way to know for sure is the check ${WRKDIR}/ .work_ log to see if the
wrappers are being invoked.

2. Don’t override PREF I X from within the package Makefile, e.g. Java VMs, standalone shells, etc.,
because the code to symlink files into ${BUILDLINK_DIR} looks for files relative to “pkg_info -gp
pkgnane”.

3. Remember that only the bui 1d1ink3.mk files that you list in a package’s Makefile are added as
dependencies for that package.

If a dependency on a particular package is required for its libraries and headers, then we replace:
DEPENDS+= foo>=1.1.0:../../category/foo

with

.include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required dependencies. If you need a newer version of the
dependency when using buildlink3.mk files, then you can define it in your Makefile; for example:

378

Chapter 40 Buildlink methodology

BUILDLINK_DEPENDS. foo+= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are several bui Idlink3._mk files in pkgsrc/mk that handle special package issues:

« bdb_bui Idlink3.mk chooses either the native or a pkgsrc Berkeley DB implementation based on
the values of BDB_ACCEPTED and BDB_DEFAULT.

« curses.buildlink3.mk: If the system comes with neither Curses nor NCurses, this will take care
to install the devel/ncurses package.

« krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberos 5 implementation.

« motif.buildlink3.mk checks for a system-provided Motif installation or adds a dependency on
x11/lesstif or x11/openmotif.

« ossaudio.bui ldlink3.mk defines several variables that may be used by packages that use the
Open Sound System (OSS) API.

« pgsqgl.buildlink3.mk will accept either Postgres 7.3 or 7.4, whichever is found installed. See the
file for more information.

« pthread.bui ldlink3._mk uses the value of PTHREAD_OPTS and checks for native pthreads or adds
a dependency on devel/pth as needed.

« xaw.-bui Idlink3._mk uses the value of XAW_TYPE to choose a particular Athena widgets library.

The comments in those bui Idlink3.mk files provide a more complete description of how to use them
properly.

40.2 Writing bui | dl i nk3. nk files

A package’s bui Id1ink3.mk file is included by Makefiles to indicate the need to compile and link
against header files and libraries provided by the package. A bui Idlink3_mk file should always
provide enough information to add the correct type of dependency relationship and include any other
bui ldlink3.mk files that it needs to find headers and libraries that it needs in turn.

To generate an initial bui 1d1ink3._mk file for further editing, Rene Hexel’s
pkgtools/createbui Idlink package is highly recommended. For most packages, the following
command will generate a good starting point for bui Idlink3_mk files:

% cd pkgsrc/ category/ pkgdir

% createbuildlink -3 >buildlink3.nk

40.2.1 Anatomy of a buildlink3.mk fi le

The following real-life example bui Idl ink3_mk is taken from pkgsrc/graphics/tiff:

$NetBSD: buildlink3.mk,v 1.7 2004/03/18 09:12:12 jlam Exp $

BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH}+
TIFF_BUILDLINK3_MK:= ${TIFF_BUILDLINK3_MK}+

379

Chapter 40 Buildlink methodology

.if Tempty(BUILDLINK_DEPTH:M+)

BUILDLINK DEPENDS+= tiff

.endif

BUILDLINK_PACKAGES:= ${BUILDLINK_PACKAGES:Ntiff}
BUILDLINK PACKAGES+= tiff

.if Tempty(TIFF_BUILDLINK3_MK:M+)
BUILDLINK_DEPENDS. tiff+= tiff>=3.6.1
BUILDLINK_PKGSRCDIR. tiff?= ../../graphics/tiff
.endif # TIFF_BUILDLINK3_MK

.include "../../devel/zlib/buildlink3.mk"
-include "../../graphics/jpeg/buildlink3.mk"

BUILDLINK_DEPTH:= ${BUILDLINK_DEPTH:S/+$//%}

The header and footer manipulate BUILDL INK_DEPTH, which is common across all bui 1dlink3.mk
files and is used to track at what depth we are including bui 1d1ink3.mk files.

The first section controls if the dependency on pkg is added. BUILDL INK_DEPENDS is the global list of
packages for which dependencies are added by buildlink3.

The second section advises pkgsrc that the bui 1d1ink3.mk file for pkg has been included at some
point. BUILDL INK_PACKAGES is the global list of packages for which bui 1d1ink3.mk files have been
included. It must always be appended to within a bui 1d1ink3.mk file.

The third section is protected from multiple inclusion and controls how the dependency on pkg is added.
Several important variables are set in the section:

« BUILDLINK_DEPENDS. pkg is the actual dependency recorded in the installed package; this should
always be set using += to ensure that we’re appending to any pre-existing list of values. This variable
should be set to the first version of the package that had the last change in the major number of a
shared library or that had a major API change.

« BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory.

« BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use BUILD_DEPENDS or
DEPENDS to add the dependency on pkg. The build dependency is selected by setting
BUILDLINK_DEPMETHOD . pkg to “build”. By default, the full dependency is used.

« BUILDLINK_INCDIRS.pkg and BUILDLINK_LIBDIRS.pkg (not shown above) are lists of
subdirectories of ${BUILDLINK_PREFIX.pkg} to add to the header and library search paths. These
default to “include” and “lib” respectively.

+ BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags to add to CPPFLAGS,
which are passed on to the configure and build phases. The “-1” option should be avoided and instead
be handled using BUILDL INK_INCDIRS.pkg as above.

The following variables are all optionally defined within this second section (protected against multiple
inclusion) and control which package files are symlinked into ${BUILDLINK_DIR} and how their names
are transformed during the symlinking:

380

Chapter 40 Buildlink methodology

« BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX.pkg} to be symlinked into ${BUILDLINK_DIR}, e.g. include/*_h.

« BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs to stdout a list of files
relative to ${BUILDLINK_PREFIX.pkg}. The resulting files are to be symlinked into
${BUILDLINK_DIR}. By default, this takes the +CONTENTS of a pkg and filters it through
${BUILDLINK_CONTENTS_FILTER.pkg}.

« BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that filters +CONTENTS
input into a list of files relative to ${BUILDLINK_PREFIX_pkg} on stdout. By default for overwrite
packages, BUILDLINK_CONTENTS_FILTER. pkg outputs the contents of the include and lib
directories in the package +CONTENTS, and for pkgviews packages, it outputs any libtool archives in
Lib directories.

« BUILDLINK_TRANSFORM.pkg (not shown above) is a list of sed arguments used to transform the
name of the source filename into a destination filename, e.g. -e *'s|/curses.h|/ncurses.h|g"".

The last section includes any bui Idlink3.mk needed for pkg’s library dependencies. Including these
bui Idlink3.mk files means that the headers and libraries for these dependencies are also symlinked
into ${BUILDLINK_DIR} whenever the pkg bui ldlink3_mk file is included.

40.2.2 Updating BUI LDLI NK_DEPENDS. pkg in bui | dl i nk3. nk files

There are two situations that require increasing the dependency listed in BUILDLINK_DEPENDS. pkg
after a package update:

1. if the sonames (major number of the library version) of any installed shared libraries change.
2. if the API or interface to the header files change.

In these cases, BUILDLINK_DEPENDS . pkg should be adjusted to require at least the new package
version. In some cases, the packages that depend on this new version may need their PKGREV1SI0ONS
increased and, if they have bui Idlink3.mk files, their BUILDL INK_DEPENDS . pkg adjusted, too. This
is needed so that binary packages made using it will require the correct package dependency and not
settle for an older one which will not contain the necessary shared libraries.

Please take careful consideration before adjusting BUILDLINK_DEPENDS . pkg as we don’t want to cause
unneeded package deletions and rebuilds. In many cases, new versions of packages work just fine with
older dependencies. See Section 44.1.4 for more information about dependencies on other packages,
including the BUILDL INK_RECOMMENDED and RECOMMENDED definitions.

40.3 Writing bui I ti n. nk files

Some packages in pkgsrc install headers and libraries that coincide with headers and libraries present in
the base system. Aside from a bui Id1ink3.mk file, these packages should also include a bui I'tin._mk
file that includes the necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file for pkg are:

381

Chapter 40 Buildlink methodology

1. It should set USE_BUILTIN.pkg to either “yes” or “no” after it is included.

2. It should not override any USE_BUILTIN.pkg which is already set before the bui I'tin._mk file is
included.

3. It should be written to allow multiple inclusion. This is very important and takes careful attention to
MakeTfi le coding.

40.3.1 Anatomy of a bui l ti n. nk file

The following is the recommended template for builtin.mk files:

-if ldefined(IS_BUILTIN.fo0)

#

IS_BUILTIN.foo is set to "yes"™ or ''no" depending on whether "foo"
genuinely exists in the system or not.

#

IS_BUILTIN. foo?= no

BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
version can be determined.
#
if Tempty(IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0
endif
.endif # 1S _BUILTIN.foo

_if ldefined(USE_BUILTIN.foo)
USE_BUILTIN.fo0?= ${IS_BUILTIN. foo}
iT defined(BUILTIN_PKG.fo00)
for _depend_ in ${BUILDLINK_DEPENDS.foo}

. if lempty(USE_BUILTIN.foo:M[yY][eE][sS])
USE_BUILTIN.foo!=

iT ${PKG_ADMIN} pmatch *${ depend_}~ ${BUILTIN_PKG.foo}; then

${ECHO} "yes";
else

s S s 77

${ECHO} "no";
fi
endif
endfor
endif
.endif # USE BUILTIN.foo

CHECK_BUILTIN.foo0?= no

_if lempty(CHECK_BUILTIN.foo:M[nN][o0O])

#

Here we place code that depends on whether USE_BUILTIN.foo is set to
''yes" or '"'no".

#

.endif # CHECK_BUILTIN.foo

382

Chapter 40 Buildlink methodology

The first section sets 1S_BUILTIN.pkg depending on if pkg really exists in the base system. This should
not be a base system software with similar functionality to pkg; it should only be “yes” if the actual
package is included as part of the base system. This variable is only used internally within the
builtin.mk file.

The second section sets BUILTIN_PKG. pkg to the version of pkg in the base system if it exists (if
1S_BUILTIN.pkg is “yes”). This variable is only used internally within the bui Itin.mk file.

The third section sets USE_BUILTIN.pkg and is required in all bui I'tin_mk files. The code in this
section must make the determination whether the built-in software is adequate to satisfy the
dependencies listed in BUILDLINK_DEPENDS . pkg. This is typically done by comparing
BUILTIN_PKG.pkg against each of the dependencies in BUILDL INK_DEPENDS . pkg.
USE_BUILTIN.pkg must be set to the correct value by the end of the bui I'tin_mk file. Note that
USE_BUILTIN.pkg may be “yes” even if 1S_BUILTIN.pkg is “no” because we may make the
determination that the built-in version of the software is similar enough to be used as a replacement.

The last section is guarded by CHECK_BUILTIN.pkg, and includes code that uses the value of
USE_BUILTIN.pkg set in the previous section. This typically includes, e.g., adding additional
dependency restrictions and listing additional files to symlink into ${BUILDLINK_DIR} (via
BUILDLINK_FILES.pkg).

40.3.2 Global preferences for native or pkgsrc software

When building packages, it’s possible to choose whether to set a global preference for using either the
built-in (native) version or the pkgsrc version of software to satisfy a dependency. This is controlled by
setting PREFER_PKGSRC and PREFER_NAT IVE. These variables take values of either “yes”, “no”, or a
list of packages. PREFER_PKGSRC tells pkgsrc to use the pkgsrc versions of software, while
PREFER_NATIVE tells pkgsrc to use the built-in versions. Preferences are determined by the most
specific instance of the package in either PREFER_PKGSRC or PREFER_NATIVE. If a package is specified
in neither or in both variables, then PREFER_PKGSRC has precedence over PREFER_NATIVE. For
example, to require using pkgsrc versions of software for all but the most basic bits on a NetBSD system,
you can set:

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A package must have a bui I'tin._mk file to be listed in PREFER_NATIVE, otherwise it is simply ignored
in that list.

383

Chapter 41
The pkginstall framework

This chapter describes the framework known as pkginstal I, whose key features are:

« Generic installation and manipulation of directories and files outside the pkgsrc-handled tree,
LOCALBASE.

- Automatic handling of configuration files during installation, provided that packages are correctly
designed.

« Generation and installation of system startup scripts.

+ Registration of system users and groups.

«+ Registration of system shells.

The following sections inspect each of the above points in detail. Note that in order to use any of the

described functionalities, you must add the following to your package’s Makefi le:

USE_PKGINSTALL=YES

You may be thinking that many of the things described here could be easily done with simple code in the
package’s post-installation target (post-install). This is incorrect, as the code in them is only
executed when building from source. Machines using binary packages could not benefit from it at all (as
the code itself could be unavailable). Therefore, the only way to achieve any of the items described above
is by means of the installation scripts, which are automatically generated by pkginstall.

41.1 Files and directories outside the installation prefix

As you already know, the PLIST file holds a list of files and directories that belong to a package. The
names used in it are relative to the installation prefix (${PREF1X}), which means that it cannot register
files outside this directory (absolute path names are not allowed). Despite this restriction, some packages
need to install files outside this location; e.g., under ${VARBASE} or ${PKG_SYSCONFDIR}.

The only way to achieve this is to create such files during installation time by using the installation
scripts. These scripts can run arbitrary commands, so they have the potential to create and manage files
anywhere in the file system. Here is where pkginstall comes into play: it provides generic scripts to
abstract the manipulation of such files and directories based on variables set in the package’s Makefi le.
The rest of this section describes these variables.

41.1.1 Directory manipulation

The following variables can be set to request the creation of directories anywhere in the file system:

384

Chapter 41 The pkginstall framework

« MAKE_DIRS and OWN_DIRS contain a list of directories that should be created and should attempt to be
destroyed by the installation scripts. The difference between the two is that the latter prompts the
administrator to remove any directories that may be left after deinstallation (because they were not
empty), while the former does not.

« MAKE_DIRS_PERMS and OWN_DIRS_PERMS contain a list of tuples describing which directories
should be created and should attempt to be destroyed by the installation scripts. Each tuple holds the
following values, separated by spaces: the directory name, its owner, its group and its numerical mode.
For example:

MAKE_DIRS_PERMS+= ${VARBASE}/foo/private ${ROOT_USER} ${ROOT_GROUP} 0700

The difference between the two is exactly the same as their non-PERMS counterparts.

41.1.2 File manipulation

Creating non-empty files outside the installation prefix is tricky because the PL1ST forces all files to be
inside it. To overcome this problem, the only solution is to extract the file in the known place (i.e., inside
the installation prefix) and copy it to the appropriate location during installation (done by the installation
scripts generated by pkginstall). We will call the former the master file in the following paragraphs,
which describe the variables that can be used to automatically and consistently handle files outside the
installation prefix:

« CONF_FILES and SUPPORT_FILES are pairs of master and target files. During installation time, the
master file is copied to the target one if and only if the latter does not exist. Upon deinstallation, the
target file is removed provided that it was not modified by the installation.

The difference between the two is that the latter prompts the administrator to remove any files that
may be left after deinstallation (because they were not empty), while the former does not.

« CONF_FILES_PERMS and SUPPORT_FILES_PERMS contain tuples describing master files as well as
their target locations. For each of them, it also specifies their owner, their group and their numeric
permissions, in this order. For example:

SUPPORT_FILES_PERMS+= ${PREFIX}/share/somefile ${VARBASE}/somefile ${ROOT_USER} ${ROOT_

The difference between the two is exactly the same as their non-PERMS counterparts.

41.2 Configuration files

Configuration files are special in the sense that they are installed in their own specific directory,
PKG_SYSCONFDIR, and need special treatment during installation (most of which is automated by
pkginstall). The main concept you must bear in mind is that files marked as configuration files are
automatically copied to the right place (somewhere inside PKG_SYSCONFDIR) during installation if and
only if they didn’t exist before. Similarly, they will not be removed if they have local modifications. This
ensures that administrators never lose any custom changes they may have made.

385

Chapter 41 The pkginstall framework

41.2.1 How PKG_SYSCONFDI Ris set

As said before, the PKG_SYSCONFDIR variable specifies where configuration files shall be installed. Its
contents are set based upon the following variables:

« PKG_SYSCONFBASE: The configuration’s root directory. Defaults to ${PREF1X}/etc although it may
be overridden by the user to point to his preferred location (e.g., /etc, /etc/pkg, etc.). Packages
must not use it directly.

« PKG_SYSCONFSUBDIR: A subdirectory of PKG_SYSCONFBASE under which the configuration files for
the package being built shall be installed. The definition of this variable only makes sense in the
package’s Makefile (i.e., it is not user-customizable).

As an example, consider the Apache package, wvw/apache?2, which places its configuration files
under the httpd/ subdirectory of PKG_SYSCONFBASE. This should be set in the package Makefile.

« PKG_SYSCONFVAR: Specifies the name of the variable that holds this package’s configuration directory
(if different from PKG_SYSCONFBASE). It defaults to PKGBASE’s value, and is always prefixed with
PKG_SYSCONFDIR.

« PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the configuration files for the
package identified by PKG_SYSCONFVAR’s shall be placed.

Based on the above variables, pkginstall determines the value of PKG_SYSCONFDIR, which is the only
variable that can be used within a package to refer to its configuration directory. The algorithm used to
set its value is basically the following:

1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR} is set, its value is used.

2. If the previous variable is not defined but PKG_SYSCONFSUBDIR is set in the package’s MakeFile,
the resulting value is ${PKG_SYSCONFBASE}/${PKG_SYSCONFSUBDIR}.

3. Otherwise, it is set to ${PKG_SYSCONFBASE}.

It is worth mentioning that ${PKG_SYSCONFDIR} is automatically added to OWN_DIRS. See
Section 41.1.1 what this means.

41.2.2 Telling the software where configuration files are

Given that pkgsrc (and users!) expect configuration files to be in a known place, you need to teach each
package where it shall install its files. In some cases you will have to patch the package Makefiles to
achieve it. If you are lucky, though, it may be as easy as passing an extra flag to the configuration script;
this is the case of GNU Autoconf- generated files:

CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

Note that this specifies where the package has to look for its configuration files, not where they will be
originally installed (although the difference is never explicit, unfortunately).

386

Chapter 41 The pkginstall framework

41.2.3 Patching installations

As said before, pkginstall automatically handles configuration files. This means that the packages
themselves must not touch the contents of ${ PKG_SYSCONFDI R} directly. Bad news is that many
software installation scripts will, out of the box, mess with the contents of that directory. So what is the
correct procedure to fix this issue?

You must teach the package (usually by manually patching it) to install any configuration files under the
examples hierarchy, share/examples/${PKGBASE}/. This way, the PLIST registers them and the
administrator always has the original copies available.

Once the required configuration files are in place (i.e., under the examples hierarchy), the pkginstall
framework can use them as master copies during the package installation to update what is in
${PKG_SYSCONFDIR}. To achieve this, the variables CONF_FILES and CONF_FILES_PERMS are used.
Check out Section 41.1.2 for information about their syntax and their purpose. Here is an example, taken
from the mai I/mutt package:

EGDIR= ${PREFIX}/share/doc/mutt/samples
CONF_FILES= ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that the EGDIR variable is specific to that package and has no meaning outside it.

41.2.4 Disabling handling of confi guration files

The automatic copying of config files can be toggled by setting the environment variable PKG_CONFI1G
prior to package installation.

41.3 System startup scripts

System startup scripts are special files because they must be installed in a place known by the underlying
Os, usually outside the installation prefix. Therefore, the same rules described in Section 41.1 apply, and
the same solutions can be used. However, pkginstall provides a special mechanism to handle these files.

In order to provide system startup scripts, the package has to:

1. Store the script inside ${FILESDIR}, with the . sh suffix appended. Considering the print/cups
package as an example, it has a cupsd - sh in its files directory.

2. Tell pkginstall to handle it, appending the name of the script, without its extension, to the
RCD_SCRIPTS variable. Continuing the previous example:

RCD_SCRIPTS+= cupsd

Once this is done, pkginstall will do the following steps for each script in an automated fashion:

1. Process the file found in the files directory applying all the substitutions described in the
FILES_SUBST variable.

2. Copy the script from the files directory to the examples hierarchy,
${PREFIX}/share/examples/rc.d/. Note that this master file must be explicitly registered in
the PLIST.

387

Chapter 41 The pkginstall framework

3. Add code to the installation scripts to copy the startup script from the examples hierarchy into the
system-wide startup scripts directory.

41.3.1 Disabling handling of system startup scripts

The automatic copying of config files can be toggled by setting the environment variable
PKG_RCD_SCRIPTS prior to package installation. Note that the scripts will be always copied inside the
examples hierarchy, ${PREFIX}/share/examples/rc.d/, no matter what the value of this variable is.

41.4 System users and groups

If a package needs to create special users and/or groups during installation, it can do so by using the
pkginstall framework.

Users can be created by adding entries to the PKG_USERS variable. Each entry has the following syntax,
which mimics /etc/passwd:

user:group[: [userid][:[descr][:[home][:shell]]1]1]

Only the user and group are required; everything else is optional, but the colons must be in the right
places when specifying optional bits. By default, a new user will have home directory /nonexistent,
and login shell /sbin/nologin unless they are specified as part of the user element. Note that if the
description contains spaces, then spaces should be double backslash-escaped, as in:

foo:foogrp: :The\\ Foomister
Similarly, groups can be created using the PKG_GROUPS variable, whose syntax is:
group[:groupid]

As before, only the group name is required; the numeric identifier is optional.

41.5 System shells

Packages that install system shells should register them in the shell database, /etc/shells, to make
things easier to the administrator. This must be done from the installation scripts to keep binary packages
working on any system. pkginstall provides an easy way to accomplish this task.

When a package provides a shell interpreter, it has to set the PKG_SHELL variable to its absolute file
name. This will add some hooks to the installation scripts to handle it. Consider the following example,
taken from shel 1s/zsh:

USE_PKGINSTALL= YES
PKG_SHELL= ${PREFIX}/bin/zsh

388

Chapter 41 The pkginstall framework

41.5.1 Disabling handling of confi guration files

The automatic registration of shell interpreters can be disabled by the administrator by setting the
PKG_REGISTER_SHELLS environment variable to NO.

389

Chapter 42
Options handling

Many packages have the ability to be built to support different sets of features. bsd.options.mk is a
framework in pkgsrc that provides generic handling of those options that determine different ways in
which the packages can be built. 1t’s possible for the user to specify exactly which sets of options will be
built into a package or to allow a set of global default options apply.

42.1 Global default options

Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of the options that should be
built into every package if that option is supported. This variable should be set in Zetc/mk.conf.

42.2 Converting packages to use bsd. opti ons. nk

The following example shows how bsd . options.mk should be used by the hypothetical “wibble”
package, either in the package Makefi le, or in a file, e.g. options.mk, that is included by the main
package Makefi le.

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysql pgsql
PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY_VARS+= WIBBLE_USE_OPENLDAP: Idap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

-include "../../mk/bsd.prefs.mk"

this package was previously named wibble2

_if defined(PKG_OPTIONS.wibble2)

PKG_LEGACY_OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+="Deprecated variable PKG_OPTIONS.wibble2 used, use "${P
-endif

-include "._/../mk/bsd.options._mk"
Package-specific option-handling
HitH

FOO support

HitH

_if lempty(PKG_OPTIONS:Mwibble-foo0)
CONFIGURE_ARGS+= --enable-foo

390

Chapter 42 Options handling
-endif

HitH
LDAP support
HitH
.if lempty(PKG_OPTIONS:MIdap)

include "../._/databases/openldap/buildlink3._mk"
CONFIGURE_ARGS+= --enable-1dap=${BUILDLINK_PREFIX.openldap}
-endif

HitH
database support
HitH
-if lempty(PKG_OPTIONS:Mmysql)
include "../../mk/mysql _buildlink3._.mk"
-endif
-if lempty(PKG_OPTIONS:Mpgsql)
include "../../mk/pgsql.-buildlink3._mk"
-endif

The first section contains the information about which build options are supported by the package, and
any default options settings if needed.

1. PKG_OPTIONS_VAR is the name of the make(1) variable that the user can set to override the default
options. It should be set to “PKG_OPTIONS.pkgbase™.

2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.

3. PKG_OPTIONS_OPTIONAL_GROUPS is a list of names of groups of mutually exclusive options. The
options in each group are listed in PKG_OPTIONS_GROUP . gr oupnane. The most specific setting of
any option from the group takes precedence over all other options in the group. Options from the
groups will be automatically added to PKG_SUPPORTED_OPTIONS.

4. PKG_OPTIONS_REQUIRED_GROUPS is like PKG_OPTIONS_OPT IONAL_GROUPS, but building the
packages will fail if no option from the group is selected.

5. PKG_OPTIONS_NONEMPTY_SETS s a list of names of sets of options. At least one option from each
set must be selected. The options in each set are listed in PKG_OPTIONS_SET . set nane. Options
from the sets will be automatically added to PKG_SUPPORTED_OPTIONS. Building the package will
fail if no option from the set is selected.

6. PKG_SUGGESTED_OPTIONS is a list of build options which are enabled by default.

7. PKG_OPTIONS_LEGACY_VARS is a list of “USE_VARI ABLE:opt i on” pairs that map legacy
/etc/mk . conf variables to their option counterparts. Pairs should be added with “+="to keep the
listing of global legacy variables. A warning will be issued if the user uses a legacy variable.

8. PKG_OPTIONS_LEGACY_OPTS is a list of “ol d- opt i on:new- opt i on” pairs that map options that
have been renamed to their new counterparts. Pairs should be added with “+="to keep the listing of
global legacy options. A warning will be issued if the user uses a legacy option.

9. PKG_LEGACY_OPTIONS is a list of options implied by deprecated variables used. This can be used
for cases that neither PKG_OPTIONS_LEGACY_VARS nor PKG_OPTIONS_LEGACY_OPTS can handle,
e. g. when PKG_OPTIONS_VAR is renamed.

391

Chapter 42 Options handling

10. PKG_OPTIONS_DEPRECATED_WARNINGS is a list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modify PKG_DEFAULT_OPTIONS or the variable named in PKG_OPTIONS_VAR.
These are strictly user-settable. To suggest a default set of options, use PKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VAR must be defined before including bsd - options.mk. If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPS are defined (as can happen with platform-specific options if none of
them is supported on the current platform), PKG_OPTIONS is set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion of bsd.options.mk, the variable PKG_OPTIONS contains the list of selected build
options, properly filtered to remove unsupported and duplicate options.

The remaining sections contain the logic that is specific to each option. The correct way to check for an
option is to check whether it is listed in PKG_OPTIONS:

-if lempty(PKG_OPTIONS:Moption)

42.3 Option Names

Options that enable similar features in different packages (like optional support for a library) should use
a common name in all packages that support it (like the name of the library). If another package already
has an option with the same meaning, use the same name.

Options that enable features specific to one package, where it’s unlikely that another (unrelated) package
has the same (or a similar) optional feature, should use a name prefixed with pkgnane-.

If a group of related packages share an optional feature specific to that group, prefix it with the name of
the “main” package (e. g. djbware-errno-hack).

For new options, add a line to mk/defaults/options.description. Lines have two fields,
separated by tab. The first field is the option name, the second its description. The description should be a
whole sentence (starting with an uppercase letter and ending with a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The file is sorted by option names.

392

Chapter 43
The build process

The basic steps for building a program are always the same. First the program’s source (distfile) must be
brought to the local system and then extracted. After any patches to compile properly on NetBSD are
applied, the software can be configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system. These are exactly the steps performed by the NetBSD
package system, which is implemented as a series of targets in a central Makefile,

pkgsrc/mk/bsd . pkg.mk.

43.1 Program location

Before outlining the process performed by the NetBSD package system in the next section, here’s a brief
discussion on where programs are installed, and which variables influence this.

The automatic variable PREFIX indicates where all files of the final program shall be installed. It is
usually set to LOCALBASE (/usr/pkg), or CROSSBASE for pkgs in the “cross” category. The value of
PREFIX needs to be put into the various places in the program’s source where paths to these files are
encoded. See Section 37.3 and Section 44.3.1 for more details.

When choosing which of these variables to use, follow the following rules:

« PREFIX always points to the location where the current pkg will be installed. When referring to a
pkg’s own installation path, use “${PREFIX}".

+ LOCALBASE is where all non-X11 pkgs are installed. If you need to construct a -1 or -L argument to the
compiler to find includes and libraries installed by another non-X11 pkg, use “${LOCALBASE}".

« X11BASE is where the actual X11 distribution (from xsrc, etc.) is installed. When looking for standard
X11 includes (not those installed by a pkg), use “${X11BASE}".

« X11-based packages are special in that they may be installed in either X11BASE or LOCALBASE.

Usually, X11 packages should be installed under LOCALBASE whenever possible. Note that you will
need to include . . /. ./mk/x11._buildlink3.mk in them to request the presence of X11 and to get
the right compilation flags.

Even though, there are some packages that cannot be installed under LOCALBASE: those that come
with app-defaults files. These packages are special and they must be placed under X11BASE. To
accomplish this, set either USE_X11BASE or USE_ IMAKE in your package.

Some notes: If you need to find includes or libraries installed by a pkg that has USE_ IMAKE or
USE_X11BASE in its pkg Makefi e, you need to look in both ${X11BASE} and ${LOCALBASE}. To
force installation of all X11 packages in LOCALBASE, the pkgtools/xpkgwedge package is enabled
by default.

393

Chapter 43 The build process

« X11PREFIX should be used to refer to the installed location of an X11 package. X11PREFIX will be
set to X11BASE if xpkgwedge is not installed, and to LOCALBASE if xpkgwedge is installed.

« If xpkgwedge is installed, it is possible to have some packages installed in X11BASE and some in
LOCALBASE. To determine the prefix of an installed package, the EVAL_PREF 1X definition can be used.
It takes pairs in the format “DIRNAME=<package>", and the make(1) variable DIRNAME will be set to
the prefix of the installed package <package>, or “${X11PREFIX}” if the package is not installed.

This is best illustrated by example.

The following lines are taken from pkgsrc/wm/scwm/Makefi le:

EVAL_PREFIX+= GTKDIR=gtk+

CONFIGURE_ARGS+= —--with-guile-prefix=${LOCALBASE}
--with-gtk-prefix="${GTKDIR}"
--enable-multibyte

7 7

Specific defaults can be defined for the packages evaluated using EVAL_PREF1X, by using a definition
of the form:

GTKDIR_DEFAULT= ${LOCALBASE}
where GTKDIR corresponds to the first definition in the EVAL_PREFIX pair.

+ Within ${PREF X}, packages should install files according to hier(7), with the exception that manual
pages go into ${PREFIX}/man, not ${PREFIX}/share/man.

43.2 Main targets

The main targets used during the build process defined in bsd. pkg.mk are:

fetch

This will check if the file(s) given in the variables DISTFILES and PATCHFILES (as defined in the
package’s Makefile) are present on the local system in Zusr/pkgsrc/distfiles. If they are not
present, an attempt will be made to fetch them using commands of the form:

${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${Ffile} ${FETCH_AFTER_ARGS}

where ${site} varies through several possibilities in turn: first, MASTER_SITE_OVERRIDE is tried,
then the sites specified in either SITES_Fi le if defined, else MASTER_SITES or PATCH_SITES, as
applies, then finally the value of MASTER_SITE_BACKUP. The order of all except the first can be
optionally sorted by the user, via setting either MASTER_SORT_AWK or MASTER_SORT_REGEX.

checksum

After the distfile(s) are fetched, their checksum is generated and compared with the checksums
stored in the distinfo file. If the checksums don’t match, the build is aborted. This is to ensure the
same distfile is used for building, and that the distfile wasn’t changed, e.g. by some malign force,
deliberately changed distfiles on the master distribution site or network lossage.

extract

When the distfiles are present on the local system, they need to be extracted, as they are usually in
the form of some compressed archive format, most commonly . tar.gz.

394

Chapter 43 The build process

If only some of the distfiles need to be uncompressed, the files to be uncompressed should be put
into EXTRACT_ONLY.

If the distfiles are not in . tar.gz format, they can be extracted by setting either EXTRACT_SUFX,
or EXTRACT_CMD, EXTRACT_BEFORE_ARGS and EXTRACT_AFTER_ARGS. In the former case,
pkgsrc knows how to extract a number of suffixes (. tar.gz, .tgz, -tar.gz2, .tbz, .tar.Z,
.tar, .shar.gz, .shar.bz2, .shar.Z, .shar, .Z, .bz2 and .gz; see the definition of the
various DECOMPRESS_CMD variables in bsd . pkg . extract.mk for a complete list). Here’s an
example on how to use the other variables for a program that comes with a compressed shell archive
whose name ends in .msg.gz:

EXTRACT_SUFX= .msg.gz
EXTRACT_CMD= zcat
EXTRACT_BEFORE_ARGS=
EXTRACT_AFTER_ARGS= Ish

patch

After extraction, all the patches named by the PATCHFILES, those present in the patches
subdirectory of the package as well as in SLOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in .Z or .gz are
uncompressed before they are applied, files ending in .origor .rej are ignored. Any special
options to patch(1) can be handed in PATCH_DIST_ARGS. See Section 37.3 for more details.

By default patch(1) is given special args to make it fail if the patches apply with some lines of fuzz.
Please fix (regen) the patches so that they apply cleanly. The rationale behind this is that patches
that don’t apply cleanly may end up being applied in the wrong place, and cause severe harm there.

configure

Most pieces of software need information on the header files, system calls, and library routines
which are available in NetBSD. This is the process known as configuration, and is usually
automated. In most cases, a script is supplied with the source, and its invocation results in
generation of header files, Makefiles, etc.

If the program’s distfile contains its own configure script, this can be invoked by setting
HAS_CONFIGURE. If the configure script is a GNU autoconf script, GNU_CONF IGURE should be
specified instead. In either case, any arguments to the configure script can be specified in the

CONF IGURE_ARGS variable, and the configure script’s name can be set in CONFIGURE_SCRIPT if it
differs from the default “configure”. Here’s an example from the sysuti I's/top package:

HAS_CONFIGURE= yes
CONFIGURE_SCRIPT= Configure
CONFIGURE_ARGS+= netbsdl3

If the program uses an Imakefile for configuration, the appropriate steps can be invoked by setting
USE_ IMAKE to “YES”. (If you only want the package installed in $X11PREFIX but xmkmf not
being run, set USE_X11BASE instead!)

build

Once configuration has taken place, the software will be built by invoking $MAKE_PROGRAM on
$MAKEF ILE with $BUILD_TARGET as the target to build. The default MAKE_PROGRAM is “gmake” if
USE_TOOLS contains “gmake”, “make” otherwise. MAKEFILE is set to “Makefile” by default, and

395

Chapter 43 The build process

BUILD_TARGET defaults to “all”. Any of these variables can be set in the package’s Makefile to
change the default build process.

install

Once the build stage has completed, the final step is to install the software in public directories, so
users can access the programs and files. As in the build-target, SMAKE_PROGRAM is invoked on
$MAKEF ILE here, but with the $INSTALL_TARGET instead, the latter defaulting to “install” (plus
“install.man”, if USE_IMAKE is set).

If no target is specified, the default is “build”. If a subsequent stage is requested, all prior stages are
made: e.g. make build will also perform the equivalent of:

make fetch
make checksum
make extract
make patch
make configure
make build

43.3 Other helpful targets

pre/post-*
For any of the main targets described in the previous section, two auxiliary targets exist with “pre-”
and “post-" used as a prefix for the main target’s name. These targets are invoked before and after
the main target is called, allowing extra configuration or installation steps be performed from a
package’s Makefile, for example, which a program’s configure script or install target omitted.

do-*

Should one of the main targets do the wrong thing, and should there be no variable to fix this, you
can redefine it with the do-* target. (Note that redefining the target itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won’t be called anymore, etc.) You will not usually need
to do this.

reinstall
If you did a make install and you noticed some file was not installed properly, you can repeat the
installation with this target, which will ignore the “already installed” flag.

deinstall

This target does a pkg_delete(1) in the current directory, effectively de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE
Add a "-v" to the pkg_delete(1) command.

396

Chapter 43 The build process

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given package. This can be used to remove
any packages that may have been pulled in by a given package, e.g. if make deinstall
DEINSTALLDEPENDS=1 is done in pkgsrc/x11/kde, this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

update

This target causes the current package to be updated to the latest version. The package and all
depending packages first get de-installed, then current versions of the corresponding packages get
compiled and installed. This is similar to manually noting which packages are currently installed,
then performing a series of make deinstall and make install (or whatever UPDATE_TARGET is set
to) for these packages.

You can use the “update” target to resume package updating in case a previous make update was
interrupted for some reason. However, in this case, make sure you don’t call make clean or
otherwise remove the list of dependent packages in WRKDIR. Otherwise, you lose the ability to
automatically update the current package along with the dependent packages you have installed.

Resuming an interrupted make update will only work as long as the package tree remains
unchanged. If the source code for one of the packages to be updated has been changed, resuming
make update will most certainly fail!

The following variables can be used either on the command line or in /etc/mk.conf to alter the
behaviour of make update:

UPDATE_TARGET

Install target to recursively use for the updated package and the dependent packages. Defaults
to DEPENDS_TARGET if set, “install” otherwise for make update. e.g. make update
UPDATE_TARGET=package

NOCLEAN

Don’t clean up after updating. Useful if you want to leave the work sources of the updated
packages around for inspection or other purposes. Be sure you eventually clean up the source
tree (see the “clean-update” target below) or you may run into troubles with old source code
still lying around on your next make or make update.

REINSTALL

Deinstall each package before installing (making DEPENDS_TARGET). This may be necessary
if the “clean-update” target (see below) was called after interrupting a running make update.

DEPENDS_TARGET

Allows you to disable recursion and hardcode the target for packages. The default is “update”
for the update target, facilitating a recursive update of prerequisite packages. Only set
DEPENDS_TARGET if you want to disable recursive updates. Use UPDATE_TARGET instead to
just set a specific target for each package to be installed during make update (see above).

397

Chapter 43 The build process

clean-update

Clean the source tree for all packages that would get updated if make update was called from the
current directory. This target should not be used if the current package (or any of its depending
packages) have already been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this target before the first time you
run make update and only if you have a dirty package tree (e.g., if you used NOCLEAN).

If you are unsure about whether your tree is clean, you can either perform a make clean at the top
of the tree, or use the following sequence of commands from the directory of the package you want
to update (before running make update for the first time, otherwise you lose all the packages you
wanted to update!):

nmake cl ean-update

make cl ean CLEANDEPENDS=YES

nmake update

The following variables can be used either on the command line or in /etc/mk.conf to alter the
behaviour of make clean-update:

CLEAR_DIRLIST

After make clean, do not reconstruct the list of directories to update for this package. Only use
this if make update successfully installed all packages you wanted to update. Normally, this is
done automatically on make update, but may have been suppressed by the NOCLEAN variable
(see above).

info
This target invokes pkg_info(1) for the current package. You can use this to check which version of
a package is installed.

readme

This target generates a README - html file, which can be viewed using a browser such as
www/mozi I 1a or www/ I inks. The generated files contain references to any packages which are in
the PACKAGES directory on the local host. The generated files can be made to refer to URLSs based
on FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if | wanted to generate

README . html files which pointed to binary packages on the local machine, in the directory
/usr/packages, set FTP_PKG_URL_HOST=file://localhostand
FTP_PKG_URL_DIR=/usr/packages. The ${PACKAGES} directory and its subdirectories will be
searched for all the binary packages.

readme-all

Use this target to create a file README-al I _html which contains a list of all packages currently
available in the NetBSD Packages Collection, together with the category they belong to and a short
description. This file is compiled from the pkgsrc/*/README . html files, so be sure to run this
after a make readme.

398

Chapter 43 The build process

cdrom-readme

This is very much the same as the “readme” target (see above), but is to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also produces README . html files, and can be
made to refer to URLSs based on CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.

show-distfiles

This target shows which distfiles and patchfiles are needed to build the package. (DISTFILES and
PATCHFILES, but not patches/*)

show-downlevel

This target shows nothing if the package is not installed. If a version of this package is installed, but
is not the version provided in this version of pkgsrc, then a warning message is displayed. This
target can be used to show which of your installed packages are downlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir

This target shows the directory in the pkgsrc hierarchy from which the package can be built and
installed. This may not be the same directory as the one from which the package was installed. This
target is intended to be used by people who may wish to upgrade many packages on a single host,
and can be invoked from the top-level pkgsrc Makefile by using the “show-host-specific-pkgs”
target.

show-installed-depends
This target shows which installed packages match the current package’s DEPENDS. Useful if out of
date dependencies are causing build problems.
check-shlibs
After a package is installed, check all its binaries and (on ELF platforms) shared libraries to see if
they find the shared libs they need. Run by default if PKG_DEVELOPER is set in /etc/mk.conf.
print-PLIST

After a “make install” from a new or upgraded pkg, this prints out an attempt to generate a new
PLIST from a find -newer work/.extract_done. An attempt is made to care for shared libs etc., but
it is strongly recommended to review the result before putting it into PL1ST. On upgrades, it’s
useful to diff the output of this command against an already existing PL1ST file.

If the package installs files via tar(1) or other methods that don’t update file access times, be sure to
add these files manually to your PLIST, as the “find -newer” command used by this target won’t
catch them!

See Section 39.3 for more information on this target.

bulk-package

Used to do bulk builds. If an appropriate binary package already exists, no action is taken. If not,
this target will compile, install and package it (and its depends, if PKG_DEPENDS is set properly. See
Section 35.3.1). After creating the binary package, the sources, the just-installed package and its
required packages are removed, preserving free disk space.

399

Chapter 43 The build process

Beware that this target may deinstall all packages installed on a system!

bulk-install

Used during bulk-installs to install required packages. If an up-to-date binary package is available,
it will be installed via pkg_add(21). If not, make bulk-package will be executed, but the installed
binary won’t be removed.

A binary package is considered “up-to-date” to be installed via pkg_add(1) if:
- None of the package’s files (MakeFile, ...) were modified since it was built.
« None of the package’s required (binary) packages were modified since it was built.

Beware that this target may deinstall all packages installed on a system!

400

Chapter 44
Notes on fixes for packages

44.1 General operation

44.1.1 How to pull in variables from /etc/mk.conf

The problem with package-defined variables that can be overridden via MAKECONF or /etc/mk.conT is
that make(1) expands a variable as it is used, but evaluates preprocessor-like statements (.if, .ifdef and
.ifndef) as they are read. So, to use any variable (which may be set in /etc/mk.conf) in one of the .if*
statements, the file Zetc/mk. conf must be included before that .if* statement.

Rather than having a number of ad-hoc ways of including Zetc/mk. conf, should it exist, or MAKECONF,
should it exist, include the pkgsrc/mk/bsd . prefs.mk file in the package Makefile before any
preprocessor-like .if, .ifdef, or .ifndef statements:

-include "../../mk/bsd.prefs.mk"

.if defined(USE_MENUS)

_endif
If you wish to set the CFLAGS variable in Zetc/mk.con¥, please make sure to use:
CFLAGS+= -your -flags

Using CFLAGS= (i.e. without the “+”") may lead to problems with packages that need to add their own
flags. Also, you may want to take a look at the devel /cpuflags package if you’re interested in
optimization for the current CPU.

44.1.2 Where to install documentation

Documentation should be installed into ${PREF1X}/share/doc/${PKGBASE} or
${PREFI1X}/share/doc/${PKGNAME} (the latter includes the version number of the package).

44.1.3 Restricted packages

Some licenses restrict how software may be re-distributed. In order to satisfy these restrictions, the
package system defines five make variables that can be set to note these restrictions:

+ RESTRICTED

401

Chapter 44 Notes on fixes for packages

This variable should be set whenever a restriction exists (regardless of its kind). Set this variable to a
string containing the reason for the restriction.

« NO_BIN_ON_CDROM

Binaries may not be placed on CD-ROM. Set this variable to ${RESTRICTED} whenever a binary
package may not be included on a CD-ROM.

« NO_BIN_ON_FTP

Binaries may not be placed on an FTP server. Set this variable to ${RESTRICTED} whenever a binary
package may not not be made available on the Internet.

« NO_SRC_ON_CDROM

Distfiles may not be placed on CD-ROM. Set this variable to ${RESTRICTED} if re-distribution of the
source code or other distfile(s) is not allowed on CD-ROMs.

« NO_SRC_ON_FTP

Distfiles may not be placed on FTP. Set this variable to ${RESTRICTED} if re-distribution of the
source code or other distfile(s) via the Internet is not allowed.

Please note that the use of NO_PACKAGE, I1GNORE, NO_CDROM, or other generic make variables to denote
restrictions is deprecated, because they unconditionally prevent users from generating binary packages!

44.1.4 Handling dependencies

Your package may depend on some other package being present - and there are various ways of
expressing this dependency. pkgsrc supports the BUILD_DEPENDS and DEPENDS definitions, the
USE_TOOLS definition, as well as dependencies via bui Idlink3.mk, which is the preferred way to
handle dependencies, and which uses the variables named above. See Chapter 40 for more information.

The basic difference between the two variables is as follows: The DEPENDS definition registers that
pre-requisite in the binary package so it will be pulled in when the binary package is later installed,
whilst the BUILD_DEPENDS definition does not, marking a dependency that is only needed for building
the package.

This means that if you only need a package present whilst you are building, it should be noted as a
BUILD_DEPENDS.

The format for a BUILD_DEPENDS and a DEPENDS definition is:
<pre-reg-package-name>:._/../<category>/<pre-req-package>

Please note that the “pre-req-package-name” may include any of the wildcard version numbers
recognized by pkg_info(1).

1. If your package needs another package’s binaries or libraries to build or run, and if that package has
a bui ldlink3.mk file available, use it:

-include "../../graphics/jpeg/buildlink3.mk"

2. If your package needs to use another package to build itself and there is no bui 1d1ink3.mk file
available, use the BUILD_DEPENDS definition:

402

Chapter 44 Notes on fixes for packages

BUILD_DEPENDS+= autoconf-2.13:../../devel/autoconf

. If your package needs a library with which to link and again there is no bui Idlink3.mk file
available, this is specified using the DEPENDS definition. An example of this is the print/lyx
package, which uses the xpm library, version 3.4j to build:

DEPENDS+= xpm-3.4j:../../graphics/xpm
You can also use wildcards in package dependences:
DEPENDS+= xXpm-[0-9]*:../../graphics/xpm

Note that such wildcard dependencies are retained when creating binary packages. The dependency
is checked when installing the binary package and any package which matches the pattern will be
used. Wildcard dependencies should be used with care.

The “-[0-9]*” should be used instead of “-*” to avoid potentially ambiguous matches such as
“tk-postgresql” matching a “tk-*"" DEPENDS.

Wildcards can also be used to specify that a package will only build against a certain minimum
version of a pre-requisite:

DEPENDS+= tiff>=3.5.4:__/._/graphics/tiff

This means that the package will build against version 3.5.4 of the tiff library or newer. Such a
dependency may be warranted if, for example, the API of the library has changed with version 3.5.4
and a package would not compile against an earlier version of tiff.

Please note that such dependencies should only be updated if a package requires a newer
pre-requisite, but not to denote recommendations such as security updates or ABI changes that do
not prevent a package from building correctly. Such recommendations can be expressed using
RECOMMENDED:

RECOMMENDED+= tiff>=3.6.1:../._./graphics/tiff

In addition to the above DEPENDS line, this denotes that while a package will build against
tiff>=3.5.4, at least version 3.6.1 is recommended. RECOMMENDED entries will be turned into
dependencies unless explicitly ignored (in which case a warning will be printed).

To ignore these dependency recommendations and just use the required DEPENDS, set
1GNORE_RECOMMENDED=YES. This may make it easier and faster to update packages built using
pkgsrc, since older compatible dependencies can continue to be used. This is useful for people who
watch their rebuilds very carefully; it is not very good as a general-purpose hammer. If you use it,
you need to be mindful of possible ABI changes, including those from the underlying OS.

Packages that are built with recommendations ignored may not be uploaded to ftp.NetBSD.org by
developers and should not be used across different systems that may have different versions of
binary packages installed.

For security fixes, please update the package vulnerabilities file as well as setting RECOMMENDED,
see Section 44.1.8 for more information.

. If your package needs some executable to be able to run correctly and if there’s no bui Idlink3_mk
file, this is specified using the DEPENDS variable. The print/lyx package needs to be able to
execute the latex binary from the teTeX package when it runs, and that is specified:

DEPENDS+= teTeX-[0-9]*:../../print/teTeX

The comment about wildcard dependencies from previous paragraph applies here, too.

403

Chapter 44 Notes on fixes for packages

If your package needs files from another package to build, see the first part of the “do-configure” target
print/ghostscripts package (it relies on the jpeg sources being present in source form during the
build):

if [! -e ${ PKGSRCDIR}/graphics/jpeg/${WRKDIR:T}/jpeg-6b]; then \
cd ${ PKGSRCDIR}/../../graphics/jpeg && ${MAKE} extract;
fi

If you build any other packages that way, please make sure the working files are deleted too when this
package’s working files are cleaned up. The easiest way to do so is by adding a pre-clean target:

pre-clean:
cd ${ PKGSRCDIR}/../../graphics/jpeg && ${MAKE} clean

Please also note the BUILD_USES_MSGFMT and BUILD_USES_GETTEXT_M4 definitions, which are
provided as convenience definitions. The former works out whether msgfmt(1) is part of the base system,
and, if it isn’t, installs the deve l/gettext package. The latter adds a build dependency on either an
installed version of an older gettext package, or if it isn’t, installs the deve 1 /gettext-m4 package.

44.1.5 Handling conficts with other packages

Your package may conflict with other packages a user might already have installed on his system, e.g. if
your package installs the same set of files like another package in our pkgsrc tree.

In this case you can set CONFLICTS to a space-separated list of packages (including version string) your
package conflicts with.

For example, x11/Xaw3d and x11/Xaw-Xpm install the same shared library, thus you set in
pkgsrc/x11/Xaw3d/Makefile:

CONFLICTS= Xaw-Xpm-[0-9]*

and in pkgsrc/x11/Xaw-Xpm/MakefFile:

CONFLICTS= Xaw3d-[0-97*

Packages will automatically conflict with other packages with the name prefix and a different version
string. “Xaw3d-1.5" e.g. will automatically conflict with the older version *“Xaw3d-1.3".

44.1.6 Packages that cannot or should not be built

There are several reasons why a package might be instructed to not build under certain circumstances. If
the package builds and runs on most platforms, the exceptions should be noted with
NOT_FOR_PLATFORM. If the package builds and runs on a small handful of platforms, set
ONLY_FOR_PLATFORM instead. Both ONLY_FOR_PLATFORM and NOT_FOR_PLATFORM are OS triples
(OS-version-platform) that can use glob-style wildcards.

If the package should be skipped (for example, because it provides functionality already provided by the
system), set PKG_SKI1P_REASON to a descriptive message. If the package should fail because some
preconditions are not met, set PKG_FAIL_REASON to a descriptive message.

404

Chapter 44 Notes on fixes for packages

44.1.7 Packages which should not be deleted, once installed

To ensure that a package may not be deleted, once it has been installed, the PKG_PRESERVE definition
should be set in the package Makefile. This will be carried into any binary package that is made from this
pkgsrc entry. A “preserved” package will not be deleted using pkg_delete(1) unless the “-f” option is
used.

44.1.8 Handling packages with security problems

When a vulnerability is found, this should be noted in
localsrc/security/advisories/pkg-vulnerabilities, and after committing that file, use
make upload in the same directory to update the file on ftp.NetBSD.org.

After fixing the vulnerability by a patch, its PKGREVISION should be increased (this is of course not
necessary if the problem is fixed by using a newer release of the software). In addition, if a

bui ldlink3.mk file exists for an affected package, a corresponding BUILDL INK_RECOMMENDED . pkg
entry should be added or updated in it.

Also, if the fix should be applied to the stable pkgsrc branch, be sure to submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handled semi-automatically by a weekly cron job.

44.1.9 How to handle compiler bugs

Some source files trigger bugs in the compiler, based on combinations of compiler version and
architecture and almost always relation to optimisation being enabled. Common symptoms are gcc
internal errors or never finishing compiling a file.

Typically, a workaround involves testing the MACHINE_ARCH and compiler version, disabling
optimisation for that file/MACH INE_ARCH/compiler combination, and documenting it in
pkgsrc/doc/HACKS. See that file for a number of examples!

44.1.10 How to handle incrementing versions when fixing an existing
package

When making fixes to an existing package it can be useful to change the version number in PKGNAME. To
avoid conflicting with future versions by the original author, a “nb1”, “nb2”, ... suffix can be used on
package versions by setting PKGREVISION=1 (2, ...). The “nb” is treated like a “.” by the pkg tools. e.g.

DISTNAME= foo0-17.42
PKGREVISION= 9

will result in a PKGNAME of “foo-17.42nb9”.

When a new release of the package is released, the PKGREV 1S 10N should be removed, e.g. on a new
minor release of the above package, things should be like:

DISTNAME= fo0-17.43

405

Chapter 44 Notes on fixes for packages

44.1.11 Portability of packages

One appealing feature of pkgsrc is that it runs on many different platforms. As a result, it is important to
ensure, where possible, that packages in pkgsrc are portable. There are some particular details you
should pay attention to while working on pkgsrc.

44.1.11.1 ${INSTALL}, ${INSTALL_DATA_DIR}, ...

The BSD-compatible install supplied with some operating systems will not perform more than one
operation at a time. As such, you should call “${INSTALL}", etc. like this:

${INSTALL_DATA_DIR} ${PREFIX}/dirl
${INSTALL_DATA DIR} ${PREFIX}/dir2

44.2 Possible downloading issues

44.2.1 Packages whose distfiles aren’t available for plain downloading

If you need to download from a dynamic URL you can set DYNAMIC_MASTER_SITES and a make fetch
will call files/getsite.sh with the name of each file to download as an argument, expecting it to
output the URL of the directory from which to download it. graphics/ns-cult3d is an example of
this usage.

If the download can’t be automated, because the user must submit personal information to apply for a
password, or must pay for the source, or whatever, you can set _FETCH_MESSAGE to a macro which
displays a message explaining the situation. _FETCH_MESSAGE must be executable shell commands, not
just a message. (Generally, it executes ${ECHO}). As of this writing, the following packages use this:
cad/simian, devel/ipv6socket, emulators/vmware-module, fonts/acroread-jpnfont,
multimedia/realplayer, sysutils/storage-manager, ww/ap-aolserver, ww/openacs.
Try to be consistent with them.

44.2.2 How to handle modifi ed distfi les with the 'old’ name

Sometimes authors of a software package make some modifications after the software was released, and
they put up a new distfile without changing the package’s version number. If a package is already in
pkgsrc at that time, the checksum will no longer match. The contents of the new distfile should be
compared against the old one before changing anything, to make sure the distfile was really updated on
purpose, and that no trojan horse or so crept in. Then, the correct way to work around this is to set
DIST_SUBDIR to a unique directory name, usually based on PKGNAME_NOREV. In case this happens
more often, PKGNAME can be used (thus including the nbX suffix) or a date stamp can be appended, like
${PKGNAME_NOREV}-YYYYMMDD. Do not forget regenerating the distinfo file after that, since it
contains the DIST_SUBDIR path in the filenames. Furthermore, a mail to the package’s authors seems
appropriate telling them that changing distfiles after releases without changing the file names is not good
practice.

406

Chapter 44 Notes on fixes for packages

44.3 Configuration gotchas

44.3.1 Shared libraries - libtool

pkgsrc supports many different machines, with different object formats like a.out and ELF, and varying
abilities to do shared library and dynamic loading at all. To accompany this, varying commands and
options have to be passed to the compiler, linker, etc. to get the Right Thing, which can be pretty
annoying especially if you don’t have all the machines at your hand to test things. The devel/libtool
pkg can help here, as it just “knows” how to build both static and dynamic libraries from a set of source
files, thus being platform-independent.

Here’s how to use libtool in a pkg in seven simple steps:

1. Add USE_L IBTOOL=yes to the package Makefile.

2. For library objects, use “${LIBTOOL} --mode=compile ${CC}” in place of “${CC}". You could
even add it to the definition of CC, if only libraries are being built in a given Makefile. This one
command will build both PIC and non-PIC library objects, so you need not have separate shared and
non-shared library rules.

3. For the linking of the library, remove any “ar”,
instead use:

${LIBTOOL} --mode=link ${CC} -o ${.TARGET:.a=.la} ${OBJS:.o=.l10} -rpath ${PREFIX}/lib

ranlib”, and “Id -Bshareable” commands, and

Note that the library is changed to have a . 1a extension, and the objects are changed to have a . 1o
extension. Change OBJS as necessary. This automatically creates all of the .a, .so.major.minor,
and ELF symlinks (if necessary) in the build directory. Be sure to include “-version-info”, especially
when major and minor are zero, as libtool will otherwise strip off the shared library version.

From the libtool manual:
So, libtool library versions are described by three integers:

CURRENT
The most recent interface number that this library implements.

REVISION
The implementation number of the CURRENT interface.

AGE
The difference between the newest and oldest interfaces that this
library implements. In other words, the library implements all the
interface numbers in the range from number “CURRENT - AGE” to
“CURRENT” .

IT two libraries have identical CURRENT and AGE numbers, then the
dynamic linker chooses the library with the greater REVISION number.

The “-release” option will produce different results for a.out and ELF (excluding symlinks) in only
one case. An ELF library of the form “libfoo-release.so.x.y” will have a symlink of “libfoo.so.x.y”
on an a.out platform. This is handled automatically.

The “-rpath argument” is the install directory of the library being built.

407

Chapter 44 Notes on fixes for packages

In the PLIST, include only the . 1a file, the other files will be added automatically.

4. When linking shared object (. so) files, i.e. files that are loaded via dlopen(3), NOT shared libraries,
use “-module -avoid-version” to prevent them getting version tacked on.

The PLIST file gets the foo.so entry.

5. When linking programs that depend on these libraries before they are installed, preface the cc(1) or
1d(1) line with “${LIBTOOL} --mode=link”, and it will find the correct libraries (static or shared),
but please be aware that libtool will not allow you to specify a relative path in -L (such as
“-L../somelib”), because it expects you to change that argument to be the . 1afile. e.g.

${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -lsomelib
should be changed to:

${LIBTOOL} --mode=link ${CC} -0 soneprog ../sonelib/sonelib.la

and it will do the right thing with the libraries.

6. When installing libraries, preface the install(1) or cp(1) command with “${LIBTOOL}
--mode=install”, and change the library name to . 1a. e.g.

${LIBTOOL} --mode=install ${BSD_INSTALL_DATA} ${SOMELIB:.a=.l1a} ${PREFIX}/lib
This will install the static . a, shared library, any needed symlinks, and run Idconfig(8).

7. Inyour PLIST, include only the . Iafile (this is a change from previous behaviour).

44.3.2 Using libtool on GNU packages that already support libtool

Add USE_L1BTOOL=yes to the package Makefile. This will override the package’s own libtool in most
cases. For older libtool using packages, libtool is made by Itconfig script during the do-configure step;
you can check the libtool script location by doing make configure; find work*/ -name libtool.

L1BTOOL_OVERRIDE specifies which libtool scripts, relative to WRKSRC, to override. By default, it is set
to “libtool */libtool */*/libtool”. If this does not match the location of the package’s libtool script(s), set
it as appropriate.

If you do not need *.a static libraries built and installed, then use SHLIBTOOL_OVERRIDE instead.

If your package makes use of the platform-independent library for loading dynamic shared objects, that
comes with libtool (libltdl), you should include devel/libltdl/buildlink3.mk.

Some packages use libtool incorrectly so that the package may not work or build in some circumstances.
Some of the more common errors are:

- The inclusion of a shared object (-module) as a dependent library in an executable or library. This in
itself isn’t a problem if one of two things has been done:

1. The shared object is named correctly, i.e. libfoo. la, not foo. la

2. The -dlopen option is used when linking an executable.

« The use of libltdl without the correct calls to initialisation routines. The function It_dlinit() should be
called and the macro LTDL_SET_PRELOADED_SYMBOLS included in executables.

408

Chapter 44 Notes on fixes for packages

44.3.3 GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed to regenerate the configure script and
Makefile.in makefile templates, then they should be executed in a pre-configure target.

For packages that need only autoconf:

AUTOCONF_REQD= 2.50 # if default version is not good enough
USE_TOOLS+= autoconf # use "autoconf213" for autoconf-2.13

pre-configure:
cd ${WRKSRC}; autoconf

and for packages that need automake and autoconf:

AUTOMAKE_REQD= 1.7.1 # 1Ff default version is not good enough
USE_TOOLS+= automake # use "automakel4d" for automake-1.4

pre-configure:
cd ${WRKSRC}; \
aclocal; autoheader; \
automake -a --foreign -i; autoconf

Packages which use GNU Automake will almost certainly require GNU Make.

There are times when the configure process makes additional changes to the generated files, which then
causes the build process to try to re-execute the automake sequence. This is prevented by touching
various files in the configure stage. If this causes problems with your package you can set
AUTOMAKE_OVERRIDE=NO in the package Makefile.

44.4 Building considerations

44.4.1 CPP defines

To port an application to NetBSD, it’s usually necessary for the compiler to be able to judge the system
on which it’s compiling, and we use definitions so that the C pre-processor can do this.

To test whether you are working on a 4.4 BSD-derived system, you should use the BSD definition, which
is defined in <sys/param.h> on said systems.

#include <sys/param.h>
and then you can surround the BSD-specific parts of your package’s C/C++ code using this conditional:

#if (defined(BSD) && BSD >= 199306)

409

Chapter 44 Notes on fixes for packages
#endif

Please use the “__NetBSD__” definition sparingly - it should only apply to features of NetBSD that are
not present in other 4.4-lite-derived BSDs.

44.5 Package specific actions

44.5.1 User interaction

Occasionally, packages require interaction from the user, and this can be in a number of ways:

« help in fetching the distfiles

« help to configure the package before it is built
« help during the build process

« help during the installation of a package

The INTERACT IVE_STAGE definition is provided to notify the pkgsrc mechanism of an interactive stage
which will be needed, and this should be set in the package’s MakeFile, e.g.:

INTERACTIVE_STAGE= build

Multiple interactive stages can be specified:

INTERACTIVE_STAGE= configure install

44.5.2 Handling licenses

A package may be covered by a license which the user has or has not agreed to accept. For these cases,
pkgsrc contains a mechanism to note that a package is covered by a particular license, and the package
cannot be built unless the user has accepted the license. (Installation of binary packages are not currently
subject to this mechanism.) Packages with licenses that are either Open Source according to the Open
Source Initiative or Free according to the Free Software Foundation will not be marked with a license
tag. Packages with licenses that have not been determined to meet either definition will be marked with a
license tag referring to the license. This will prevent building unless pkgsrc is informed that the license is
acceptable, and enables displaying the license.

The license tag mechanism is intended to address copyright-related issues surrounding building,
installing and using a package, and not to address redistribution issues (see RESTRICTED and
NO_SRC_ON_FTP, etc.). However, the above definition of licenses for which tags are not needed implies
that packages with redistribution restrictions should have tags.

Denoting that a package is covered by a particular license is done by placing the license in
pkgsrc/licenses and setting the L ICENSE variable to a string identifying the license, e.g. in
graphics/xv:

LICENSE= xv-license

410

Chapter 44 Notes on fixes for packages

When trying to build, the user will get a notice that the package is covered by a license which has not
been accepted:

% meke

===> xv-3.10anb9 has an unacceptable license: xv-license.

===> To view the license, enter '/usr/bin/make show-license".
===> To indicate acceptance, add this line to your /etc/mk.conf:
===> ACCEPTABLE_L ICENSES+=xv-license

*** Error code 1

The license can be viewed with make show-license, and if it is considered appropriate, the line printed
above can be added to /7etc/mk.conT to indicate acceptance of the particular license:

ACCEPTABLE_LICENSES+=xv-license

When adding a package with a new license, the license text should be added to pkgsrc/licenses for
displaying. A list of known licenses can be seen in this directory as well as by looking at the list of
(commented out) ACCEPTABLE_L ICENSES variable settings in pkgsrc/mk/defaults/mk.conf.

The use of LICENSE=shareware, LICENSE=no-commercial-use, and similar language is deprecated
because it does not crisply refer to a particular license text. Another problem with such usage is that it
does not enable a user to denote acceptance of the license for a single package without accepting the
same license text for another package. In particular, this can be inappropriate when e.g. one accepts a
particular license to indicate to pkgsrc that a fee has been paid.

44.5.3 Installing score files

Certain packages, most of them in the games category, install a score file that allows all users on the
system to record their highscores. In order for this to work, the binaries need to be installed setgid and
the score files owned by the appropriate group and/or owner (traditionally the "games" user/group). The
following variables, documented in more detail in mk/defaults/mk.conf, control this behaviour:
SETGIDGAME, GAMEDATAMODE, GAMEGRP, GAMEMODE, GAMEOWN.

Note that per default, setgid installation of games is disabled; setting SETG IDGAME=YES will set all the
other variables accordingly.

A package should therefor never hard code file ownership or access permissions but rely on
INSTALL_GAME and INSTALL_GAME_DATA to set these correctly.

44.5.4 Packages containing perl scripts

If your package contains interpreted perl scripts, set REPLACE_PERL to ensure that the proper interpreter
path is set. REPLACE_PERL should contain a list of scripts, relative to WRKSRC, that you want adjusted.

44.5.5 Packages with hardcoded paths to other interpreters

Your package may also contain scripts with hardcoded paths to other interpreters besides (or as well as)
perl. To correct the full pathname to the script interpreter, you need to set the following definitions in
your MakeFi e (we shall use tclsh in this example):

411

Chapter 44 Notes on fixes for packages

REPLACE_INTERPRETER+= tcl
_REPLACE.tcl.old= -*/bin/tclsh
_REPLACE.tcl.new= ${PREFIX}/bin/tclsh
_REPLACE_FILES.tcl= ... list of tcl scripts which need to be fixed,

relative to ${WRKSRC}, just as in REPLACE_PERL

44.5.6 Packages installing perl modules

Makefiles of packages providing perl5 modules should include the Makefile fragment
-./../lang/perl15/module .mk. It provides a do-configure target for the standard perl configuration
for such modules as well as various hooks to tune this configuration. See comments in this file for details.

Perl5 modules will install into different places depending on the version of perl used during the build
process. To address this, pkgsrc will append lines to the PLIST corresponding to the files listed in the
installed . packlist file generated by most perl5 modules. This is invoked by defining
PERL5_PACKLIST to a space-separated list of paths to packlist files, e.g.:

PERL5_PACKLIST= ${PERL5_SITEARCH}/auto/Pg/.packlist

The variables PERL5_SITELIB, PERL5_SITEARCH, and PERL5_ARCHL I B represent the three locations
in which perl5 modules may be installed, and may be used by perl5 packages that don’t have a packlist.
These three variables are also substituted for in the PL1ST.

44.5.7 Packages installing info files

Some packages install info files or use the “makeinfo” or “install-info” commands. Each of the info files:

- is considered to be installed in the directory ${PREFI1X}/${INFO_DIR},
« isregistered in the Info directory file ${PREFIX}/${INFO_DIR}/dir,
« and must be listed as a filename in the INFO_FILES variable in the package Makefile.

INFO_DIR defaults to “info” and can be overridden in the package Makefile. INSTALL and DEINSTALL
scripts will be generated to handle registration of the info files in the Info directory file. The
“install-info” command used for the info files registration is either provided by the system, or by a
special purpose package automatically added as dependency if needed.

A package which needs the “makeinfo” command at build time must define the variable USE_MAKE INFO
in its Makefile. If a minimum version of the “makeinfo” command is needed it should be noted with the
TEXINFO_REQD variable in the package Makefi le. By default, a minimum version of 3.12 is required.
If the system does not provide a makeinfo command or if it does not match the required minimum, a
build dependency on the devel/gtexinfo package will be added automatically.

The build and installation process of the software provided by the package should not use the install-info
command as the registration of info files is the task of the package INSTALL script, and it must use the
appropriate makeinfo command.

To achieve this goal, the pkgsrc infrastructure creates overriding scripts for the install-info and makeinfo
commands in a directory listed early in PATH.

412

Chapter 44 Notes on fixes for packages

The script overriding install-info has no effect except the logging of a message. The script overriding
makeinfo logs a message and according to the value of USE_MAKE INFO and TEXINFO_REQD either run
the appropriate makeinfo command or exit on error.

44.5.8 Packages installing GConf2 data files

If a package installs . schemas or -entries files, used by GConf2, you need to take some extra steps to
make sure they get registered in the database:

1. Include . .7. ./devel/GConf2/schemas.mk instead of its bui Idlink3.mk file. This takes care
of rebuilding the GConf2 database at installation and deinstallation time, and tells the package
where to install GConf2 data files using some standard configure arguments. It also disallows any
access to the database directly from the package.

2. Ensure that the package installs its . schemas files under ${PREFI1X}/share/gconf/schemas. If
they get installed under ${PREFI1X}/etc, you will need to manually patch the package.

3. Check the PLIST and remove any entries under the etc/gconf directory, as they will be handled
automatically. See Section 36.14 for more information.

4. Define the GCONF2_SCHEMAS variable in your Makefi le with a list of all . schemas files installed
by the package, if any. Names must not contain any directories in them.

5. Define the GCONF2_ENTRIES variable in your Makefi le with a list of all _entries files installed
by the package, if any. Names must not contain any directories in them.

44.5.9 Packages installing scrollkeeper data files

If a package installs .omf files, used by scrollkeeper, you need to take some extra steps to make sure they
get registered in the database:

1. Include . ./. ./textproc/scrol lkeeper/omf._mk instead of its bui Idlink3.mk file. This
takes care of rebuilding the scrollkeeper database at installation and deinstallation time, and
disallows any access to it directly from the package.

2. Check the PLIST and remove any entries under the 1ibdata/scrol lkeeper directory, as they
will be handled automatically.

3. Remove the share/omf directory from the PLIST. It will be handled by scrollkeeper.

44.5.10 Packages installing X11 fonts

If a package installs font files, you will need to rebuild the fonts database in the directory where they get
installed at installation and deinstallation time. This can be automatically done by using mk/fonts.mk,
which you need to include in your MakeFile.

When the file is included, you can list the directories where fonts are installed in the FONTS_t ype_DIRS
variables, where t ype can be one of “TTF”, “TYPEL1” or “X11”. Also make sure that the database file
fonts.dir is not listed in the PLIST.

413

Chapter 44 Notes on fixes for packages

Note that you should not create new directories for fonts; instead use the standard ones to avoid that the
user needs to manually configure his X server to find them.

44.5.11 Packages installing GTK2 modules

If a package installs GTK2 immodules or loaders, you need to take some extra steps to get them
registered in the GTK2 database properly:

1. Include . ./../x11/gtk2/modules.mk instead of its bui Idlink3.mk file. This takes care of
rebuilding the database at installation and deinstallation time.

2. Set GTK2_IMMODULES=YES if your package installs GTK2 immodules.

3. Set GTK2_LOADERS=YES if your package installs GTK2 loaders.

4. Patch the package to not touch any of the GTK2 databases directly. These are:
- libdata/gtk-2_0/gdk-pixbuf.loaders
- libdata/gtk-2_0/gtk.immodules

5. Check the PLIST and remove any entries under the libdata/gtk-2.0 directory, as they will be
handled automatically.

44.5.12 Packages installing SGML or XML data

If a package installs SGML or XML data files that need to be registered in system-wide catalogs (like
DTDs, sub-catalogs, etc.), you need to take some extra steps:

1. Include . ./ . ./textproc/xmlcatmgr/catalogs.mk in your Makefi le, which takes care of
registering those files in system-wide catalogs at installation and deinstallation time.

2. Set SGML_CATALOGS to the full path of any SGML catalogs installed by the package.
3. Set XML_CATALOGS to the full path of any XML catalogs installed by the package.

4. Set SGML_ENTRIES to individual entries to be added to the SGML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (specifically, arguments recognized by the
’add’ action). Note that you will normally not use this variable.

5. Set XML_ENTRIES to individual entries to be added to the XML catalog. These come in groups of
three strings; see xmlcatmgr(1) for more information (specifically, arguments recognized by the
’add” action). Note that you will normally not use this variable.

44.5.13 Packages installing extensions to the MIME database

If a package provides extensions to the MIME database by installing .xm1 files inside
${PREFIX}/share/mime/packages, you need to take some extra steps to ensure that the database is
kept consistent with respect to these new files:

414

Chapter 44 Notes on fixes for packages

1. Include . ./ . ./databases/shared-mime-info/mimedb.mk (avoid using the bui Idlink3.mk
file from this same directory, which is reserved for inclusion from other bui Id1ink3.mk files). It
takes care of rebuilding the MIME database at installation and deinstallation time, and disallows any
access to it directly from the package.

2. Check the PLIST and remove any entries under the share/mime directory, except for files saved
under share/mime/packages. The former are handled automatically by the
update-mime-database program, but the latter are package-dependent and must be removed by the
package that installed them in the first place.

3. Remove any share/mime/* directories from the PLIST. They will be handled by the
shared-mime-info package.

44.5.14 Packages using intltool

If a package uses intltool during its build, include the . ./. ./textproc/intltool/buildlink3.mk
file, which forces it to use the intltool package provided by pkgsrc, instead of the one bundled with the
distribution file.

This tracks intltool’s build-time dependencies and uses the latest available version; this way, the package
benefits of any bug fixes that may have appeared since it was released.

44.5.15 Packages installing startup scripts

If a package contains a rc.d script, it won’t be copied into the startup directory by default, but you can
enable it, by adding the option PKG_RCD_SCRIPTS=YES in Zetc/mk.conf. This option will copy the
scripts into Zetc/rc.d when a package is installed, and it will automatically remove the scripts when
the package is deinstalled.

44 .6 Feedback to the author

If you have found any bugs in the package you make available, if you had to do special steps to make it
run under NetBSD or if you enhanced the software in various other ways, be sure to report these changes
back to the original author of the program! With that kind of support, the next release of the program can
incorporate these fixes, and people not using the NetBSD packages system can win from your efforts.

Support the idea of free software!

415

Chapter 45
Debugging

To check out all the gotchas when building a package, here are the steps that | do in order to get a
package working. Please note this is basically the same as what was explained in the previous sections,
only with some debugging aids.

Be sure to set PKG_DEVELOPER=1 in /etc/mk.conf
Install pkgtools/url2pkg, create a directory for a new package, change into it, then run url2pkg:

% nkdir /usr/pkgsrc/ category/ exanpl epkg
% cd /usr/ pkgsrc/ category/ exanpl epkg
% url 2pkg http://wwmv. exanpl e. com path/to/distfile.tar.gz

Edit the Makefi e as requested.
Fill in the DESCR file
Run make configure

Add any dependencies glimpsed from documentation and the configure step to the package’s
MakefFile.

Make the package compile, doing multiple rounds of

% make

% pkgvi ${WRKSRC}/ sone/fil e/ that/does/ not/conpile
% nkpat ches

% pat chdi f f

% mv ${WRKDI R}/ . newpat ches/* pat ches

% make nps

% make cl ean

Doing as non-root user will ensure that no files are modified that shouldn’t be, especially during the
build phase. mkpatches, patchdiff and pkgvi are from the pkgtools/pkgdi ff package.

Look at the MakeTi le, fix if necessary; see Section 37.1.

Generate a PLIST:

make install

make print-PLI ST >PLI ST
make deinstall

make install

make dei nstal |

H OH H R

You usually need to be root to do this. Look if there are any files left:
make print-PLIST

If this reveals any files that are missing in PLIST, add them.

- Now that the PLIST is OK, install the package again and make a binary package:

416

Chapter 45 Debugging
make reinstall
make package
Delete the installed package:
pkg_del ete bl ub
Repeat the above make print-PLIST command, which shouldn’t find anything now:
make print-PLIST
Reinstall the binary package:
pkgadd .../blub.tgz
Play with it. Make sure everything works.
Run pkglint from pkgtools/pkglint, and fix the problems it reports:
pkglint

Submit (or commit, if you have cvs access); see Chapter 46.

417

Chapter 46
Submitting and Committing

46.1 Submitting your packages

You have to separate between binary and “normal” (source) packages here:

« precompiled binary packages

Our policy is that we accept binaries only from pkgsrc developers to guarantee that the packages don’t
contain any trojan horses etc. This is not to annoy anyone but rather to protect our users! You’re still
free to put up your home-made binary packages and tell the world where to get them. NetBSD
developers doing bulk builds and wanting to upload them please see Section 35.3.8.

« packages

First, check that your package is complete, compiles and runs well; see Chapter 45 and the rest of this
document. Next, generate an uuencoded gzipped tar(1) archive, preferably with all files in a single
directory. Finally, send-pr with category “pkg”, a synopsis which includes the package name and
version number, a short description of your package (contents of the COMMENT variable or DESCR
file are OK) and attach the archive to your PR.

If you want to submit several packages, please send a separate PR for each one, it’s easier for us to
track things that way.

Alternatively, you can also import new packages into pkgsrc-wip (“pkgsrc work-in-progress”); see the
homepage at http://pkgsrc-wip.sourceforge.net/ for details.

46.2 General notes when adding, updating, or removing packages

Please note all package additions, updates, moves, and removals in pkgsrc/doc/CHANGES. It’s very
important to keep this file up to date and conforming to the existing format, because it will be used by
scripts to automatically update pages on www.NetBSD.org (http://www.NetBSD.org/) and other sites.
Additionally, check the pkgsrc/doc/TODO file and remove the entry for the package you updated or
removed, in case it was mentioned there.

There is a make target that helps in creating proper CHANGES entries: make changes-entry. It uses the
optional CTYPE and NETBSD_LOGIN_NAME variables. The general usage is to first make sure that your
CHANGES file is up-to-date (to avoid having to resolve conflicts later-on) and then to cd to the package
directory. For package updates, make changes-entry is enough. For new packages, or package moves or
removals, set the CTYPE variable on the command line to "Added", "Moved", or "Removed". You can set
NETBSD_LOGIN_NAME in Zetc/mk.conf if your local login name is not the same as your NetBSD login
name. Don’t forget to commit the changes to pkgsrc/doc/CHANGES!

418

Chapter 46 Submitting and Committing

46.3 Committing: Importing a package into CVS

This section is only of interest for pkgsrc developers with write access to the pkgsrc repository. Please
remember that cvs imports files relative to the current working directory, and that the pathname that you
give the cvs import command is so that it knows where to place the files in the repository. Newly created
packages should be imported with a vendor tag of “TNF” and a release tag of “pkgsrc-base”, e.g:

% cd .../pkgsrc/category/pkgname
% cvs import pkgsrc/category/pkgname TNF pkgsrc-base

Remember to move the directory from which you imported out of the way, or cvs will complain the next
time you “cvs update” your source tree. Also don’t forget to add the new package to the category’s
Makefile.

The commit message of the initial import should include part of the DESCR file, so people reading the
mailing lists know what the package is/does.

For new packages, “cvs import” is preferred to “cvs add” because the former gets everything with a
single command, and provides a consistent tag.

46.4 Updating a package to a newer version

Please always put a concise, appropriate and relevant summary of the changes between old and new
versions into the commit log when updating a package. There are various reasons for this:

« A URL is volatile, and can change over time. It may go away completely or its information may be
overwritten by newer information.

+ Having the change information between old and new versions in our CVS repository is very useful for
people who use either cvs or anoncvs.

« Having the change information between old and new versions in our CVS repository is very useful for
people who read the pkgsrc-changes mailing list, so that they can make tactical decisions about when
to upgrade the package.

Please also recognize that, just because a new version of a package has been released, it should not
automatically be upgraded in the CVS repository. We prefer to be conservative in the packages that are
included in pkgsrc - development or beta packages are not really the best thing for most places in which
pkgsrc is used. Please use your judgement about what should go into pkgsrc, and bear in mind that
stability is to be preferred above new and possibly untested features.

46.5 Moving a package in pkgsrc

1. Make a copy of the directory somewhere else.
2. Remove all CVS dirs.

Alternatively to the first two steps you can also do:

% cvs -d user @vs. Net BSD. org: / cvsroot export -D today pkgsrc/category/package

419

Chapter 46 Submitting and Committing

and use that for further work.

. Fix CATEGORIES and any DEPENDS paths that just did “../package” instead of

“..I../category/package”.

. cvs import the modified package in the new place.

. Check if any package depends on it:

% cd /usr/pkgsrc
% grep /package */*/Makefile* */*/buildlink*

. Fix paths in packages from step 5 to point to new location.
. cvs rm (-f) the package at the old location.

. Remove from oldcategory/MakeTfile.

. Add to newcategory/Makefile.

. Commit the changed and removed files:

% cvs comit ol dcat egory/ package ol dcat egory/ Makefil e newcat egory/ Makefile

(and any packages from step 5, of course).

420

Appendix A.
Information

A.1 Where to get this document

This document is currently available in the following formats:

« HTML (http://www.NetBSD.org/guide/en/index.html)
« gzip’d PDF (http://www.NetBSD.org/guide/download/netbsd-en.pdf.gz)
« gzip’d PostScript (http://ww.NetBSD.org/guide/download/netbsd-en.ps.gz)

In addition, this guide is also sold on occasion in printed form at tradeshows and exhibitons, with all
profits being donated to the NetBSD Foundation. On demand printing may at some point be available as
well. If you are interested in obtaining a printed and bound copy of this document, please contact
<www@NetBSD.org>.

A.2 Guide history

This guide was born as a collection of sparse notes that Federico Lupi, the original author of the NetBSD
Guide, wrote mostly for himself. When he realized that they could be useful to other NetBSD users he
started collecting them and created the first version of the guide using the groff formatter. In order to
“easily” get a wider variety of output formats (e.g. HTML and PostScript/PDF), he made the “mistake”
of moving to SGML/DocBook, which is the current format of the sources. Maintainership was picked up
by the NetBSD project and its developers later, and the format was changed to XML/DocBook later due
to better tools and slightly more knowhow on customisations.

The following open source tools were used to write and format the guide:

« the vi editor which ships with NetBSD (nvi).
« the libxslt parser from GNOME for transforming XML/DocBook into HTML.

- the TeX system from the NetBSD packages collection. TeX is used as a backend to produce the PS
and PDF formats.

« the tgif program for drawing the figures.

- the gimp and xv programs for converting between image formats and making small modifications to
the figures.

Many thanks to all the people involved in the development of these great tools.

421

Appendix B.
A simple example package:
bison

We checked to find a piece of software that wasn’t in the packages collection, and picked GNU bison.
Quite why someone would want to have bison when Berkeley yacc is already present in the tree is
beyond us, but it’s useful for the purposes of this exercise.

B.1 files

B.1.1 Makefile

$NetBSD$
#

DISTNAME= bison-1.25
CATEGORIES= devel
MASTER_SITES= ${MASTER_SITE_GNU}

MAINTAINER= thorpej@NetBSD.org
HOMEPAGE= http://www._gnu.org/software/bison/bison.html
COMMENT= GNU yacc clone

GNU_CONFIGURE= vyes
INFO_FILES= bison.info

-include "../../mk/bsd.pkg.mk"

B.1.2 DESCR

GNU version of yacc. Can make re-entrant parsers, and numerous other
improvements. Why you would want this when Berkeley yacc(l) is part
of the NetBSD source tree is beyond me.

B.1.3 PLIST
@comment $NetBSD$

bin/bison
man/manl/bison.1.gz

422

Appendix B. A simple example package: bison

share/bison.simple
share/bison._hairy

B.1.4 Checking a package with pkglint

The NetBSD package system comes with pkgtools/pkglint which helps to check the contents of
these files. After installation it is quite easy to use, just change to the directory of the package you wish
to examine and execute pkglint:

$ pkglint
looks fine.

Depending on the supplied command line arguments (see pkglint(1)), more verbose checks will be
performed. Use e.g. pkglint -v for a very verbose check.

B.2 Steps for building, installing, packaging
Create the directory where the package lives, plus any auxiliary directories:

cd /usr/pkgsrc/lang
nkdir bison

cd bison

nkdir patches

Create Makefi le, DESCR and PLIST (see Chapter 37) then continue with fetching the distfile:

make fetch

>> pison-1.25.tar.gz doesn’t seem to exist on this system.

>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.

Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25_tar.gz (via ftp://orpheus.amdahl.cor
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive._wustl.edu/systems/gnu//bison-1.25_tar.gz (via ftp://orpheus.ar
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://orpl
Successfully retrieved file.

Generate the checksum of the distfile into distinfo:
make nakesum

Now compile:

make

>> Checksum OK for bison-1.25.tar.gz.

===> Extracting for bison-1.25
===> Patching for bison-1.25

423

===> Ignoring empty patch directory

===> Configuring for bison-1.25
cache ./config.cache

creating
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
updating
creating
creating

cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -c -DSTDC_HEADERS=1
cc -g -0 bison LRO.o allocate.o closure

for

whether we are using GNU C..

gcc... cc

Appendix B. A simple example package: bison

yes

for a BSD compatible install... Zusr/bin/install -c -o bin -g bin

how to run the C preprocessor..

for minix/config.h... no

for

whether cross-compiling... no
ANS1 C header files..

for
for
for
for
for
for
for
for

POSIXized ISC...

string.h... yes
stdlib.h... yes
memory.h... yes
working const...

working alloca.h... no

alloca... yes
strerror... yes

cache ./config.cache
./config.status
MakeFfile

===> Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\" -DXPFILE1=\""/usr/pkg/share/bison_hairy\"

no

yes

-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1
-DHAVE_STRING_H=1

. cc -E

-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
-DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLO(
.o conflicts.o derives.o files.o getargs

/files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.sl
sed -e "/~tline/ s|bison]/usr/pkg/share/bison]"” < ./bison.simple > bison.sl

Everything seems OK, so install the files:

make instal

>> Checksum OK for bison-1.25_tar.gz.

===> Installing for bison-1.25

424

Appendix B. A simple example package: bison

sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share /usr/pkg/info /usr/pkg/man/manl

rm -F /usr/pkg/bin/bison

cd /usr/pkg/share; rm -f bison.simple bison._hairy

rm -f /usr/pkg/man/manl/bison.l /usr/pkg/info/bison.info*

install -c -0 bin -g bin -m 555 bison /usr/pkg/bin/bison

/usr/bin/install -c -0 bin -g bin -m 644 bison.sl /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 _/bison.hairy /usr/pkg/share/bison.hairy

cd .; for f in bison.info*; do /Zusr/bin/install -c -0 bin -g bin -m 644 $f /usr/pkg/inf
/usr/bin/install -c -0 bin -g bin -m 644 _/bison.1 /usr/pkg/man/manl/bison.1

===> Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with pkg_delete bison. Should you decide
that you want a binary package, do this now:

nmake package

>> Checksum OK for bison-1.25_tar.gz.

===> Building package for bison-1.25

Creating package bison-1.25.tgz

Registering depends:.

Creating gzip’>d tar ball in ”/u/pkgsrc/lang/bison/bison-1.25_tgz”

Now that you don’t need the source and object files any more, clean up:

make cl ean
===> Cleaning for bison-1.25

425

Appendix C.
Build logs

C.1 Building figlet

make

===> Checking for vulnerabilities in figlet-2_.2_1nb2

=> figlet221.tar.gz doesn’t seem to exist on this system.

=> Attempting to fetch figlet22l.tar.gz from ftp://ftp.figlet.org/pub/figlet/program/uni:

=> [172219 bytes]

Connected to ftp.plig.net.

220 ftp.plig.org NcFTPd Server (licensed copy) ready.

331 Guest login ok, send your complete e-mail address as password.

230-You are user #5 of 500 simultaneous users allowed.

230-

230-

230- | -

230- 1 1 1 -1 -re -t -1l

AC IO T T O [Y Y I O [N N Y NN B
|

230- I_I _l 1 1
230-

230-** Welcome to ftp.plig.org **

230-

230-Please note that all transfers from this FTP site are logged. If you
230-do not like this, please disconnect now.

230-

230-This arhive is available via

230-

230-HTTP: http://ftp.plig.org/

230-FTP: ftp://ftp.plig.org/ (max 500 connections)
230-RSYNC: rsync://ftp._plig.org/ (max 30 connections)
230-

230-Please email comments, bug reports and requests for packages to be
230-mirrored to ftp-admin@plig.org.

230-

230-

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

200 Type okay.

250 ""/pub™ is new cwd.

250-""/pub/figlet” is new cwd.

250-

250-Welcome to the figlet archive at ftp.figlet.org
250-

250- ftp://ftp._figlet.org/pub/figlet/

426

Appendix C. Build logs

250-

250-The official FIGlet web page is:

250- http://www.figlet.org/

250-

250-1F you have questions, please mailto:info@figlet.org. If you want to
250-contribute a font or something else, you can email us.

250

250 ""/pub/Figlet/program”™ is new cwd.

250 ""/pub/Figlet/program/unix"”™ is new cwd.

local: figlet221._tar.gz remote: figlet221.tar.gz

502 Unimplemented command.

227 Entering Passive Mode (195,40,6,41,246,104)

150 Data connection accepted from 84.128.86.72:65131; transfer starting for figlet22l.tal
IS NN Relaiaiaiaiaiaiaiaiaiaiaiai | 65800 64.16 KB/s 00:01 ETA
226 Transfer completed.

172219 bytes received in 00:02 (75.99 KB/s)

221 Goodbye.

=> Checksum OK for figlet221.tar.gz.

===> Extracting for figlet-2.2_.1nb2

===> Required installed package ccache-[0-9]*: ccache-2.3nbl found
===> Patching for figlet-2.2_1nb2

===> Applying pkgsrc patches for figlet-2.2._.1nb2

===> QOverriding tools for figlet-2.2_1nb2

===> Creating toolchain wrappers for figlet-2_.2_1nb2

===> Configuring for figlet-2.2._1nb2

===> Building for figlet-2.2_.1nb2

gcc -02 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\" -DDEFAULTFONTFILE=\"standard.fIf\" -
chmod a+x Ffiglet

gcc -02 -o chkfont chkfont.c

=> Unwrapping files-to-be-installed.

#

make install

===> Checking for vulnerabilities in figlet-2_.2_1nb2

===> Installing for figlet-2.2_1nb2

install -d -o root -g wheel -m 755 /usr/pkg/bin

install -d -o root -g wheel -m 755 /usr/pkg/man/man6

mkdir -p /usr/pkg/share/figlet

cp figlet /usr/pkg/bin

cp chkfont /usr/pkg/bin

chmod 555 figlist showfigfonts

cp Figlist /usr/pkg/bin

cp showfigfonts /usr/pkg/bin

cp fonts/*_.fIf /usr/pkg/share/figlet

cp fonts/*_.flc /usr/pkg/share/figlet

cp Figlet.6 /usr/pkg/man/man6

===> Registering installation for figlet-2.2.1nb2

#

427

Appendix C. Build logs
C.2 Packaging figlet

make package

===> Checking for vulnerabilities in figlet-2.2.1nb2

===> Packaging figlet-2.2_.1nb2

===> Building binary package for figlet-2.2.1nb2

Creating package /home/cvs/pkgsrc/packages/i386/7A11/figlet-2.2._1nb2.tgz
Using SrcDir value of /Zusr/pkg

Registering depends:.

#

428

Appendix D.
Layout of the FTP server’s
package archive

Layout for precompiled binary packages on ftp.NetBSD.org:

/pub/NetBSD/packages/
distfiles/

Unpacked pkgsrc trees

pkgsrc-current -> /pub/NetBSD/NetBSD-current/pkgsrc
pkgsrc-2003Q4 -> N/A

pkgsrc-2004Q1/pkgsrc

pkgsrc archives

pkgsrc-current_tar.gz -> ../NetBSD-current/tar_files/pkgsrc.tar.gz
pkgsrc-2003Q4.tar.gz -> N/A

pkgsrc-2004Q1.tar.gz -> N/A

Per pkgsrc-release/0S-release/arch package archives
pkgsrc-2003Q4/
NetBSD-1.6.2/
1386/
All/
archivers/
foo -> ._/All/foo

pkgsrc-2004Q1/
NetBSD-1.6.2/

1386/
All/
NetBSD-2.0/
1386/
All/
Sun0S-5.9/
sparc/
All/
x86/
All/

Per os-release package archive convenience links

429

Appendix D. Layout of the FTP server’s package archive

NetBSD-1.6.2 -> 1.6.2
1.6.2/
i386 -> ../pkgsrc-2004Q1/NetBSD-1.6.2/1386

m68k/
All/

archivers/
foo -> ../All/foo

amiga -> m68k
atari -> m68k

2.0 -> NetBSD-2.0 # backward compat, historic

NetBSD-2.0/
i386 -> ../pkgsrc-2004Q1/NetBSD-2.0/1386

Sun0S-5.9/
sparc -> ../pkgsrc-2004Q1/Sun0S-5.9/sparc

x86 -> ../pkgsrc-2004Q1/Sun0S-5.9/x86

To create:

1. Run bulk build, see Section 35.3

2. Upload /usr/pkgsrc/packages to
ftp://ftp._NetBSD.org/pub/NetBSD/packages/\
pkgsrc-branch

pkgsrc-2004Q4/\
‘uname -s“-“uname -r</ # 0S & version
“uname -p“ # architecture

3. If necessary, create a symlink In -s ‘uname -m* ‘uname -p‘ (amiga -> m68k, ...)

430

Appendix E.
Editing guidelines for the pkgsrc
guide

This section contains information on editing the pkgsrc guide itself.

E.1 Targets

The pkgsrc guide’s source code is stored in pkgsrc/doc/guide/Files, and several files are created
from it:

» pkgsrc/doc/pkgsrc.txt
» pkgsrc/doc/pkgsrc.html

« http://www.NetBSD.org/Documentation/pkgsrc/:the documentation on the NetBSD website
will be built from pkgsrc and kept up to date on the web server itself. This means you must make sure
that your changes haven’t broken the build!

« http://www._NetBSD.org/Documentation/pkgsrc/pkgsrc.pdf: PDF version of the pkgsrc
guide.

« http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.ps: PostScript version of the
pkgsrc guide.

E.2 Procedure

The procedure to edit the pkgsrc guide is:

- Make sure you have the packages needed to re-generate the pkgsrc guide (and other XML-based
NetBSD documentation) installed. These are “netbsd-doc” for creating the ASCII and HTML
versions, and “nethsd-doc-print” for the PostScript and PDF versions. You will need both packages
installed, to make sure documentation is consistent across all formats. The packages can be found in
pkgsrc/meta-pkgs/netbsd-doc and pkgsrc/meta-pkgs/netbsd-doc-print.

« Edit the XML file(s) in pkgsrc/doc/guide/Files.

« Run make extract && make do-lint in pkgsrc/doc/guide to check the XML syntax, and fix it if
needed.

« Run make in pkgsrc/doc/guide to build the HTML and ASCII version.

- Ifall is well, run make install-doc to put the generated files into pkgsrc/doc.

431

Appendix E. Editing guidelines for the pkgsrc guide

cvs commit pkgsrc/doc/guide/files
cvs commit -m re-generate pkgsrc/doc/pkgsrc.{html,txt}

Until the webserver on www.NetBSD.org is really updated automatically to pick up changes to the
pkgsrc guide automatically, also run make install-htdocs HTDOCSDIR=../../../htdocs (or similar,
adjust HTDOCSDIRY!).

cvs commit htdocs/Documentation/pkgsrc

432

Appendix F.
Contributing to the NetBSD

guide

There is a interest for both introductory and advanced documentation on NetBSD: this is probably a sign
of the increased popularity of this operating system and of a growing user base. It is therefore important
to keep adding new material to this guide and improving the existing text.

Whatever your level of expertise with NetBSD, you can contribute to the development of this guide. This
appendix explains how, and what you should know before you start.

If you are a beginner and you found this guide helpful, please send your comments and suggestions to
<www@NetBSD.org>. For example, if you tried something described here and it didn’t work for you, or
if you think that something is not clearly explained, or if you have an idea for a new chapter, etc: this
type of feedback is very useful.

If you are an intermediate or advanced user, please consider contributing new material to the guide: you
could write a new chapter or improve an existing one.

If you have some spare time, you could translate the guide into another language.

Whatever you choose to do, don’t start working before having contacted us, in order to avoid duplicating
efforts.

F.1 Translating the guide

If you want to translate the guide the first thing to do is, as already said, to contact <www@NetBSD .org>
or to write to the <netbsd-docs@NetBSD.org> mailing list. There are several possible scenarios:

« someone else is already working on a translation into your language; you could probably help him.

« nobody is currently working on a translation into your language, but some chapters have already been
translated and you can translate the remaining chapters.

- you start a new translation. Of course you don’t need to translate all the guide: this is a big effort, but if
you start translating one or two chapters it’ll be a good starting point for someone else.

Even if a translation is already available, it is always necessary to keep it up to date with respect to the
master version when new material is added or corrections are made: you could become the mantainer of
a translation.

F.1.1 What you need to start a translation

In short, all you need is:

433

Appendix F. Contributing to the NetBSD guide

- the guide sources. They are part of “htdocs”, check it out from (anonymous) CVS like you would
check out “src” or “pkgsrc” as described in Chapter 27.

- atext editor, such as vi or emacs.

Important: Don't start working with HTML or other formats: it will be very difficult to convert you work
to XML/DocBook, the format used by the NetBSD guide.

F.1.2 Writing XML/DocBook

In order to translate the guide you don’t need to learn XML/DocBook; get the XML/DocBook sources of
the NetBSD guide and work directly on them, in order to reuse the existing format (i.e. tags) in your
work. For example, to translate the previous note, you would do the following:

1. load the english source of the current chapter, ap-contrib._xml, in your editor.
2. find the text of the previous note. You will see something like:

<important>
<para>
Don’t start working with HTML or other formats:
it will be very difficult to convert you work
to XML/DocBook, the format used by the NetBSD
guide.
</para>
</important>

3. add your translation between the tags, after the english version. The text now looks like this:

<imporant>
<para>
Don’t start working with HTML or other formats:
it will be very difficult to convert you work
to XML/DocBook, the format used by the NetBSD
guide.
your translation goes here
your translation goes here
your translation goes here
</para>
</important>

4. delete the four lines of english text between the tags leaving your translation.

<important>
<para>
your translation goes here
your translation goes here
your translation goes here
</para>
</important>

434

Appendix F. Contributing to the NetBSD guide

When you write the translation please use the same indentation and formatting style of the original text.
See Section F.3 for an example.

One problem that you will probably face when writing the DocBook text is that of national characters
(e.g. accented letters like “&™). You can use these characters in your source document but it’s preferable
to replace them with XML entities. For example, “e” is written as “è”. Of course this makes your
source text difficult to write and to read; the first problem, writing, can be solved using a good editor with
macro capabilities. Vi and emacs, which are very popular choices, both have this feature and you can
map the accented keys of your keyboard to generate the required entities automatically. For example, for
vi you can put a line like the following in your _exrc file:

map! & è

Appendix G explains how to install the software tools to generate HTML and other formats from the
DocBook sources. This is useful if you want to check your work (i.e. make sure you didn’t inadvertedly
delete some tag) or to see what the output looks like, but it is not a requirement for a translation. 1f you
don’t want to install the software tools, send your patches and sources to <www@NetBSD.org> and we’ll
check them and create the various output formats.

F.2 Sending contributions

If you want to contribute some material to the guide you have several options, depending on the amount
of text you want to write. If you just want to send a small fix, the easiest way to get it into the guide is to
send it to <www@NetBSD.org> via e-mail. If you plan to write a substantial amount of text, such as a
section or a chapter, you can choose among many formats:

« XML/DocBook; this is the preferred format. If you choose to use this format, please get the guide
sources and use them as a template for the indentation and text layout, in order to keep the formatting
consistent.

- text; if the formatting is kept simple, it is not difficult to convert text to XML format.

- other formats are also accepted if you really can’t use any of the previous ones.

F.3 XML/DocBook template

For the guide I use a formatting style similar to a program. The following is a template:

<chapter id=""chap-xxxxx'>
<title>This is the title of the chapter</title>

<para>
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph.

</para>

<I-- ——>

435

<sectl>

Appendix F. Contributing to the NetBSD guide

<title>This is the title of a sectil</title>

<para>
This is the text of a paragraph
This is the text of a paragraph
This is the text of a paragraph
</para>

<sect2>

This is the text of a paragraph.
This is the text of a paragraph.

<title>This is the title of a sect2</title>

<para>
A sect2 is nested inside a sectl.
</para>
</sect2>

</sectl>

<l

<sectl>
<title>This is the title of another

<para>
An item zed |ist:
<itemizedlist>
<listitem>
<para>
t ext
</para>
</listitem>
<listitem>
<para>
t ext
</para>
</listitem>
</itemizedlist>
</para>

</sectl>
</chapter>

The defaults are:

« two spaces for each level of indentation

« lines not longer than 72 characters.

sect 1</title>

« use separator lines (comments) between sectl/sect2.

436

Appendix G.
Getting started with
XML/DocBook

This appendix describes the installation of the tools needed to produce a formatted version of the
NetBSD guide. Besides that it contains instructions that describe how to build the guide. This appendix
assumes knowledge of pkgsrc, see Part VI in The NetBSD & pkgsrc Guide for details.

G.1 What is XML/DocBook

XML (eXtensible Markup Language) is a language which is used to define other languages based on
markups, i.e. with XML you can define the grammar (i.e. the valid constructs) of markup languages.
HTML, for example, can be defined using XML. If you are a programmer, think of XML like the BNF
(Backus-Naur Form): a tool used to define grammars.

DocBook is a markup template defined using XML; DocBook lists the valid tags that can be used in a
DocBook document and how they can be combined together. If you are a programmer, think of DocBook
as the grammar of a language specified with the BNF. For example, it says that the tags:

<para> ... </para>

define a paragraph, and that a <para> can be inside a <sect1> but that a <sect1> cannot be inside a
<para>.

Therefore, when you write a document, you write a document in DocBook and not in XML.: in this
respect DocBook is the counterpart of HTML (although the markup is richer and a few concepts are
different).

The DocBook specification (i.e. the list of tags and rules) is called a DTD (Document Type Definition).

In short, a DTD defines how your source documents look like but it gives no indication about the format
of your final (compiled) documents. A further step is required: the DocBook sources must be converted
to some other representation like, for example, HTML or PDF. This step is performed by a tool like Jade,
which applies the DSSSL transforms to the source document. DSSSL (Document Style Semantics and
Specification Language) is a format used to define the stylesheets necessary to perform the conversion
from DocBook to other formats. The build structure for the guide also supports the XSL (Extensible
Stylesheet Language) stylesheet language. The xsltproc program is used for transforming XML with
XSL stylesheets.

437

Appendix G. Getting started with XML/DocBook

G.2 Installing the necessary tools

All the tools that are needed to generate the guide in various formats can be installed through the
netbsd-www, netbsd-doc, and netbsd-doc-print meta-packages. Together the netbsd-doc and netbsd-www
packages install everything that is needed to generate the HTML version of the guide. To be able to
generate printable formats, such as Postscript and PDF, install the netbsd-doc-print meta-package.

Supposing that a current pkgsrc tree is installed at Zusr/pkgsrc, you can install all these
meta-packages with:

cd /usr/pkgsrc/ net a- pkgs/ net bsd- ww

make instal

cd /usr/pkgsrc/ neta-pkgs/ net bsd- doc

nmake instal

cd /usr/pkgsrc/ net a- pkgs/ net bsd-doc-print
nmake instal

Lo I A

G.3 Using the tools

This section provides an overview of how the guide can be compiled from XML to any of the following
target formats: html, html-split, ascii, ps, and pdf. Creating all formats is the default. To produce any of
the above output formats, run make with the format(s) as argument.

Let’s look at a few examples.
Before looking at the output generated in any of the above-mentioned formats, integrity of the XML
structure has to be ensured. This can be done by running make lint:

$ cd htdocs/ gui de/ en
$ make lint

Fix any errors you may get. When working on the contents of the guide, you may want to produce the
HTML version to have a look at it for proofreading:

$ cd htdocs/ gui de/ en
$ make htnl-split

After this, please update the Postscript and PDF versions of the guide too. The command for this is:

$ cd htdocs/ gui de/ en
$ nmeke pdf

Before you go and commit the generated files, please make sure that you commit the XML files first,
then re-generated all formats, i.e. the procedure would be something like:

cd htdocs/ gui de/en
cvs commit *.xni

make |int
make
make install-doc

R T o e I

438

Appendix G. Getting started with XML/DocBook

$cd ..
$ cvs commit en downl oad

When running make with no argument, all formats will be re-generated. This is the default way to build
the guide for the NetBSD.org website.

G.4 Language-specific notes

G.4.1 Enabling hyphenation for the Italian language

The NetBSD guide is currently available in three languages: English, French and Italian. Of these, only
English and French are automatically hyphenated by TeX. To turn on hyphenation for the Italian
language, some simple steps are required:

Edit Zusr/pkg/share/texmf/tex/generic/config/language.datand remove the comment (%)
from the line of the Italian hyphenation. I.e.

%italian ithyph.tex
becomes
italian ithyph.tex

Note: As more translations of the guide become available, you will probably need to enable other
hyphenation patterns as well.

Now the latex and pdflatex formats must be recreated:

cd /usr/ pkg/ share/texnf/web2c
fmtutil --byfnt latex
fmtutil --byfnt pdflatex

If you check, for example, 1atex. log you will find something like:

Babel <v3.6Z> and hyphenation patterns for american, french, german,
ngerman, italian, nohyphenation, loaded.

Please note that there are many ways to perform these operations, depending on your level of expertise
with the TeX system (mine is very low). For example, you could use the "texconfig" interactive program,
or you could recreate the formats by hand using the tex program.

If you know a better way of doing the operations described in this appendix, please let me know.

G.5 Links

The official DocBook home page (http://www.oasis-open.org/docbook/) is where you can find the
definitive documentation on DocBook. You can also read online or download a copy of the book

439

Appendix G. Getting started with XML/DocBook

DocBook: The Definitive Guide (http://www.oasis-open.org/docbook/documentation/reference/) by
Norman Walsh and Leonard Muellner.

For DSSSL start looking at http://nwalsh.com.
XSL is described at http://www.w3.0rg/Style/XSL/.

Jade/OpenJade sources and info can be found on the OpenJade Home Page
(http://openjade.sourceforge.net/).

If you want to produce Postscript and PDF documents from your DocBook source, look at the home
page of JadeTex (http://sourceforge.net/projects/jadetex).

The home page of Markus Hoenicka (http://ourworld.compuserve.com/homepages/hoenicka_markus/)
explains everything you need to know if you want to work with SGML/DocBook on the Windows NT
platform.

440

Appendix H.
Acknowledgements

The NetBSD Guide was originally written by Federico Lupi who managed the sources, coordinated
updates, and merged all contributions on his own. Since then, it has been updated and maintained by the
NetBSD www team. The Guide has progressed thanks to the contributions of many people who have
volunteered their time and effort, supplied material and sent in suggestions and corrections.

H.1 Original acknowledgements

Federico’s original credits are:

« Paulo Aukar

« Grant Beattie, converted to XML DocBook.
« Manolo De Santis, Audio Chapter

« Eric Delcamp, Boot Floppies

+ Hubert Feyrer, who contributed the Introduction to TCP/IP Networking in Chapter 21 including Next
generation Internet protocol - IPv6 and the section on getting IPv6 Connectivity & Transition via 6to4
in Section 26.4. He also helped with the SGML to XML transition.

« Jason R. Fink

« Daniel de Kok, audio and linux chapters fixes.

« Reinoud Koornstra, CVS chapter and rebuilding /dev in the Misc chapter.

« Brian A. Seklecki <lavalamp@burghcom.com>who contributed the CCD Chapter.
+ Guillain Seuillot

« Martti Kuparinen, RAIDframe documentation.

- David Magda

H.2 Current acknowledgements

This document is currently maintained by the NetBSD www team. Thanks to their efforts, the document
is kept up to date and available online at all times. In addition, special thanks go to (in alphabetical
order):

« Hubert Feyrer, for getting the guide up to speed for NetBSD 2.0, and for making numerous
improvements to all chapters.

- Jason R. Fink, for maintaining this document and integrating changes.

441

Appendix H. Acknowledgements

- Andreas Hallman, for his information in Section 26.4.10.

- Daniel de Kok, for constant contributions of new chapters, maintenance of existing chapters and his
translation work.

« Hiroki Sato, for allowing us to build PDF and PS versions of this document.
« Jan Schaumann, for maintenance work and www/htdocs managment.
« Lubomir Sedlacik, for some details on using CGD for swap in Section 14.5.

- Dag-Erling Smargrav, for the article on Chapter 17. See Section H.3.2 for the license accompanying
license.

« Florian Stohr, for Section 14.4.

H.3 Licenses

H.3.1 Federico Lupi’s original license of this guide

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Federico Lupi for the NetBSD
Project.

4. The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

H.3.2 Networks Associates Technology’s license on the PAM article

Copyright (c) 2001-2003 Networks Associates Technology, Inc.
All rights reserved.

442

Appendix H. Acknowledgements

This software was developed for the FreeBSD Project by ThinkSec AS and
Network Associates Laboratories, the Security Research Division of

Network Associates, Inc. under DARPA/SPAWAR contract N66001-01-C-8035
("CBOSS"), as part of the DARPA CHATS research program.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

443

Appendix I.

Bibliography

Bibliography
[AeleenFrisch] Aeleen Frisch, 1991, O’Reilly & Associates, Essential System Administration.
[CraigHunt] Craig Hunt, 1993, O’Reilly & Associates, TCP/IP Network Administration.
[RFC1034] P. V. Mockapetris, 1987, RFC 1034: Domain names - concepts and facilities.
[RFC1035] P. V. Mockapetris, 1987, RFC 1035: Domain names - implementation and specification.

[RFC1055] J. L. Romkey, 1988, RFC 1055: Nonstandard for transmission of IP datagrams over serial
lines: SLIP.

[RFC1331] W. Simpson, 1992, RFC 1331: The Point-to-Point Protocol (PPP) for the Transmission of
Multi-protocol Datagrams over Point-to-Point Links.

[RFC1332] G. McGregor, 1992, RFC 1332: The PPP Internet Protocol Control Protocol (IPCP).

[RFC1933] R. Gilligan and E. Nordmark, 1996, RFC 1933: Transition Mechanisms for 1Pv6 Hosts and
Routers.

[RFC2004] C. Perkins, 1996, RFC 2003: IP Encapsulation within IP.
[RFC2401] S. Kent and R. Atkinson, 1998, RFC 2401: Security Architecture for the Internet Protocol.
[RFC2411] R. Thayer, N. Doraswamy, and R. Glenn, 1998, RFC 2411: IP Security Document Roadmap.

[RFC2461] T. Narten, E. Nordmark, and W. Simpson, 1998, RFC 2461: Neighbor Discovery for IP
Version 6 (IPv6).

[RFC2529] B. Carpenter and C. Jung, 1999, RFC 2529: Transmission of IPv6 over IPv4 Domains
without Explicit Tunnels.

[RFC3024] G. Montenegro, 2001, RFC 3024: Reverse Tunneling for Mobile IP.

[RFC3027] M. Holdrege and P. Srisuresh, 2001, RFC 3027: Protocol Complications with the 1P Network
Address Translator.

[RFC3056] B. Carpenter and K. Moore, 2001, RFC 3056: Connection of IPv6 Domains via IPv4 Clouds.

444

	The NetBSD & pkgsrc Guide
	Table of Contents
	List of Tables
	
	Purpose of this guide
	I. About NetBSD and pkgsrc
	Chapter 1
	What is NetBSD?
	1.1 The story of NetBSD
	1.2 NetBSD features
	1.3 Supported platforms
	1.4 NetBSD's target users
	1.5 Applications for NetBSD
	1.6 The philosophy of NetBSD
	1.7 How to get NetBSD

	Chapter 2
	What is pkgsrc?
	2.1 Introduction
	2.2 Overview
	2.3 Terminology
	2.4 Typography

	II. System installation and related issues
	Chapter 3
	Installation
	3.1 Documentation
	3.2 The layout of a NetBSD installation
	3.3 Installation
	3.3.1 Keyboard
	3.3.2 Geometries
	3.3.3 Partitions
	3.3.4 Hard disk space requirements
	3.3.5 Retry

	Chapter 4
	Example Installation
	4.1 Introduction
	4.2 Preparing the installation
	4.3 Creating the installation floppy
	4.4 Last preparatory steps
	4.5 Beginning the installation
	4.6 Partitions
	4.7 Disklabel
	4.8 Creating a disklabel
	4.9 The disk preparation process
	4.10 Choosing the installation media
	4.11 Installing from CDROM and DVD
	4.12 Installing via FTP
	4.13 Extracting sets
	4.14 System configuration

	Chapter 5
	The first boot
	5.1 If something went wrong
	5.2 Login
	5.3 Changing the keyboard layout
	5.4 The man command
	5.5 Changing the root password
	5.6 Changing the shell
	5.7 System time
	5.8 Basic configuration in /etc/rc.conf
	5.9 Enabling FFS softdependencies
	5.10 Rebooting the system

	Chapter 6
	The second boot
	6.1 dmesg
	6.2 Mounting the CDROM
	6.3 Mounting the floppy
	6.4 Accessing a DOS/Windows partition
	6.5 Adding users
	6.6 Shadow passwords
	6.7 Stopping and rebooting the system

	Chapter 7
	rc.d System
	7.1 The rc.d Configuration
	7.2 The rc.d Scripts
	7.3 The Role of rcorder and rc Scripts
	7.4 Additional Reading

	III. System configuration, administration and tuning
	Chapter 8
	Editing
	8.1 Introducing vi
	8.1.1 The vi interface
	8.1.2 Switching to Edit Mode
	8.1.3 Switching Modes & Saving Buffers to Files
	8.1.4 Yanking and Putting
	8.1.4.1 Oops I Did Not Mean to do that!

	8.1.5 Navigation in the Buffer
	8.1.6 Searching a File, the Alternate Navigational Aid
	8.1.6.1 Additional Navigation Commands

	8.1.7 A Sample Session

	8.2 Configuring vi
	8.2.1 Extensions to .exrc
	8.2.2 Documentation

	8.3 Using tags with vi

	Chapter 9
	X
	9.1 What is X?
	9.2 Configuration
	9.3 The mouse
	9.4 The keyboard
	9.5 The monitor
	9.6 The video card
	9.6.1 XFree 3.x
	9.6.2 XFree86 4.x

	9.7 Starting X
	9.8 Customizing X
	9.9 Other window managers
	9.10 Graphical login with xdm

	Chapter 10
	Linux emulation
	10.1 Emulation setup
	10.1.1 Configuring the kernel
	10.1.2 Installing the Linux libraries
	10.1.3 Installing Acrobat Reader

	10.2 Directory structure
	10.3 Emulating /proc

	Chapter 11
	Audio
	11.1 Basic hardware elements
	11.2 BIOS settings
	11.3 Configuring the audio device
	11.4 Configuring the kernel audio devices
	11.5 Advanced commands
	11.5.1 audioctl(1)
	11.5.2 mixerctl(1)
	11.5.3 audioplay(1)
	11.5.4 audiorecord(1)

	Chapter 12
	Printing
	12.1 Enabling the printer daemon
	12.2 Configuring /etc/printcap
	12.3 Configuring Ghostscript
	12.4 Printer management commands
	12.5 Remote printing

	Chapter 13
	Using removable media
	13.1 Initializing and using floppy disks
	13.2 How to use a ZIP disk
	13.3 Reading data CDs with NetBSD
	13.4 Reading multisession CDs with NetBSD
	13.5 Allowing normal users to access CDs
	13.6 Mounting an ISO image
	13.7 Using video CDs with NetBSD
	13.8 Using audio CDs with NetBSD
	13.9 Creating an MP3 (MPEG layer 3) file from an audio CD
	13.10 Using a CDR writer with data CDs
	13.11 Using a CDR writer to create audio CDs
	13.12 Creating an audio CD from mp3s
	13.13 Copying an audio CD
	13.14 Copying a data CD with two drives
	13.15 Using CDRW rewritables
	13.16 DVD support
	13.17 Creating ISO images from a CD
	13.18 Getting volume information from CDs and ISO images

	Chapter 14
	The cryptographic device driver (CGD)
	14.1 Overview
	14.1.1 Why use disk encryption?
	14.1.2 Logical Disk Drivers
	14.1.3 Availability

	14.2 Components of the CryptoGraphic Disk system
	14.2.1 Kernel driver pseudodevice
	14.2.2 Ciphers
	Encryption Methods
	14.2.3 Verification Methods
	Verification Methods

	14.3 Example: encrypting your disk
	14.3.1 Preparing the disk
	14.3.2 Scrubbing the disk
	14.3.3 Creating the cgd
	14.3.4 Modifying configuration files
	14.3.5 Restoring data

	14.4 Example: encrypted CDs/DVDs
	14.4.1 Introduction
	14.4.2 Creating an encrypted CD/DVD
	14.4.3 Using an encrypted CD/DVD

	14.5 Suggestions and Warnings
	14.5.1 Using a randomkey cgd for swap
	14.5.2 Warnings

	14.6 Further Reading
	Bibliography

	Chapter 15
	Concatenated Disk Device (CCD) configuration
	15.1 Install physical media
	15.2 Configure Kernel Support
	15.3 Disklabel each volume member of the CCD
	15.4 Configure the CCD
	15.5 Initialize the CCD device
	15.6 Create a 4.2BSD/UFS filesystem on the new CCD device
	15.7 Mount the filesystem

	Chapter 16
	NetBSD RAIDframe
	16.1 RAIDframe Introduction
	16.1.1 About RAIDframe
	16.1.2 A warning about Data Integrity, Backups, and High Availability
	16.1.3 Getting Help

	16.2 Setup RAIDframe Support
	16.2.1 Kernel Support
	16.2.2 Power Redundancy and Disk Caching

	16.3 Example: RAID1 Root Disk
	16.3.1 PseudoProcess Outline
	16.3.2 Hardware Review
	16.3.3 Initial Install on Disk0/wd0
	16.3.4 Preparing Disk1/wd1
	16.3.5 Initializing the RAID Device
	16.3.6 Setting up Filesystems
	16.3.7 Setting up kernel dumps
	16.3.8 Migrating System to RAID
	16.3.9 The first boot with RAID
	16.3.10 Adding Disk0/wd0 to RAID
	16.3.11 Testing Boot Blocks

	16.4 Testing kernel dumps

	Chapter 17
	Pluggable Authentication Modules (PAM)
	17.1 About
	17.2 Introduction
	17.3 Terms and conventions
	17.3.1 Definitions

	account
	applicant
	arbitrator
	chain
	client
	facility
	module
	policy
	server
	service
	session
	token
	transaction
	17.3.2 Usage examples
	17.3.2.1 Client and server are one
	17.3.2.2 Client and server are separate
	17.3.2.3 Sample policy

	17.4 PAM Essentials
	17.4.1 Facilities and primitives
	17.4.2 Modules
	17.4.2.1 Module Naming
	17.4.2.2 Module Versioning
	17.4.2.3 Module Path

	17.4.3 Chains and policies
	17.4.4 Transactions

	17.5 PAM Configuration
	17.5.1 PAM policy files
	17.5.1.1 The /etc/pam.conf file
	17.5.1.2 The /etc/pam.d directory
	17.5.1.3 The policy search order

	17.5.2 Breakdown of a configuration line
	17.5.3 Policies

	17.6 PAM modules
	17.6.1 Common Modules
	17.6.1.1 pamdeny(8)
	17.6.1.2 pamecho(8)
	17.6.1.3 pamexec(8)
	17.6.1.4 pamftpusers(8)
	17.6.1.5 pamgroup(8)
	17.6.1.6 pamguest(8)
	17.6.1.7 pamkrb5(8)
	17.6.1.8 pamksu(8)
	17.6.1.9 pamlastlog(8)
	17.6.1.10 pamloginaccess(8)
	17.6.1.11 pamnologin(8)
	17.6.1.12 pampermit(8)
	17.6.1.13 pamradius(8)
	17.6.1.14 pamrhosts(8)
	17.6.1.15 pamrootok(8)
	17.6.1.16 pamsecuretty(8)
	17.6.1.17 pamself(8)
	17.6.1.18 pamssh(8)
	17.6.1.19 pamunix(8)

	17.6.2 FreeBSDspecific PAM Modules
	17.6.2.1 pamopie(8)
	17.6.2.2 pamopieaccess(8)
	17.6.2.3 pampasswdqc(8)
	17.6.2.4 pamtacplus(8)

	17.6.3 NetBSDspecific PAM Modules
	17.6.3.1 pamskey(8)

	17.7 PAM Application Programming
	17.8 PAM Module Programming
	17.9 Sample PAM Application
	17.10 Sample PAM Module
	17.11 Sample PAM Conversation Function
	17.12 Further Reading
	Bibliography
	Papers
	User Manuals
	Related Web pages

	Chapter 18
	Tuning NetBSD
	18.1 Introduction
	18.1.1 Overview
	18.1.1.1 What is Performance Tuning?
	18.1.1.2 When does one tune?
	18.1.1.3 What these Documents Will Not Cover
	18.1.1.4 How Examples are Laid Out

	18.2 Tuning Considerations
	18.2.1 General System Configuration
	18.2.1.1 Filesystems and Disks
	18.2.1.2 Swap Configuration

	18.2.2 System Services
	18.2.3 The NetBSD Kernel
	18.2.3.1 Removing Unrequired Drivers
	18.2.3.2 Configuring Options
	18.2.3.3 System Settings

	18.3 Visual Monitoring Tools
	18.3.1 The top Process Monitor
	18.3.1.1 Other Neat Things About Top

	18.3.2 The sysstat utility

	18.4 Monitoring Tools
	18.4.1 fstat
	18.4.2 iostat
	18.4.3 ps
	18.4.4 vmstat

	18.5 Network Tools
	18.5.1 ping
	18.5.2 traceroute
	18.5.3 netstat
	18.5.4 tcpdump
	18.5.4.1 Specific tcpdump Usage

	18.6 Accounting
	18.6.1 Accounting
	18.6.2 Reading Accounting Information
	18.6.2.1 lastcomm
	18.6.2.2 sa

	18.6.3 How to Put Accounting to Use

	18.7 Kernel Profiling
	18.7.1 Getting Started
	18.7.1.1 Using kgmon

	18.7.2 Interpretation of kgmon Output
	18.7.2.1 Flat Profile
	18.7.2.2 Call Graph Profile

	18.7.3 Putting it to Use
	18.7.4 Summary

	18.8 System Tuning
	18.8.1 Using sysctl
	18.8.2 memfs & softdeps
	18.8.2.1 Using memfs
	18.8.2.2 Using softdeps

	18.9 Kernel Tuning
	18.9.1 Preparing to Recompile a Kernel
	18.9.2 Configuring the Kernel
	18.9.2.1 Some example Configuration Items
	18.9.2.2 Some Drivers
	18.9.2.3 Multi Pass

	18.9.3 Building the New Kernel
	18.9.4 Shrinking the NetBSD kernel
	18.9.4.1 Removing ELF sections and debug information
	18.9.4.2 Compressing the Kernel

	Chapter 19
	NetBSD Veriexec subsystem
	19.1 How it works
	19.2 Signatures file
	19.3 Generating fingerprints
	19.4 Strict levels
	19.5 Kernel configuration

	Chapter 20
	Miscellaneous operations
	20.1 Creating a custom install/boot floppies for i386
	20.2 Synchronizing the system clock with NTP
	20.3 Installing the boot manager
	20.4 Deleting the disklabel
	20.5 Speaker
	20.6 Forgot root password?
	20.7 Adding a new hard disk
	20.8 Password file is busy?
	20.9 How to rebuild the devices in /dev

	IV. Networking and related issues
	Chapter 21
	Introduction to TCP/IP Networking
	21.1 Audience
	21.2 Supported Networking Protocols
	21.3 Supported Media
	21.3.1 Serial Line
	21.3.2 Ethernet

	21.4 TCP/IP Address Format
	21.5 Subnetting and Routing
	21.6 Name Service Concepts
	21.6.1 /etc/hosts
	21.6.2 Domain Name Service (DNS)
	21.6.3 Network Information Service (NIS/YP)
	21.6.4 Other

	21.7 Next generation Internet protocol IPv6
	21.7.1 The Future of the Internet
	21.7.2 What good is IPv6?
	21.7.2.1 Bigger Address Space
	21.7.2.2 Mobility
	21.7.2.3 Security

	21.7.3 Changes to IPv4
	21.7.3.1 Addressing
	21.7.3.2 Multiple Addresses
	21.7.3.3 Multicasting
	21.7.3.4 Name Resolving in IPv6

	Chapter 22
	Setting up TCP/IP on NetBSD in practice
	22.1 A walk through the kernel configuration
	22.2 Overview of the network configuration files
	22.3 Connecting to the Internet with a modem
	22.3.1 Getting the connection information
	22.3.2 resolv.conf and nsswitch.conf
	22.3.3 Creating the directories for pppd
	22.3.4 Connection script and chat file
	22.3.5 Authentication
	22.3.5.1 PAP/CHAP authentication
	22.3.5.2 Login authentication

	22.3.6 pppd options
	22.3.7 Testing the modem
	22.3.8 Activating the link
	22.3.9 Using a script for connection and disconnection
	22.3.10 Running commands after dialin

	22.4 Creating a small home network
	22.5 Setting up an Internet gateway with IPNAT
	22.5.1 Configuring the gateway/firewall
	22.5.2 Configuring the clients
	22.5.3 Some useful commands

	22.6 A common LAN setup
	22.7 Connecting two PCs through a serial line
	22.7.1 Connecting NetBSD with BSD or Linux
	22.7.2 Connecting NetBSD and Windows NT
	22.7.3 Connecting NetBSD and Windows 95

	Chapter 23
	The Internet Super Server inetd
	23.1 Overview
	23.2 What is inetd?
	23.3 Configuring inetd /etc/inetd.conf
	23.4 Services /etc/services
	23.5 Protocols /etc/protocols
	23.6 Remote Procedure Calls (RPC) /etc/rpc
	23.7 Allowing and denying hosts /etc/hosts.{allow,deny}
	23.8 Adding a Service
	23.9 When to use or not to use inetd
	23.10 Other Resources

	Chapter 24
	The Domain Name System
	24.1 DNS Background and Concepts
	24.1.1 Naming Services
	24.1.2 The DNS namespace
	24.1.3 Resource Records
	Common DNS Resource Records
	24.1.4 Delegation
	24.1.5 Delegation to multiple servers
	24.1.6 Secondaries, Caching, and the SOA record
	Fields of the SOA Record
	24.1.7 Name Resolution
	24.1.8 Reverse Resolution

	24.2 The DNS Files
	24.2.1 /etc/namedb/named.conf
	24.2.1.1 options
	24.2.1.2 zone diverge.org

	24.2.2 /etc/namedb/localhost
	24.2.3 /etc/namedb/zone.127.0.0
	24.2.4 /etc/namedb/diverge.org
	24.2.5 /etc/namedb/1.168.192
	24.2.6 /etc/namedb/root.cache

	24.3 Using DNS
	24.4 Setting up a caching only name server
	24.4.1 Testing the server

	Chapter 25
	Mail and news
	25.1 sendmail
	25.1.1 Configuration with genericstable
	25.1.2 Testing the configuration
	25.1.3 Using an alternative MTA

	25.2 fetchmail
	25.3 Reading and writing mail with mutt
	25.4 Strategy for receiving mail
	25.5 Strategy for sending mail
	25.6 Advanced mail tools
	25.7 News with tin

	Chapter 26
	Miscellaneous networking topics
	26.1 Bridge
	26.1.1 Bridge example
	26.2 Network File System (NFS)
	26.2.1 NFS setup example

	26.3 Setting up NFS automounting for /net with amd(8)
	26.3.1 Introduction
	26.3.2 Actual setup

	26.4 IPv6 Connectivity & Transition via 6to4
	26.4.1 Getting 6to4 IPv6 up & running
	26.4.2 Obtaining IPv6 Address Space for 6to4
	26.4.3 How to get connected
	26.4.4 Security Considerations
	26.4.5 Data Needed for 6to4 Setup
	26.4.6 Kernel Preparation
	26.4.7 6to4 Setup
	26.4.8 Quickstart using pkgsrc/net/hf6to4
	26.4.9 Known 6to4 Relay Routers
	26.4.10 Tunneling 6to4 through an IPFilter firewall
	26.4.11 Conclusion & Further Reading

	V. Building the system
	Chapter 27
	Obtaining the sources
	27.1 Preparing directories
	27.2 Terminology
	27.3 Downloading tarballs
	27.3.1 Downloading a NetBSD release
	27.3.2 Downloading snapshots from a NetBSD stable branch
	27.3.3 Downloading the NetBSDcurrent development branch
	27.3.4 Downloading a pkgsrc200xQy stable branch
	27.3.5 Downloading the pkgsrccurrent development branch

	27.4 Fetching by CVS
	27.4.1 Getting CVS
	27.4.2 Fetching a NetBSD release
	27.4.3 Fetching a NetBSD stable branch
	27.4.4 Fetching the NetBSDcurrent development branch
	27.4.5 Fetching a pkgsrc200xQy stable branch
	27.4.6 Fetching the pkgsrccurrent development branch
	27.4.7 Saving some cvs(1) options

	27.5 Sources on CD (ISO)

	Chapter 28
	Crosscompiling NetBSD with build.sh
	28.1 Building the crosscompiler
	28.2 Configuring the kernel manually
	28.3 Crosscompiling the kernel manually
	28.4 Crosscompiling the kernel with build.sh
	28.5 Crosscompiling the userland
	28.6 Crosscompiling the X Window System
	28.7 Changing build behaviour
	28.7.1 Changing the Destination Directory
	28.7.2 Static Builds
	28.7.3 Using build.sh options
	28.7.4 make(1) variables used during build

	Chapter 29
	Compiling the kernel
	29.1 Requirements and procedure
	29.2 Installing the kernel sources
	29.3 Creating the kernel configuration file
	29.4 Building the kernel manually
	29.4.1 Configuring the kernel manually
	29.4.2 Generating dependencies and recompiling manually

	29.5 Building the kernel using build.sh
	29.6 Installing the new kernel
	29.7 If something went wrong

	Chapter 30
	Console drivers
	30.1 wscons
	30.1.1 Virtual consoles
	30.1.2 50 lines text mode with wscons
	30.1.3 Keyboard mappings
	30.1.4 Cut&paste on the console with wsmoused
	30.1.5 Enable scrollback on the console

	30.2 pccons

	VI. The pkgsrc user's guide
	Chapter 31
	Where to get pkgsrc
	31.1 As tar file
	31.2 Via SUP
	31.3 Via CVS

	Chapter 32
	Using pkgsrc on systems other than NetBSD
	32.1 Bootstrapping pkgsrc
	32.2 Platformspecific notes
	32.2.1 Darwin (Mac OS X)
	32.2.1.1 Using a disk image
	32.2.1.2 Using a UFS partition

	32.2.2 FreeBSD
	32.2.3 Interix
	32.2.3.1 When installing Interix/SFU
	32.2.3.2 What to do if Interix/SFU is already installed
	32.2.3.3 Important notes for using pkgsrc

	32.2.4 IRIX
	32.2.5 Linux
	32.2.6 OpenBSD
	32.2.7 Solaris
	32.2.7.1 If you are using gcc
	32.2.7.2 If you are using Sun WorkShop

	Chapter 33
	Using pkgsrc
	33.1 Working with binary packages
	33.1.1 Where to get binary packages
	33.1.2 How to use binary packages
	33.1.3 A word of warning

	33.2 Building packages from source
	33.2.1 Requirements
	33.2.2 Fetching distfiles
	33.2.3 How to build and install
	33.2.4 Selecting the compiler

	Chapter 34
	Configuring pkgsrc
	34.1 General configuration
	34.2 Variables affecting the build process
	34.3 Developer/advanced settings
	34.4 Selecting Build Options

	Chapter 35
	Creating binary packages
	35.1 Building a single binary package
	35.2 Settings for creation of binary packages
	35.3 Doing a bulk build of all packages
	35.3.1 Configuration
	35.3.1.1 /etc/mk.conf
	35.3.1.2 build.conf
	35.3.1.3 prebuild.local

	35.3.2 Other environmental considerations
	35.3.3 Operation
	35.3.4 What it does
	35.3.5 Disk space requirements
	35.3.6 Setting up a sandbox for chrooted builds
	35.3.7 Building a partial set of packages
	35.3.8 Uploading results of a bulk build

	35.4 Creating a multiple CDROM packages collection
	35.4.1 Example of cdpack

	Chapter 36
	Frequently Asked Questions
	36.1 Are there any mailing lists for pkgrelated discussion?
	36.2 Where's the pkgviews documentation?
	36.3 Utilities for package management (pkgtools)
	36.4 How to use pkgsrc as nonroot
	36.5 How to resume transfers when fetching distfiles?
	36.6 How can I install/use XFree86 from pkgsrc?
	36.7 How can I install/use X.org from pkgsrc?
	36.8 How to fetch files from behind a firewall
	36.9 How do I tell make fetch to do passive FTP?
	36.10 How to fetch all distfiles at once
	36.11 What does Don't know how to make /usr/share/tmac/tmac.andoc mean?
	36.12 What does Could not find bsd.own.mk mean?
	36.13 Using 'sudo' with pkgsrc
	36.14 How do I change the location of configuration files?
	36.15 Automated security checks

	VII. The pkgsrc developer's guide
	Chapter 37
	Package components files, directories and contents
	37.1 Makefile
	37.2 distinfo
	37.3 patches/*
	37.4 Other mandatory files
	37.5 Optional files
	37.6 work*
	37.7 files/*

	Chapter 38
	Programming in Makefiles
	38.1 Makefile variables
	38.1.1 Naming conventions
	38.2 Code snippets
	38.2.1 Adding things to a list
	38.2.2 Converting an internal list into an external list
	38.2.3 Passing variables to a shell command
	38.2.4 Quoting guideline
	38.2.5 Workaround for a bug in BSD Make

	Chapter 39
	PLIST issues
	39.1 RCS ID
	39.2 Semiautomatic PLIST generation
	39.3 Tweaking output of make printPLIST
	39.4 Variable substitution in PLIST
	39.5 Man page compression
	39.6 Changing PLIST source with PLISTSRC
	39.7 Platformspecific and differing PLISTs
	39.8 Sharing directories between packages

	Chapter 40
	Buildlink methodology
	40.1 Converting packages to use buildlink3
	40.2 Writing buildlink3.mk files
	40.2.1 Anatomy of a buildlink3.mk file
	40.2.2 Updating BUILDLINKDEPENDS.pkg in buildlink3.mk files

	40.3 Writing builtin.mk files
	40.3.1 Anatomy of a builtin.mk file
	40.3.2 Global preferences for native or pkgsrc software

	Chapter 41
	The pkginstall framework
	41.1 Files and directories outside the installation prefix
	41.1.1 Directory manipulation
	41.1.2 File manipulation

	41.2 Configuration files
	41.2.1 How PKGSYSCONFDIR is set
	41.2.2 Telling the software where configuration files are
	41.2.3 Patching installations
	41.2.4 Disabling handling of configuration files

	41.3 System startup scripts
	41.3.1 Disabling handling of system startup scripts

	41.4 System users and groups
	41.5 System shells
	41.5.1 Disabling handling of configuration files

	Chapter 42
	Options handling
	42.1 Global default options
	42.2 Converting packages to use bsd.options.mk
	42.3 Option Names

	Chapter 43
	The build process
	43.1 Program location
	43.2 Main targets
	43.3 Other helpful targets

	Chapter 44
	Notes on fixes for packages
	44.1 General operation
	44.1.1 How to pull in variables from /etc/mk.conf
	44.1.2 Where to install documentation
	44.1.3 Restricted packages
	44.1.4 Handling dependencies
	44.1.5 Handling conflicts with other packages
	44.1.6 Packages that cannot or should not be built
	44.1.7 Packages which should not be deleted, once installed
	44.1.8 Handling packages with security problems
	44.1.9 How to handle compiler bugs
	44.1.10 How to handle incrementing versions when fixing an existing package
	44.1.11 Portability of packages
	44.1.11.1 ${INSTALL}, ${INSTALLDATADIR}, ...

	44.2 Possible downloading issues
	44.2.1 Packages whose distfiles aren't available for plain downloading
	44.2.2 How to handle modified distfiles with the 'old' name

	44.3 Configuration gotchas
	44.3.1 Shared libraries libtool
	44.3.2 Using libtool on GNU packages that already support libtool
	44.3.3 GNU Autoconf/Automake

	44.4 Building considerations
	44.4.1 CPP defines

	44.5 Package specific actions
	44.5.1 User interaction
	44.5.2 Handling licenses
	44.5.3 Installing score files
	44.5.4 Packages containing perl scripts
	44.5.5 Packages with hardcoded paths to other interpreters
	44.5.6 Packages installing perl modules
	44.5.7 Packages installing info files
	44.5.8 Packages installing GConf2 data files
	44.5.9 Packages installing scrollkeeper data files
	44.5.10 Packages installing X11 fonts
	44.5.11 Packages installing GTK2 modules
	44.5.12 Packages installing SGML or XML data
	44.5.13 Packages installing extensions to the MIME database
	44.5.14 Packages using intltool
	44.5.15 Packages installing startup scripts

	44.6 Feedback to the author

	Chapter 45
	Debugging
	Chapter 46
	Submitting and Committing
	46.1 Submitting your packages
	46.2 General notes when adding, updating, or removing packages
	46.3 Committing: Importing a package into CVS
	46.4 Updating a package to a newer version
	46.5 Moving a package in pkgsrc

	Appendix A.
	Information
	A.1 Where to get this document
	A.2 Guide history

	Appendix B.
	A simple example package: bison
	B.1 files
	B.1.1 Makefile
	B.1.2 DESCR
	B.1.3 PLIST
	B.1.4 Checking a package with pkglint

	B.2 Steps for building, installing, packaging

	Appendix C.
	Build logs
	C.1 Building figlet
	C.2 Packaging figlet

	Appendix D.
	Layout of the FTP server's package archive
	Appendix E.
	Editing guidelines for the pkgsrc guide
	E.1 Targets
	E.2 Procedure

	Appendix F.
	Contributing to the NetBSD guide
	F.1 Translating the guide
	F.1.1 What you need to start a translation
	F.1.2 Writing XML/DocBook

	F.2 Sending contributions
	F.3 XML/DocBook template

	Appendix G.
	Getting started with XML/DocBook
	G.1 What is XML/DocBook
	G.2 Installing the necessary tools
	G.3 Using the tools
	G.4 Languagespecific notes
	G.4.1 Enabling hyphenation for the Italian language

	G.5 Links

	Appendix H.
	Acknowledgements
	H.1 Original acknowledgements
	H.2 Current acknowledgements
	H.3 Licenses
	H.3.1 Federico Lupi's original license of this guide
	H.3.2 Networks Associates Technology's license on the PAM article

	Appendix I.
	Bibliography
	Bibliography

