
Devsummit – Concurrency Hacks

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

EuroBSDcon 2015
Stockholm, Sweden

October 2, 2015



Concurrency hacks

Works in progress — not even compile-tested.

I Lightweight task queues

I Pserialized reader/writer locks

I Reference counts



Tasks background – Softints

I softint(9): defer processing from hardware interrupt
handlers to lower-priority to remain responsive to hardware
interrupts.

I softint = softint_establish(&mydriver_softintr,

arg);

...

softint_schedule(softint);

static void

mydriver_softintr(void *arg)

{

...

}



Tasks background – Softints

I Limited number of softints: use sparingly.

I softint schedule can’t pass argument.

I Multi-CPU: softint schedule schedules up to one softint
per CPU at a time, executed in parallel.

I Cheap: zero interprocessor synchronization.



Tasks background – Workqueues

I workqueue(9): defer processing from higher-priority threads
to lower-priority threads.

I struct mydriver_softc {

...

struct workqueue *sc_wq;

struct work sc_wk;

};

error = workqueue_create(&sc->sc_wq, "mydriver",

&mydriver_work, arg, PRI_NONE, IPL_NET,

WQ_MPSAFE);

...

workqueue_enqueue(sc->sc_wq, &sc->sc_wk, NULL);

static void

mydriver_work(struct work *wk, void *arg)

...



Tasks background – Workqueues

I Caller must not reuse struct work until done, must do
necessary bookkeeping to avoid this.

I Caller can pass arguments by embedding struct work:

struct mywork {

struct work w;

int extra;

};

I Multi-threaded (WQ PERCPU): each struct work can execute
in parallel, one worker thread per CPU.

I Caller can’t wait for individual work — can only destroy
workqueue and wait for all.

I workqueue enqueue acquires per-CPU mutex, so requires
interprocessor synchronization.

I One dedicated thread per workqueue (per CPU): wastes
kernel address space for mostly unused workqueues.



Tasks background – USB tasks
I usb task(9): defer processing from USB interrupt handler to

thread.
I struct udriver_softc {

...

struct usb_task sc_task;

};

usb_init_task(&sc->sc_task, &udriver_task, sc,

USB_TASKQ_MPSAFE);

...

usb_add_task(sc->sc_udev, &sc->sc_task,

USB_TASKQ_DRIVER);

...

usb_rem_task(sc->sc_udev, &sc->sc_task);

static void

udriver_task(void *arg)

...



Tasks background – USB Tasks

I USB-specific.

I Per-device/per-host-controller task queues.

I BUG: No way for task to complete — need this for driver
detach.

I usb add task and usb rem task acquire shared mutex, so
require interprocessor synchronization.



Tasks background – Callouts

I callout(9): defer processing until ticks have passed.

I hz granularity.

I Unlike others, supports synchronous cancellation —
callout halt.

I Complex triggering protocol: callout pending,
callout ack, callout expired, . . .

I . . .



Tasks – Unified proposal

I task(9): defer processing from higher-priority contexts to
lower-priority contexts.

I struct mydriver_softc {

...

struct task sc_task;

};

task_init(task, &mydriver_task);

task_schedule(task);

static void

mydriver_task(struct task *task)

{

...

}



Tasks – Unified proposal

I Easy to use.

I Synchronous cancellation.

I Slightly more synchronization overhead softint:
task schedule acquires mutex — but only for local CPU,
not contended unless doing cancel.

I Slightly more memory overhead than workqueue: Caller can
reschedule struct task without problem (no effect), unlike
workqueue struct work.

I Delayed tasks with nanosecond-resolution API, simpler
triggering protocol.



Tasks – Explicit task queues

I Common API for softint and thread priority levels.

I Default shared system task queues at each softint and thread
priority level.

I Guaranteed concurrency if you make your own task queue:
not held up by other system tasks.

I Per-CPU thread pool shared by different task queues — no
threads wasted on mostly unused task queues.



Pserialized reader/writer locks

I Example: fstrans — recursive transactions to block file system
operations if operator requests suspend, e.g. to take snapshot.

I fstrans begin/fstrans end are cheap if no suspend in
progress: no interprocessor synchronization, using
pserialize(9).

I Suspend is expensive: not just interprocessor synchronization,
but cross-call to wait for all transactions to drain.

I (Fstrans also handles establishing copy-on-write hooks.)



Pserialized reader/writer locks

I rrwlock(9) generalizes (part of) fstrans(9):

I l = rrwlock create("foo");

I struct rrw reader r; rrwlock reader enter(l, &r);

I . . .

I rrwlock reader exit(l, r);

I struct rrw writer w; rrwlock writer enter(l, &w);

I . . .

I rrwlock writer exit(l, w);

I rrwlock destroy(l);

I Also non-recursive variant, prwlock(9).



Reference counts

I refcount(9): simple reference counts.

I Many copies of simple reference-counting logic: e.g., struct
kauth cred, struct ifaddr.

I Nothing novel or exciting here: just a nice API.

I /* Create object. */

refcount_init(&obj->refcount);

/* Acquire reference. */

refcount_inc(&obj->refcount);

/* Assert held. */

KASSERT(refcount_referenced_p(&obj->refcount));



Reference counts

I /* Release reference and free if last one. */

if (refcount_dec_local(&obj->refcount)) {

kmem_free(obj, sizeof(*obj));

}

/* Release reference and notify waiters. */

refcount_dec_signal(&obj->refcount, &obj->lock);

/* Release reference and wait for other users. */

refcount_dec_drain(&obj->refcount, &obj->lock);

kmem_free(obj, sizeof(*obj));



Problem: cache, don’t free, on last reference

I Want to cache vnodes in memory to avoid reparsing disk for
frequently referenced files.

I On last reference, put vnodes on queue to be freed when
memory is tight.

I Need to synchronize between acquiring cached vnode and
freeing cached vnode.

I Need to coordinate with per-file-system ‘delete file on last
reference’ logic.

I refcount(9) API doesn’t help with this.


