
The rump kernel: A tool for driver development and a toolkit for
applications

Justin Cormack
justin@netbsd.org

Abstract

The NetBSD rump kernel is a way to run device drivers
outside the kernel. Until recently the most common use
was as a tool for running tests on NetBSD subsystems.
In the last two years much more infrastructure has been
built around it so that a much wider set of uses are pos-
sible. I cover some of these new uses in this paper, in
particular using the rump kernel as a tool for driver de-
velopment, and as a way to use it to run NetBSD appli-
cations in new environments.

What is the rump kernel?

What is an operating system made up of? The large pro-
portion is a set of drivers that abstract the messy details
of hardware away, and present a layered interface. This
might be taking a particular network card, and presenting
a socket interface supporting TCP and UDP, or taking a
SCSI hard drive and presenting a Posix file system inter-
face. What the rump kernel does is provide these drivers
outside the context of a traditional operating system, so
they can be used as a library by applications. What it
does not do is as important: unlike say a userspace ker-
nel (like User Mode Linux[2] or NetBSD/usermode[8],
there are parts it does not provide. These are memory
allocation, threads and a scheduler. These must be pro-
vided by the platform the rump kernel application runs
on.

A simple example of a platform is simply a userspace
program. These already provide memory allocation
(eg posix_memalign) and a thread implementation (eg
pthreads) which the underlying operating system will
schedule. An implementation that does this ships with
NetBSD, allowing the NetBSD drivers to be run in
NetBSD userspace. This is for example used for running
tests on NetBSD subsystems, as for example multiple in-
stances can be set up very fast to test sockets.

As the rump kernel just depends on a very small hy-

percall layer, just to provide the basics of memory allo-
cation, threads and clocks, and because the underlying
NetBSD code is very portable, the rump kernel hyper-
call layer for NetBSD can also be built for other Posix
environments, and it is also possible to write a version
for other environments such as running directly on Xen,
or on bare metal, or within a different operating system,
such as a microkernel operating system.

The rump kernel development was started by Antti
Kantee as his PhD thesis work[1], completed in 2012.
It was initially released as part of NetBSD 5.0 in 2009.
Development has continued in the NetBSD tree and in
external open source repositories[3] with a larger com-
munity of contributors.

Testing and debugging

The first use of the rump kernel was in the NetBSD tree
for improving testing. NetBSD has an extensive test
suite[9]. For many tests, it is easier to use a rump kernel
rather than the host system as there are no side effects, so
for example it is possible to make tests involving global
network settings without worrying about interfering with
the host machine, while being much faster than setting up
a full virtual emulated system. The rump kernel works
across all the platforms NetBSD supports, and starts up
in 10ms, so testing is very fast. Because it is running ex-
actly the same code as the underlying NetBSD system,
compiled at the same time as the kernel being tested, it
will have the same bugs, so the tests should find these.

As well as tests designed to run on a NetBSD system,
tests can also be run on any other system that supports the
rump kernel. For example the ljsyscall project[10] which
I wrote provides a system call framework for LuaJIT[11]
for NetBSD, Linux, FreeBSD and other platforms, and
also supports calling the rump kernel instead of the un-
derlying OS. This has an extensive test suite and has been
used to find bugs in NetBSD. This runs extremely fast,
so can be run multiple times to find race conditions that



would be hard to find under normal operating systems
testing. This is also used for continuous integration of
the rump kernel on the development version of NetBSD
to pick up bugs as they are committed.

Another advantage of running a single application
which has the userspace and kernel parts linked into a
single binary is that normal userspace debugging tools
can be used across both parts, This includes tools such as
valgrind[12] as well as debuggers, and other static anal-
ysis and fuzzing tools. There is a lot of scope for further
work in this area which is currently being explored.

When developing device drivers, one of the biggest is-
sues is that they are liable to crash, so developing them in
the kernel that you are working in is inconvenient. This
can be alleviated by using a separate development ma-
chine or virtual machine, but this still has a slow modify,
compile, reboot cycle.

With a rump kernel you can develop many drivers
purely in userspace, even for physical hardware. For de-
veloping file system code, you can use a block device as
the “physical device” backing the file system, while for
the network stack you can use a standard Unix tap device
which is a virtual ethernet device that feeds frames to and
from the host stack.

For PCI devices there is currently a userspace PCI
driver for Linux, currently using the Linux-specific uio
interface. This works for many but not all PCI devices.
Further drivers for other platforms that support userspace
PCI access are planned, such as a Linux vfio driver,
which supports iommu operations and a larger variety of
devices, such as MSI interrupts.

The first major PCI driver developed was the In-
tel Centrino 7260 driver developed for NetBSD and
OpenBSD by Antti Kantee. The commit message said
“This is probably the world’s first Canadian cross device
driver: it was created for OpenBSD by writing and port-
ing a NetBSD driver which was developed in a rump ker-
nel in Linux userspace.”[13]

Running Application code
Originally when programs were written to use the rump
kernel they had to be explicitly written this way, using the
rump kernel namespace. This was fine for tests, where it
was explicit, and for frameworks such as ljsyscall where
the framework can abstract this for the user so their Lua
code does not see whether the rump kernel or the user’s
kernel is being used. However writing code specifically
for a rump kernel is a lot of work, and it is against the
philosophy of reusing as much existing code as possible.

The first step towards this was to build a version of
NetBSD’s libc against the rump kernel calls rather than
the standard assembly system calls. This was first done
on the Xen platform, at which point it was possible to

compile applications like Lua which only use libc against
a set of NetBSD headers and then link them to the rump
kernel version of libc.

This was then upstreamed into NetBSD as a build op-
tion, and a framework to build the other libraries and ap-
plications that ship as part of NetBSD base was devel-
oped. These are also very useful as they include the basic
commands to configure more complex kernel features,
such as wireless cards, software RAID and encrypted
block devices. This enables testing and development of
these kernel subsystems using the standard commands.

As part of this work the rumprun-posix tools were
built[7], that enabled the NetBSD libraries and tools to
be built in Posix userspace, which is particularly useful
for development. The problem here is the difficult mix
of having both the host C library and the rump-targeted
NetBSD C library linked into the same binary, as they
share the same namespace. This was done by a link script
that carefully renames symbols into a new namespace
where necessary.

The rumprun-posix tools also allow the user to run a
remote rump kernel, where the system calls are trans-
ported over a socket. Obviously this mode is not as per-
formant is linking the rump kernel code into the binary,
but it can be very useful. In particular it allows binaries
to execute against a persistent long-running rump kernel,
just like the normal execution model of kernel code. This
means that for example a sequence of configuration com-
mands can be given, then a test program can be run with
the correct configuration.

Microkernels and unikernels

The rump kernel has been used as a way to supply device
drivers in other new operating systems, which do not yet
have a full set of device drivers. For example, Genode[4]
is a framework for building microkernel operating sys-
tems using the L4 family of microkernels. Genode uses
the rump kernel to provide file system support, so that it
does not have to develop its own file systems.

Another use for the rump kernel is as a framework for
building applications that include not just the application
but also the just enough operating system that is required
packaged together. This “unikernel” or “library kernel”
concept has been developed before largely for specific
languages such as Mirage[5] for OCaml, where the ma-
jority of the drivers are written from scratch, including
the IP stack for example. While this has many advan-
tages, such as allowing the development of typesafe li-
braries for critical user-facing functions, it also means
that development is slower as existing drivers cannot be
used. What the rump kernel offers is a set of unmodified,
maintained, high quality drivers from NetBSD, which
can be used for this type of development, perhaps in con-



junction with newly written drivers.
Current work has standard application components

such as the Nginx web server[6], and languages such as
PHP and Lua supported running directly under the rump
kernel under Xen. As further build and integration issues
are fixed, many other languages and existing programs
should also run. This allows isolated applications to run
in a microservice architecture, each with only its own
dependencies, but without requiring a full host operating
environment. This reduces attack surface significantly
by removing components that are not required to run the
application.

Future developments
Increased portability of the rump kernel is still an aim.
While the NetBSD core provides excellent portability to
different processor architectures, such as Powerpc, ARM
and MIPS, there is still more portability work to do.
There exists baremetal support on 32 bit x86, but not
yet for 64 bit. There are plans to support bare metal
ARM based devices for example, including microcon-
trollers that are unable to run a full operating system as
they have no MMU as well as small machines such as the
Raspberry Pi.

As mentioned earlier there are plans to increase the
range of PCI devices that can be addressed by the rump
kernel, and this may well be completed in time for Asia-
BSDCon. A FreeBSD port is also feasible as FreeBSD
has added userspace PCI driver support for Bhyve.

Most of the focus is on easier build and configuration
to run applications, with the aim being to make building
rump kernel targeted applications just as easy as native
ones, just by changing the compiler in most cases. This
means that more language frameworks need to be com-
piled, such as the C++ libraries which are in progress
at present. Many languages and libraries should present
no trouble, but others make certain assumptions about
the way they are linked or run, or call system calls di-
rectly via assembly rather than through libc, so changes
are needed.

The rump kernel work takes place both within the
upstream NetBSD tree as well as in an active external
community[3] which includes both NetBSD developers
and users who primarily use other operating systems or
environments. All code is BSD licensed and freely avail-
able.

Conclusion

NetBSD’s rump kernel is an unusual feature that no other
operating system has. However it is friendly and can be
used to enhance other operating systems too. Whether
your interests are in better testing, developing new code,
or exploring new ways to run applications it is worth in-
vestigating.

References

[1] Antti Kantee, Flexible operating system internals:
the design and implementation of the anykernel and
rump kernels. Doctoral dissertation, Aalto Univer-
sity 2012.

[2] User Mode Linux, http://user-mode-linux.

sourceforge.net/.

[3] Rump Kernels, http://rumpkernel.org/.

[4] Genode, http://genode.org/.

[5] Open Mirage, http://www.openmirage.org/.

[6] Nginx, http://nginx.org/.

[7] Rumprun Posix, https://github.com/

rumpkernel/rumprun-posix.

[8] Reinoud Zandijk, NetBSD/usermode. http://www.
13thmonkey.org/documentation/NetBSD/

EuroBSD2012-NetBSD_usermode-paper.pdf

EuroBSDCon 2012.

[9] Antti Kantee, Testing NetBSD: easy does
it. http://blog.netbsd.org/tnf/entry/

testing_netbsd_easy_does_it 2010.

[10] Justin Cormack, ljsyscall, https://github.com/
justincormack/ljsyscall.

[11] LuaJIT, http://luajit.org/luajit.html.

[12] Valgrind, http://valgrind.org/.

[13] Antti Kantee, http://mail-index.

netbsd.org/source-changes/2015/02/07/

msg062979.html.


