
EUROBSDCON 2005, EXTENDED ABSTRACT SUBMISSION; JULY 30, 2005 1

Single User Secure Shell
Adrian Steinmann

Abstract—Unix systems traditionally do integrity checks and other ini-
tialization before bringing up network services. System administration
tasks, like operating system upgrades, system disk reformatting or parti-
tioning, very often need to be done in single user mode on a console, and not
via the network. We describe how a ‘Secure Shell Maintenance RAMdisk
Environment’ can be built and launched very early in the boot process.
This environment can be used to remotely fix a problem when the machine
is stuck in single user mode. Our method has already been in use for a
number of years to upgrade remote managed firewall systems [3] from one
release to the next.

I. INTRODUCTION

ANYONE who has needed to unexpectedly commute to a
production machine stuck in single user mode has wished

that it would possibly allow a remote SSH login. In fact, in most
cases the problem in question does not require network access
to be blocked. It is much more a policy decision that the sys-
tem first checks the root filesystem and runs other early startup
scripts which may stall before launching network services.

In this paper we describe a way to build a ‘Secure Shell Main-
tenance RAMdisk Environment’ which can be started even be-
fore the root filesystem is checked. This environment can be
useful in many different situations:

Root filesystem fails to check: When a system crashes, it
may damage the root filesystem so that it cannot be au-
tomatically fixed. Traditionally, the system then stays in
single user mode awaiting input on the console.

System partitions need to be resized: As more software is in-
stalled, the operating system partitions /, /usr, or /var
occasionally need to be resized. This usually calls for a
dump, bsdlabel, newfs, restore cycle, which is
difficult or impossible while the system is running in multi
user mode.

Operating system upgrade via a clean install: As is the case
for the FreeBSD 4.x to 5.x migration, it may be desirable to
newfs all the system partitions to take advantage of new
features or simply to do a ‘clean’ install.

Root filesystem should be on a RAID: Even in single user
mode, it is difficult to transform an already installed
operating system onto a GEOM-based RAID because
the system is using the non-RAID devices. Similarly,
atacontrol create will fail on the disk with the sys-
tem partitions because they are busy.

Minimal installations on small systems: Full installations on
small machines – so-called embedded systems – with only
compact flash (PC-Engines [1], Soekris [2]) from a stan-
dard distribution or via CD may not be practicable.

II. HOW TO BUILD THE SECURE SHELL RAMDISK IMAGE

SMALL size of the Secure Shell Maintenance RAMdisk
filesystem is the prime concern, yet it should include

all the important tools that are needed for remote system

Adrian Steinmann is founder of Webgroup Consulting AG, CH-8032 Zürich,
Switzerland, <ast@webgroup.ch>

administration, in particular a SSHv2 daemon and its re-
quired configuration files. In earlier releases, we man-
aged to fit a gzipped kernel and a gzipped RAMdisk im-
age onto one 1.44 MB floppy by using ‘small’ versions
of tools (see, for example ports/shells/sash and
src/release/picobsd/tinyware/ as well as SSHv1
ports/security/ssh).

As of FreeBSD release 5.x, fitting everything on one floppy
became impossible, and in fact most systems deployed nowa-
days do not even carry a floppy drive. Nonetheless, the Secure
Shell Maintenance RAMdisk Environment is still viable be-
cause even systems with only 64MB of compact flash have am-
ple space to store such a RAMdisk image alongside a whittled-
down FreeBSD distribution.

A. Use crunchgen to minimize RAM utilization

In our implementation, the following programs are available
in the RAMdisk environment:

RAMdisk# ls /bin
-sh ex kldconfig red
[expr kldload restore
atacontrol fastboot kldstat rm
badsect fasthalt kldunload rmdir
boot0cfg fdisk ldconfig route
bsdlabel fsck link rrestore
bunzip2 fsck_4.2bsd ln scp
bzcat fsck_ffs ls sed
bzip2 fsck_ufs mdconfig sh
camcontrol gbde mdmfs sleep
cat gconcat mini_crunch slogin
chflags geom mkdir ssh
chgrp ggatec mknod sshd
chmod ggated mount stty
chown ggatel mount_cd9660 swapctl
chroot glabel mount_devfs swapoff
clri gmirror mount_fdescfs swapon
cp gnop mount_linprocfs sync
date graid3 mount_nfs sysctl
dd gshsec mount_procfs tar
df gstripe mount_std test
dhclient gunzip mv touch
dhclient-script gzcat newfs tset
diskinfo gzip pax tunefs
disklabel halt ping umount
dmesg hostname ps unlink
du ifconfig pwd vi
dump init rdump zcat
dumpfs kenv realpath
ed kill reboot

RAMdisk# du -k /bin/*
2928 /bin/-sh
8 /bin/dhclient-script

First and foremost, sshd, ssh, scp as well as the net-
work filesystem utilities mount nfs, ggated, and ggatec
are present with the requisite network configuration utilities
ifconfig, route, and dhclient. The standard archiving
tools dump, restore, tar, and pax with gzip and bzip2
are also available. Furthermore, since this is primarily an
environment for system administration, the low-level fdisk,
bsdlabel, newfs, and tunefs utilities are included, with
the added luxury of the vi editor (albeit with a small termcap
file supporting only xterm, screen, vt220, at386, and

2 EUROBSDCON 2005, EXTENDED ABSTRACT SUBMISSION; JULY 30, 2005

cons25 terminals). Finally, atacontrol, camcontrol,
GEOM-based RAID, GBDE, and DHCP are supported when
the underlying kernel is adequately configured.

B. Use mdconfig to create a RAMdisk image

The script src/release/scripts/doFS.sh takes a
filesystem hierarchy and creates a file containing a RAMdisk
image of it. For example, src/release/Makefile uses it
to create the ‘install’ and ‘fixit’ environments on the standard
FreeBSD distribution CD.

This RAMdisk image can be gzipped and placed, say, into a
/boot/maint/ subdirectory, where it can be accessed at boot
time.

C. Use the loader to boot into RAMdisk
When FreeBSD boots, one can enter the /boot/loader

environment on the console by choosing 6. Escape to loader
prompt at the ‘beastie’ menu:
OK ls /boot/maint
/boot/maint

k.CUSTOM.gz
fs_img.gz
params
loader.rc

OK load -t md_image /boot/maint/fs_img
OK set vfs.root.mountfrom=ufs:/dev/md0
OK autoboot
Hit [Enter] to boot immediately, or any other ...
Booting [/boot/kernel/kernel] in 9 seconds...

By setting the vfs.root.mountfrom variable, the kernel
mounts the RAMdisk as the root filesystem instead of the one
found in /etc/fstab.

III. SOME MINOR HURDLES

T HE implementation of the described plan is straightfor-
ward, except for the following minor difficulties:

Crunching SSHv2: The standard build of FreeBSD sshd re-
quires many libraries, yet most are unnecessary for the
RAMdisk environment. We will show how we can get by
with only linking a fraction of those libraries.

Supporting runtime loader in a crunched binary: Some pro-
grams require runtime loading; this means we must link
some libraries statically and some dynamically – although
we are using crunchgen.

Personalizing a generic RAMdisk image flexibly: It is better
to keep the personalization of the RAMdisk image sepa-
rate, so that deployment consists in one or two binary files
and one or more editable text files.

A. Crunching SSHv2 without too many libraries

Even if we specify lots of NO* options in the crunchgen
configuration file (figure 1), the link phase fails because
libpam.a, among others, is still referenced.

Nevertheless, by also turning off the variables LIBWRAP,
USE PAM, HAVE LIBPAM, HAVE PAM GETENVLIST,
HAVE SECURITY PAM APPL H, and XAUTH PATH directly
in src/crypto/openssh/config.h, the link phase is
successful for the crunchgen fragment in figure 1. One
additionally required library (-lmd) will be made avail-
able as dynamically loadable shared object in the RAMdisk
environment.

buildopts -DNOPAM -DNOSECURE -DNOCRYPT -DNO_KERBEROS
buildopts -DNONETGRAPH -DNOIPSEC -DNOINET6
buildopts -DNOATM -DNO_IPFILTER -DNO_X
srcdirs /usr/src/secure/usr.bin
srcdirs /usr/src/secure/usr.sbin
progs scp
progs ssh
ln ssh slogin
progs sshd
libs -lssh -lutil -lz -lcrypto -lcrypt

Fig. 1. A crunchgen configuration file fragment for SSHv2.

B. Building mostly statically linked crunched binaries

Although the rest of the crunchgen configuration file
is straightforward, the geom programs require the runtime
loader for their dlopen() calls. As an added complication, the
/lib/geom/geom *.so libraries also expect libmd.so to
be dynamically loaded.

Mostly statically linked binaries can be built simply by
replacing $(CC) -static ... in the Makefile created
by crunchgen with $(CC) -Xlinker -Bstatic ...
-Xlinker -Bdynamic -lmd, leaving the crunched binary
dynamically linked to libmd.so and libc.so.

For our RAMdisk environment to be functional, we will thus
need the /lib/geom/ shared objects as well as libmd.so
and libc.so:

RAMdisk# du -k /lib
116 /lib/geom
1054 /lib

RAMdisk# ls -FR /lib
geom/ libc.so.5 libmd.so.2

/lib/geom:
geom_concat.so geom_nop.so geom_stripe.so
geom_label.so geom_raid3.so
geom_mirror.so geom_shsec.so

To date, we haven’t investigated if further dynamical linking
of a crunched binary would result in other advantages.

C. One RAMdisk image for many systems

Another important design goal is to have one RAMdisk im-
age for all machines, somehow personalizing it via a separate
configuraton file. This requirement can be solved by passing
information via the kernel environment. The RAMdisk envi-
ronment can then use kenv to configure the network and, in
particular, to create the /root/.ssh/authorized keys
file there.

set maint.ifconfig_XX0="192.168.0.254/24"
set maint.ifconfig_XX1="192.168.1.254/24"
set maint.ifconfig_YY0="dhcp"
set maint.defaultrouter="192.168.0.1"
set maint.host="GENERIC"
set maint.domain="SETME.com"
set maint.sshkey_01a="ssh-d.. (120 chars) ..qP"
set maint.sshkey_01b="leQXQ.. (120 chars) ..9d"
set maint.sshkey_01c="b7Zd+.. (120 chars) ..zu"
set maint.sshkey_01d="KrdBn.. (120 chars) ..tw"
set maint.sshkey_01e="7eMec.. (120 chars) ..4G"
set maint.sshkey_01j="hdTLKVUokhU4lQ== 200507"

Fig. 2. A /boot/maint/params file describing machine personality.

Adrian Steinmann: SINGLE USER SECURE SHELL 3

In our setup, the /boot/maint/params file describes the
machine personality (see figure 2) and is included by the loader
when booting into the RAMdisk environment (figure 4).

A limitation of kenv is that the key and value lengths
may not exceed 128 characters. Since we need to craft a
/root/.ssh/authorized keys file in the RAMdisk en-
vironment, we split its contents into smaller pieces and then
paste them back together before launching the SSH daemon.

IV. PUTTING IT ALL TOGETHER

F OR the ‘Single User Secure Shell’ to be launched early,
the startup script ‘sussh’ needs to be placed into

the /etc/rc.d/ directory with the correct REQUIRE and
BEFORE keywords:
#!/bin/sh
PATH=/rescue:/usr/bin:/bin:/usr/sbin:/sbin
export PATH

REQUIRE: preseedrandom
PROVIDE: sussh
KEYWORD: nojail
BEFORE: initdiskless

On a standard FreeBSD system, this means it will be started
second:
5.4-STABLE$ rcorder /etc/rc.d/* | head -3
/etc/rc.d/preseedrandom
/etc/rc.d/sussh
/etc/rc.d/initdiskless

To control launching of the Single User Secure Shell,
/etc/rc.conf has these knobs and tunables:
sussh_enable="NO"
sussh_mntdir="/boot/maint"
sussh_fs_img="/boot/maint/fs_img"
sussh_port="22222"

The effect of setting sussh enable="YES" is that at
boot time – before practically any other initialization – the
$sussh fs img file is mounted onto $sussh mntdir with
/rescue/mdconfig and /rescue/mount and then the
RAMdisk SSH daemon is launched on port $sussh port.
Given the correct SSH private key and a correctly configured
/boot/maint/params file, a root shell can be opened re-
motely on, say, port 22222, to work in the RAMdisk environ-
ment should the machine hang in single user mode.

The additional disk space requirements are modest and hence
this method is also very well applicable to embedded devices.
A gzipped kernel and a gzipped Secure Shell Maintenance
RAMdisk image will be about 3 MB and are integrated into
the /boot hierarchy (figure 3). Note that the loader can also
be gzipped, roughly halving its space requirements. All files
which the loader may load can also be gzipped, and the loader
automatically searches for *.gz files and uncompresses them
on-the-fly. Generally we prefer to supply a custom kernel which
has the device md compiled in and otherwise is stripped of
extraneous options not needed in the RAMdisk. Additional
non-standard options may be compiled in to support DHCP or
camcontrol.

Alternatively, instead of launching the sussh startup script
at boot time, the loader can be instructed to boot directly
into the RAMdisk by including the lines in figure 4 into
/boot/loader.rc. The machine can then be rebooted into
the Single User Secure Shell for a console-free system upgrade.

5.4-STABLE$ /bin/ls -1sFR /boot
4 beastie.4th.gz
2 defaults/
2 device.hints
2 frames.4th.gz
2 kernel/

110 loader*
4 loader.4th.gz
2 loader.conf
6 loader.help.gz
2 loader.rc
2 maint/
2 screen.4th.gz

10 support.4th.gz

/boot/defaults:
6 loader.conf.gz

/boot/kernel:
3216 kernel

/boot/maint:
1840 fs_img.gz
1056 k.CUSTOM.gz

2 loader.rc
2 params

Fig. 3. An example /boot/ directory hierarchy with gzipped loader files,
RAMdisk image, custom RAMdisk kernel, and RAMdisk configuration files.

unload
load /boot/maint/k.CUSTOM
load -t md_image /boot/maint/fs_img
include /boot/maint/params
set vfs.root.mountfrom=ufs:/dev/md0
autoboot 10

Fig. 4. An example /boot/maint/loader.rc file.

V. FUTURE DIRECTIONS

LOOKING forward, we plan to investigate if a Secure Shell
Maintenance RAMdisk Environment could be loaded via a

kernel module so that the dependence on the /etc/ directory
could be removed. Today, the kernel already attempts to mount
from /dev/md0 in a fallback situation if options MD ROOT
is defined. With this RAMdisk image, the system would then be
networked according to the configuration in figure 2.

Adrian Steinmann earned a Ph.D. in Mathematical
Physics from Swiss Federal Institute of Technology in
Zürich and has over 15 years experience as a technical
consultant and software developer. He has been work-
ing on FreeBSD since 1993 (version 1.0) and since
1997 he maintains and develops the base system for a
remote managed firewall called ‘STYX’ [3]. He is flu-
ent in Perl, C, English, German, Italian, and has pas-
sion and flair for finding simple solutions to intricate
problems.

REFERENCES

[1] PC Engine WRAP: Wireless Router Application Platform; 2002–2005;
266 MHz AMD Geode SC1100 CPU, 128MB SDRAM, CF, 2-3 LAN, 1-2
Mini-PCI; www.pcengines.ch

[2] Soekris net4501: Compact, low power, low-cost, communication com-
puter; 2001–2005; 133 MHz, 64MB SDRAM, CF, 3 LAN, 1 Mini-PCI;
www.soekris.com

[3] STYX Firewall: FreeBSD-based Remote Managed Firewall; 1997–2005;
www.styx.ch

